用户名: 密码: 验证码:
甘蓝型油菜亚基因组间杂种优势分子遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将芸薹属中白菜型油菜(Brassic rapa,2n=2X=20, ArAr)的基因组片段导入到甘蓝型油菜(Brassic napus,2n=4X=38, AnAnCnCn)中,形成一类新型的甘蓝型油菜(New type Brassic napus,4X=38, Ar/nAr/nCnCn)。将新型的甘蓝型油菜与自然甘蓝型油菜(AnAnCnCn)杂交产生的杂交种Ar/nAnCnCn能表现出强大的杂种优势,这种优势我们称为亚基因组间杂种优势。多项研究已证实亚基因组间杂种优势的存在,但其产生的遗传机理仍未得到揭示。为了研究白菜基因组片段的渗透对甘蓝型油菜基因组的结构变异的影响,并揭示亚基因组间杂种优势产生的分子遗传机理,我们利用一个半冬性的甘蓝型油菜品种“华双3号”(简称H3,2n=38)与一个中国半冬性白菜型油菜品种“天门油菜白”(简称TM,2n=20)杂交,然后再与白菜型油菜回交,通过染色体观察和单粒传的方式衍生了一个由138个F8新型甘蓝型油菜株系组成的重组自交系群体(简称TH-RIL群体)。将TH-RIL每个株系与原始甘蓝型油菜亲本H3回交建立了一个回交群体(简称TH-BC)。将TH-RIL群体、TH-BC群体和两亲本(H3兼作对照)进行了两年一点的田间试验。考察了种子产量、每角果粒数、千粒重、地上部分生物学产量、开花期、株高、分枝数和含油量等8个性状,另外通过上述性状计算获得了单株角果数和产油量两个性状值。
     通过表型数据分析结果表明,在TH-RIL群体中,新型甘蓝型油菜千粒重性状与自然甘蓝型油菜亲本相比,变化最为明显。有77.5%TH-RILs株系的千粒重超过H3;近一半的株系在株高、全株角果数和干物质重超过H3;有20.3%的株系在单株产量上超过H3;不足30%的株系在其他性状方面超过H3。这说明白菜基因组渗透到甘蓝型油菜后,能够对甘蓝型油菜产生较广泛的变异。在TH-BC群体中,亚基因组间杂种优势表现突出。中亲优势(Mid-parent heterosis, MPH)变异范围从0.0%(千粒重)到47.1%(产油量),而超亲优势(over parent heterosis, OPH)变异从-7.4%(分支数)到26.9%(产油量)。平均有97%左右的杂交组合的单株产量性状超过H3,群体平均产量中亲优势为28%。这说明,当白菜外源片段渗透到甘蓝型油菜时,表现比较明显的杂种优势。
     利用545个SSR标记(289对引物扩增),28个IBAP(intron-based amplified polymorphism)标记,51个着丝粒特有的反转座子标记和248个非着丝粒特有的反转座子标记共872个多态性标记用来进行基因组结构变异分析和遗传图谱构建(命名为TH-RIL map)。构建了一个含有628个标记的新型甘蓝型油菜遗传图谱(TH map),包括A基因组上的10条连锁群,C基因组的7条连锁群(无C6和C7),其余的8条短连锁群无法与已发表的连锁群相对应。由于TH群体的C基因组供体仅来源于H3,部分C基因组上的连锁群的成功构建是由于部分同源染色体之间发生的同源重组而导致的。TH图谱总长为2272.8cM,标记之间平均遗传距离为3.9cM。
     利用该群体进行基因组结构变异分析,新型甘蓝型油菜中一方面被导入了白菜特有的等位基因;另一方面渗透诱发了大量新的基因组结构变异,如等位基因的变异(不同于双亲的新带(N-type)的出现以及双亲共同带的消失(D-type))。分析表明新型甘蓝型油菜创建过程中可能有反转座子的激活。为了进一步验证反转座子的激活这一遗传现象,将TH-RIL群体中扩增出的92条新的反转座子片段进行克隆测序,通过与三个转座子数据库进行比对,获得含转座子片段的序列65条,说明这些片段的变异是由于转座子的激活而诱发。同时利用65条序列与芸薹属基因组信息进行比对,设计12个RBIP (retrotransposon-based insersion polymorphism)引物再次证实了其存在。通过基因GO (http://www.geneontology.org/)注释发现在65条新变异的序列中有45条变异序列涉及到功能基因,主要是与代谢,细胞加工和胁迫有关的基因。
     利用QTL Cartographer V2.5分析软件对三套数据(RIL群体数据,BC群体数据和MPH数据)进行单位点的QTL扫描分析。9个性状共检测到了123个QTL,其中微效作用但可以重复检测到QTL(简称MR-QTL)有40个,达到显著水平QTL(简称SL-QTL)有83个。利用TH-RIL群体分析白菜基因组的渗透对新型甘蓝型油菜的作用,在TH-RIL群体中检测到58个QTL,有33个QTL定位在包含N-type等位点的区域,这些新检测到的QTL能解释64.2%的表型变异,并且大约40%的QTL对性状表现出正向作用。来源于白菜基因组的Ar等位基因的渗透也对产量和产量相关的性状产生重要影响,另外有6个QTL和1/5的单标记分析位点都来源于B. rapa亲本。
     利用TH-BC群体和TH-MPH数据进行杂种优势分析,对在这两个群体中检测的66个QTL进行显性度分析,确定了63个QTL为从部分显性到超显性效应的杂种优势位点。其中包括7个部分显性,6个完全显性和50个超显性。所有的与杂种优势有关的等位基因将可以分成5类,Ar(直接来源于白菜型油菜),An(直接来源于甘蓝型油菜),An(间接来自于A基因组发生变异的等位点),Cn(间接来自于C基因组变异的等位点)和L(分布在未定位的连锁群的一类)。92.0%QTL(58个)分布在A基因组,作用最大的一类来源于新变异的等位点(A。),占总数的47.1%QTL(32),并且起正向作用的位点比例为56.3%;其次直接来源于白菜等位基因的(Ar)有22.1%QTL(15个),并且起正向作用的比例为86.7%(13个)。23.9%的QTL与转座子的激活有关,正负作用的比例大致相等。这说明转座子的激活可以诱导新的等位基因的产生,并且对表型产生一定的影响。
     利用QTL mapper2.0软件进行上位性互作效应检测,从三套数据中共检测到了536个非等位基因互作对。在TH-BC和TH-MPH数据检测的372个互作对中,A-A亚基因组的互作比例最高,为71.4%;其次是A-C亚基因组的互作为26.5%和C-C互作(2.1%)。每个等位基因各来源于五类(Ar, An, An, Cn和L)中的一种,可组成15种类型的两位点互作。从互作模型看,比例最大的是Ar-An(20.8%),其次为An-An(19.3%),平均58.6%互作对产生正向作用。由此可知,从单位点和两位点模型来看,亚基因组间杂种优势首先来源于白菜基因组渗透到甘蓝型油菜中所产生的新的发生变异的等位基因的贡献,其次是直接来源于白菜等位基因的作用,并且正效应的比例略大于负效应。从遗传模式看,亚基因组间杂种优势遗传模式是上位性、显性和超显性效应多种效应的综合作用。
     甘蓝型油菜为异源多倍体,A和C基因组的高度相似性(同源基因)为杂种优势固定的研究提供了有利条件。利用TH-RIL群体中检测的203个互作对来分析杂种优势,并存在6对部分同源染色体之间的互作,被认为是固定杂种优势对。TH-RIL群体中的固定杂种优势的研究可为直接提高新型甘蓝型油菜的表型,间接提高杂种优势提供理论基础。
     在甘白杂交过程中,由白菜基因组渗透所诱导的等位基因的变异及转座子的激活,诱发新型甘蓝型油菜中大量新等位基因产生。这些新的等位基因所产生单位点效应,它们之间的互作效应,新等位基因与直接渗透的亲本等位基因之间的互作效应成为亚基因组间杂种优势利用的重要理论基础。甘蓝型油菜作为一个多倍体模式物种,其亚基因间杂种优势的机理研究和应用,对为其它物种的相关研究,特别是利用亲本种和近缘种改良栽培种的研究,具有重要的指导和借鉴意义。
Introgression of Brassica rapa genome (2n=2X=20, ArAr) into Brassica napus (2n=4X=38, AnAnCnCn) creates a type of new type B. napus (4X=38, Ar/nAr/nCnCn). A cross between the new type B. napus and natural B. napus produces stronger heterosis, which is nominated as intersubgenomic heterosis. There were previous ample experiments to prove its truth but molecular genetic mechanism of intersubgenomic heterosis was still not unveiled. To investigate the influence of B. rapa genomic introgression on B. napus genomic structural variations and molecular mechanism of intersubgenomic heterosis, we developed a recombination inbred line (RIL) population (called TH-RIL) of new type B. napus of138Fg lines derived from an fertile BC1F2individual with38chromosomes which came from a corss of H3(a semi-winter B. napus cultivar)/TM (a semi-winter B. rapa cultivar)//TM and its corresponding backcrossed F1population (TH-BC) created by crosses of each RIL and H3. Field trial was carried out at one location in China in two years. One hundred and thirty eight recombination inbred lines,138BC combinations and their two parents (also as controls) were planted to evaluate for yield and eight yield-related traits, including seed yield, seed number per pod, kio-seed weight, dry weight, flowering time, plant height, branch number per plant, and oil content. In addition, pod number per plant and oil yield were calculated.
     The phenotype data showed that compared with the better parent H3,77.5%of the RIL lines showed very obvious advantages on seed weight. Averagely almost half of the lines had advantages over H3in the respect of PH, SN and DW. The remaining traits, including OY, SY, PN, FT, were30%lower than H3in RIL lines. For SY trait,20.3%RIL lines exceeded H3. Such data demonstrated that the introgression of B. rapa into B. napus made phenotype have great variations. Middle parent heterosis (MPH) level ranged from SW (0.0%) to OY (47.1%) while the OPH ranged from BN (-7.4%) to OY (26.9%) while over-parent heterosis ranged from-7.4%(branch number) to26.9%(oil yield). About97%hybrid combinations exceeded H3for seed yield with an average of28%. This showed that when alien B. rapa genomic fragments were introgressed into B. napus, obvious heterosis appeared.
     Analysis of genomic structural variation and genetic mapping were conducted with872different kinds of markers, including545SSR markers amplified by289SSR prier pairs,51centromere-specific retrotransposon (RTc) markers, and248noncentromere-specific retrotransposon (RTnc).
     TH-RIL genetic map was constructed by628markers and has25linkage groups (LGs) covering2272.8cM with an average interval of3.9cM, including10LGs in A genome,7LGs in C genome except C6and C7, and8un-corresponding LGs with other published maps. The donor of C genome in TH-RILs only originated from C genome of H3, so partial C-genomic linkage groups could be successfully constructed because homoeologous recombination occurred between homoeologous chromosomes.
     Through the analysis of genome-wide structural variation in the TH-RIL population, we found that new type B. napus contained B. rapa-specific alleles and numerous new alleles, such as the occurrence of N-type alleles (being present in some TH-RILs but absent in two parents) and D-type alleles (being present in two parents but absent in some TH-RILs). The analysis showed that retrotransposon markers were reactivated during the development of materials. Ninety two N-type varied bands were sequenced and analyzed by three transposon-specific databases. Sixty five sequences contained the transposon fragments, which showed that these genomic variations occurred by the induction of transposons. Finally, we detected12RBIP sites to confirm the occurrence of retrotransposon reactivation again. Go annotation toward sequenced65variants found that45variants were involved with functional genes, mainly including metabolism, cellular process and stress. The analysis of correlation coefficients showed that the novel sequence variation had significant impacts on the investigated traits.
     Three data sets, including RIL population, BC population and middle parent heterosis data (MPH) were used to analyze QTL by QTL Cartographer V2.5software. A total of123QTL for yield and nine yield-related traits were identified with40repeatable micro-QTL (MR-QTL) and83significant-level (SL-QTL) over the threshold. Fifty eight QTLs were detected in TH-RIL population. Thirty-three of the41QTL were located in chromosomal varied regions that could explain the64.2%phenotypic variation, and two fifths of the QTL contributed positively to the improvement in the agronomic traits. B. rapa genomic fragment (Ar) also played a great role in seed yield and yield-related traits, and6QTL and1/5loci detected by single-marker analysis originated from B. rapa parent.
     The heterosis analysis was performed using the TH-BC and TH-RIL data sets. By the analysis of dominant degree,63(54.6%) of66QTL belonged to heterosis-related QTL, including7partial dominance loci,6full dominance loci and50over dominance loci. In total,92.0%QTL (58) were distributed in A genome. Based on allele origin, five types of allele Ar (directly derived from B. rapa), An (directly derived from B. napus), An and Cn (indirectly produced by B. rapa introgression in A genome and C genome, respectively, and L (unmapped alleles). As the first factor,47.1%QTL (32) originated from novel varied alleles (An) in A subgenome with56.3%(18) loci of32QTL conducting favorable effect, then next to15QTL (22.1%) from Ar with86.7%(13) of15derived Ar loci arising positive effect. Furthermore,14.1%QTL were mapped in the rearrangement region and80%of these loci play a positive role while23.9%loci of QTL were involved with retrotransposon reactivity and52.9%among them performed a positive function. This indicated that the retrotransposon reactivity could induce new allelic emergence which indirectly played a great role in phenotype traits.
     Additionally,536interacting pairs of epistatic effect were also found by QTL mapper2.0software. For epistasis,372interaction pairs detected in TH-BC and TH-MPH data sets were identified and A-A subgenomic interaction ranked the first (71.4%), then followed by A-C interaction (26.5%) and the remained C-C interaction (2.1%). Since there was five allelic origins (Ar, An, An, Cn and L),15interacted patterns could be detected among interaction of five origins. The most important interacted modes were Ar-An (20.8%) and An-An (19.3%) which averagely58.6%loci produced a positive effect. It suggested that intersubgenomic heterosis were mainly rooted in An induced B. rapa genome introgression into B. napus and direct-effect Ar genome by the dissecting of whether single QTL or two-QTL interaction which slightly more than half of alleles worked as a positive function. The genetic mode of intersubgenomic heterosis was a comprehensive function of epistasis, dominant effect, and over dominant effect.
     B. napus was an allopolyploid species and the higher homology between A and C genome provided the beneficial foundation for fixed heterosis study. We detected203interacted pairs in RIL population to analyze heterosis fixation. Six interacted pairs between homoeologous genomic fragments were considered as fixed heterosis loci which may be resulted from chromosomal rearrangements. The investigation of fixed heterosis could directly improve the performance of new type B. napus and indirectly enhance intersubgenomic heterosis.
     An emergence of lots of novel alleles and chromosomal rearrangements induced by interspecific hybridization of B. napus and B. rapa makes new type B. napus significantly distinct from natural B. napus at alleles and genomic structure. Each pair of newly-detected alleles in an intersugenomic hybrid displayed dominance or over dominance alone. A wealth of alleles, allelic combination and allelic interaction which less occurred in an inter-variety hybrid, constitute the origin of intersubgenomic heterosis. It may be the essence of intersubgenomic heterosis merging epistasis and dominance effect from partial dominance to over dominance. B. napus, as a model crop of the study of polyploid, intersubgenomic heterosis and fixed heterosis, could play a great referenced role for guiding the research and breeding of other crops.
引文
1. 伏军,徐庆国.水稻与高梁远缘杂交育种研究.湖南农学院学报,1994,20:6-12
    2. 傅廷栋.杂交油菜的育种与利用(第二版).湖北科技出版社,2000:1-55
    3. 官春云,王国槐,赵均田.甘蓝型油菜不同杂种组合的优势比较.中国油料,1980,4:17-20
    4. 黄群策,代西梅,梁芳.同源四倍体水稻与非洲栽培稻杂交的后效性研究.杂交水稻,2005,20:66-68
    5. 黄群策,孙梅元,邓启云.多倍体水稻及其潜在价值.杂交水稻,2001,16:3
    6. 李周岐,王章荣.鹅掌楸属种间杂交可配性与杂种优势的早期表现.南京林业大学学报:自然科学版,2001,25:34-38
    7. 刘后利.油菜遗传育种,2002,
    8. 刘胜洪,曾慕衡.梁红芸苔属植物种间杂种优势利用研究.农业与技术,2005:54-58
    9. 祁玉良,鲁伟林,石守设,余新春,严德远,余明慧,何道君.水稻两系亚种间杂种优势分析及其亲本选配的研究.河南农业科学,2005:33-36
    10. 宋宪亮,刘继华,刘英欣.陆地棉隐性核不育系与海岛棉种间杂种优势研究.中国棉花,2007:13-15
    11. 王胜军,陆作楣.我国常用杂交籼稻亲本杂种优势群的初步研究.南京农业大学学报,2007:14-18.
    12. 王曙明,孙寰,王跃强,赵丽梅,李楠,付连舜,李卫东,齐宁,邢邯,李磊.大豆杂种优势及其高优势组合选配的研究Ⅰ.F1代籽粒产量的杂种优势与高优势组合选配.大豆科学,2002,21:161-167
    13. 姚青菊,夏冰,任全进,盛宁,孙小芳.夏蜡梅和美国蜡梅属间杂种的优势表现.江苏林业科技,2007:24-26,35
    14. 杨振玉.不同类型籼粳亚种间杂种F1可利用或非利用杂种优势的评价和利用.杂交水稻,1990,4:49-55
    15. 袁隆平.杂交水稻育种战略没想.杂交水稻,1987,1
    16. 张世煌,彭泽斌,袁力行,李新海.玉米杂种优势与我国的玉米种质扩增—21世纪玉米遗传育种展望.玉米遗传育种国际学术讨论会论文集,2000:137-411
    17. 张天真.作物育种学总论2003,
    18. 张在忠,赵仁发,钟章美,黄森伦,李伟平,黎淼坚,张财源,李意心.远缘杂交竹稻966的杂交选育与性状表现.安徽农学通报,2007,13:12140
    19. 邹珺.新型甘蓝型油菜的遗传改良及其基因组结构分析.[博士学位论文].武汉:华中农业大学图书馆,2009
    20. Abel S, Mollers C, Becker HC. Development of synthetic Brassica napus lines for the analysis of "fixed heterosis" in allopolyploid plants. Euphytica,2005, 146:157-163
    21. Adams KL, Wendel JF. Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics,2005a,171:2139-2142
    22. Adams KL, Wendel JF. Novel patterns of gene expression in polyploid plants. Trends Genet,2005b,21:539-543
    23. Alix K, Heslop-Harrison JS. The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Molecular Biology,2004,54:895-909
    24. Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Pat Heslop-Harrison JS. The CACTA transposon Botl played a major role in Brassica genome divergence and gene proliferation. Plant J,2008,56:1030-1044
    25. Attia T, Robbelen G. Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Canadian Journal of Genetics and Cytology,1986:323-329.
    26. Auger DL, Gray AD, Ream TS, Kato A, Coe EH, Jr., Birchler JA. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics,2005, 169:389-397
    27. Baack EJ, Rieseberg LH. A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev,2007,17:513-518
    28. Banaei Moghaddam AM, Fuchs J, Czauderna T, Houben A, Mette MF. Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. Theor Appl Genet,2009,
    29. Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape(Brassica napus L.). Theor Appl Genet, 120:271-281
    30. Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev,2005,15:621-627
    31. Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M. Polyploidization as a retraction force in plant genome evolution:sequence rearrangements in triticale. PLoS ONE,2008,3:e1402
    32. Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell,2005,17:343-360
    33. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species(Triticum and aegilops). Plant Cell,2005,17:1033-1045
    34. Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium). Genetics,2009,182:503-517
    35. Chen X, Li M, Shi J, Fu D, Qian W, Zou J, Zhang C, Meng J. Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet,2008,117:1031-1040
    36. Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol,2007,58:377-406
    37. Chen ZJ. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci, 2010,
    38. Chen ZJ, Ni Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays,2006,28:240-252
    39. Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY. Progress in research and development on hybrid rice:a super-domesticate in China. Ann Bot (Lond),2007, 100:959-966
    40. Cifuentes M, Eber F, Lucas MO, Lode M, Chevre AM, Jenczewski E. Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell,2010a,22:2265-2276
    41. Cifuentes M, Grandont L, Moore M, Chevre A, Jenczewski E. Genetic regulation of meiosis in polyploid species:new insights into an old question. New Phytologist,2010b,186(1):29-36
    42. Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol,2000,43:387-399
    43. Comai L, Madlung A, Josefsson C, Tyagi A. Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids? Philos Trans R Soc Lond B Biol Sci,2003,358:1149-1155
    44. Crombach A, Hogeweg P. Chromosome rearrangements and the evolution of genome structuring and adaptability. Mol Biol Evol,2007,24:1130-1139
    45. De Luca V, Likhodi O, Kennedy JL, Wong AH. Parent-of-origin effect and genomic imprinting of the HTR2A receptor gene T102C polymorphism in psychosis. Psychiatry Res,2007,151:243-248
    46. Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. Ⅰ. Numbers, genomic distribution and types of gene action. Genetics,1987,116:113-125
    47. Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M. Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome,2008,51:616-627
    48. Falke KC, Frisch M. Power and false-positive rate in QTL detection with near-isogenic line libraries. Heredity,2011,106:576-584
    49. Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM. Rapid elimination of low-copy DNA sequences in polyploid wheat:a possible mechanism for differentiation of homoeologous chromosomes. Genetics,1997,147:1381-1387
    50. Feuillet C, Langridge P, Waugh R. Cereal breeding takes a walk on the wild side. Trends Genet,2008,24:24-32
    51. Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM. Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS One,2009, 4:e7433
    52. Gaeta RT, Pires JC. Homoeologous recombination in allopolyploids:the polyploid ratchet. New Phytologist,2010,186(1):18-28
    53. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell,2007,19:3403-3417
    54. Garcia AA, Wang S, Melchinger AE, Zeng ZB. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics,2008,180:1707-1724
    55. Grover CE, Yu Y, Wing RA, Paterson AH, Wendel JF. A phylogenetic analysis of indel dynamics in the cotton genus. Mol Biol Evol,2008,25:1415-1428
    56. Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS. Allelic variation of gene expression in maize hybrids. Plant Cell,2004,16:1707-1716
    57. Gur A, Zamir D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biol,2004,2:e245
    58. Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci U S A,2009,106:17835-17840
    59. Hawkins GP, Nykiforuk CL, Johnson-Flanagan AM, Boothe JG. Inheritance and expression patterns of BN28, a low temperature induced gene in Brassica napus, throughout the Brassicaceae. Genome,1996,39:704-710
    60. He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW. Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant Cell,2010,
    61. Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ. Transcriptome shock after interspecific hybridization in senecio is ameliorated by genome duplication. Curr Biol,2006,16:1652-1659
    62. Hegarty MJ, Hiscock SJ. Genomic clues to the evolutionary success of polyploid plants. Curr Biol,2008,18:R435-444
    63. Hegarty MJ, Hiscock SJ. The complex nature of allopolyploid plant genomes. Heredity,2009,103:100-101
    64. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A,2003, 100:2574-2579
    65. Institute S. SAS Users Guide:Statistic. SAS Institute, Cary, NC,1996,
    66. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR. An active DNA transposon family in rice. Nature,2003,421:163-167
    67. Josefsson C, Dilkes B, Comai L. Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol,2006,16:1322-1328
    68. Kaczmarek M, Koczyk G, Ziolkowski PA, Babula-Skowronska D, Sadowski J. Comparative analysis of the Brassica oleracea genetic map and the Arabidopsis thaliana genome. Genome,2009,52:620-633
    69. Kalendar R, Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc,2006,1:2478-2484
    70. Kidwell K, Osborn T. Simple plant DNA isolation procedures. In:Beckman JS, Osborn TC (eds) Plant genomes:methods for genetic and physical mapping. Amsterdam,1992:1-13
    71. Kuehn C, Edel C, Weikard R, Thaller G. Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGAT1) gene on milk production traits in German Holstein cows. BMC Genet, 2007,8:62
    72. Kwon SJ, Kim DH, Lim MH, Long Y, Meng JL, Lim KB, Kim JA, Kim JS, Jin M, Kim HI, Ahn SN, Wessler SR, Yang TJ, Park BS. Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol Genet Genomics, 2007,278:361-370
    73. Lavania UC, Srivastava S, Lavania S. Ploidy-mediated reduced segregation facilitates fixation of heterozygosity in the aromatic grass, Cymbopogon martinii (Roxb.). J Hered,2010,101:119-123
    74. Leflon M, Eber F, Letanneur JC, Chelysheva L, Coriton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chevre AM. Pairing and recombination at meiosis of Brassica rapa (AA) x Brassica napus (AACC) hybrids. Theor Appl Genet,2006, 113:1467-1480
    75. Leitch AR, Leitch IJ. Genomic plasticity and the diversity of polyploid plants. Science,2008,320:481-483
    76. Li L, Lu K, Chen Z, Mu T, Hu Z, Li X. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics,2008, 180:1725-1742
    77. Li M, Qian W, Meng J, Li Z. Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res,2004,12:417-426
    78. Li MT, Chen X, Meng JL. Potential of intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from B. rapa and Cc from B. carinata. Crop Science,2006,46:234-242
    79. Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅰ. Biomass and grain yield. Genetics,2001,158:1737-1753
    80. Lippman ZB, Zamir D. Heterosis:revisiting the magic. Trends Genet,2007, 23:60-66
    81. Liu B, Wendel JF. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome,2000,43:874-880
    82. Liu B, Xu C, Zhao N, Qi B, Kimatu JN, Pang J, Han F. Rapid genomic changes in polyploid wheat and related species:implications for genome evolution and genetic improvement. J Genet Genomics,2009,36:519-528
    83. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape(Brassica napus x B. campestris). Theor Appl Genet,2002,105:1050-1057
    84. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J. Flowering time quantitative trait Loci analysis of oilseed brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics,2007,177:2433-2444
    85. Lowe AJ, Moule C, Trick M, Edwards KJ. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet,2004a,108:1103-1112
    86. Lowe AJ, Moule C, Trick M, Edwards KJ. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theoretical and Applied Genetics,2004b,108:1103-1112
    87. Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theoretical and Applied Genetics,2003,107:494-502
    88. Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res,2004,14:860-869
    89. Ma XF, Gustafson JP. Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot (Lond),2008,101:825-832
    90. Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L. Genomic changes in synthetic Arabidopsis polyploids. Plant J,2005, 41:221-230
    91. Marhold K, Lihova J. Polyploidy, hybridization and reticulate evolution:lessons from the Brassicaceae. Plant Systematics and Evolution,2006,259:143-174
    92. Martienssen RA. Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis. New Phytol,2010,186:46-53
    93. Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ. RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol,2009,21:367-376
    94. Melchinger AE, Piepho HP, Utz HF, Muminovic J, Wegenast T, Torjek O, Altmann T, Kusterer B. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics,2007a,177:1827-1837
    95. Melchinger AE, Utz HF, Piepho HP, Zeng ZB, Schon CC. The role of epistasis in the manifestation of heterosis:a systems-oriented approach. Genetics,2007b, 177:1815-1825
    96. Metcalfe CJ, Bulazel KV, Ferreri GC, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge MD, O'Neill RJ. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics,2007,177:2507-2517
    97. Meyer RC, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet,120:227-237
    98. Michalak P. Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity,2009,102:45-50
    99. Michalak P, Noor MA. Genome-wide patterns of expression in Drosophila pure species and hybrid males. Mol Biol Evol,2003,20:1070-1076
    100. Mohanty A, Chrungu B, Verma N, Shivanna KR. Broadening the Genetic Base of Crop Brassicas by Production of New Intergeneric Hybrid. Czech Journal of Genetics and Plant Breeding,2009,45:117-122
    101. Morison IM, Paton CJ, Cleverley SD. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res,2001,29:275-276
    102. Nakamura S, Hosaka K. DNA methylation in diploid inbred lines of potatoes and its possible role in the regulation of heterosis. Theor Appl Genet,2009,
    103. Newell CA, Rhoads ML, Bidney DL. Cytogenetic analysis of plants regenerated from tissue explants and mesophyll protoplasts of winter rape, Brassica napus L. Canadian Journal of Genetics and Cytology,1984:752-761
    104. Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chevre AM, Jenczewski E. Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics,2007, 175:487-503
    105. Nicolas SD, Leflon M, Liu Z, Eber F, Chelysheva L, Coriton O, Chevre AM, Jenczewski E. Chromosome'speed dating'during meiosis of polyploid Brassica hybrids and haploids. Cytogenet Genome Res,2008,120:331-338
    106. Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chevre AM, Jenczewski E. Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell,2009,21:373-385
    107. O'Neill RJ, O'Neill MJ, Graves JA. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature,1998,393:68-72
    108. Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IA, Parker JS, Lydiate DJ. Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics,2003a,165:1569-1577
    109. Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IAP, Parker JS, Lydiate DJ. Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics,2003b,165:1569-1577
    110. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM. Direct RNA sequencing. Nature, 2009,461:814-818
    111. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008,9:113
    112. Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol,186:37-45
    113. Parkin I A, Sharpe AG, Keith DJ, Lydiate DJ. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome,1995, 38:1122-1131
    114. Pea G, Paulstephenraj P, Cane MA, Sardaro ML, Landi P, Morgante M, Porceddu E, Pe ME, Frascaroli E. Recombinant near-isogenic lines:a resource for the mendelization of heterotic QTL in maize. Mol Genet Genomics,2009, 281:447-457
    115. Pignatta D, Comai L. Parental squabbles and genome expression:lessons from the polyploids. J Biol,2009,8:43
    116. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P. Construction of an oilseed rape(Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005, 111:1514-1523
    117. Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC. Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biological Journal of the Linnean Society,2004, 82:675-688
    118. Qian W, Chen X, Fu D, Zou J, Meng J. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet,2005,110:1187-1194
    119. Qian W, Liu R, Meng J. Genetic effects on biomass yield in interspecific hybrids between Brassica napus and B. rapa. Euphytica,2003,134:9-15
    120. Qian W, Sass O, Meng J, Li M, Frauen M, Jung C. Heterotic patterns in rapeseed (Brassica napus L.):I. Crosses between spring and Chinese semi-winter lines. Theor Appl Genet,2007,115:27-34
    121. Qifa Z, Gao YJ, Maroof MAS, Yang SH, Li JX. Molecular divergence and hybrid performance in rice. Molecular Breeding,1995:133-142
    122. Ranz JM, Namgyal K, Gibson G, Hartl DL. Anomalies in the expression profile of interspecific hybrids of Drosophila melanogaster and Drosophila simulans. Genome Res,2004,14:373-379
    123. Rapp RA, Udall JA, Wendel JF. Genomic expression dominance in allopolyploids. BMC Biol,2009,7:18
    124. Riddle NC, Birchler JA. Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends Genet,2003,19:597-600
    125. Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C. Major ecological transitions in wild sunflowers facilitated by hybridization. Science,2003,301:1211-1216
    126. Saitoh S, Wada T. Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am J Hum Genet,2000, 66:1958-1962
    127. Salmon A, Ainouche ML, Wendel JF. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol,2005, 14:1163-1175
    128. Scascitelli M, Cognet M, Adams KL. An Interspecific Plant Hybrid Shows Novel Changes in Parental Splice Forms of Genes for Splicing Factors. Genetics,
    129. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell,2001,13:1749-1759
    130. Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B. Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol,2005, 22:976-990
    131. Song K, Lu P, Tang K, Osborn TC. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci U S A, 1995,92:7719-7723
    132. Song KM, Osborn TC, Williams PH. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet,1988, 75:784-794
    133. Springer NM, Stupar RM. Allelic variation and heterosis in maize:how do two halves make more than a whole? Genome Res,2007,17:264-275
    134. Stupar RM, Springer NM. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics,2006, 173:2199-2210
    135. Suwabe K, Morgan C, Bancroft I. Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome,2008,51:169-176
    136. Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux M, Delourme R, King G, Chalhoub B, Jenczewski E, Chevre A. The first meiosis of resynthesized Brassica napus, a genome blender. New Phytologist,2010,186 (1),102-112
    137. Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F(2) population. Theor Appl Genet,2009,
    138. Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T. Bursts of retrotransposition reproduced in Arabidopsis. Nature,2009,461:423-426
    139. U N. Genome analysis in Brassica with special reference to the experimental formation of B.napus and peculiar mode of fertilization. Japan J Bot 1935, 7:389-452
    140. Udall JA, Quijada PA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed(Brassica napus L.):2. Identification of alleles from unadapted germplasm. Theor Appl Genet,2006, 113:597-609
    141. Udall JA, Quijada PA, Osborn TC. Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics,2005,169:967-979
    142. Ungerer MC, Strakosh SC, Zhen Y. Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol,2006, 16:R872-873
    143. Veyrieras JB, Goffinet B, Charcosset A. MetaQTL:a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics,2007,8:49
    144. Vrana PB, Fossella JA, Matteson P, del Rio T, O'Neill MJ, Tilghman SM. Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet,2000,25:120-124
    145. Wang DL, Zhu J, Li ZR, Paterson AH. Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet,1999,99:1255-1264
    146. Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5,2007,
    147. Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell,2009, 21:1053-1069
    148. Wang YM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou D, Liu B. Extensive de Novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics,2005,170:1945-1956
    149. Wu LM, Ni ZF, Meng FR, Lin Z, Sun QX. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents. Mol Genet Genomics,2003,270:281-286
    150. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics,1998,150:899-909
    151. Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995,140:745-754
    152. Xiao Y, Chen L, Zou J, Tian E, Xia W, Meng J. Development of a population for substantial new type Brassica napus diversified at both A/C genomes Online. Theor Appl Genet,2010,
    153. Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, Zhou Q, Kirkness EF, Levy S, Batzer MA, Jorde LB. Mobile elements create structural variation: analysis of a complete human genome. Genome Res,2009,19:1516-1526
    154. Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet,1999,261:439-446
    155. Yao Y, Ni Z, Du J, Han Z, Chen Y, Zhang Q, Sun Q. Ectopic overexpression of wheat adenosine diphosphate-ribosylation factor, TaARF, increases growth rate in Arabidopsis. J Integr Plant Biol,2009,51:35-44
    156. Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah JB, Tanksley SD, Nasrallah ME. Comparative genome analyses of Arabidopsis spp.:inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res,2005,15:505-515
    157. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A,1997,94:9226-9231
    158. Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet, 2001,2:983-989
    159. Zhao HX, Li ZJ, Hu SW, Sun GL, Chang JJ, Zhang ZH. Identification of cytoplasm types in rapeseed(Brassica napus L.) accessions by a multiplex PCR assay. Theor Appl Genet,2010,121:643-650
    160. Zhao J, Udall JA, Quijada PA, Grau CR, Meng J, Osborn TC. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet, 2006,112:509-516
    161. Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A, Bustamante CD, McCouch SR. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One,2010b,5:e 10780
    162. Zhao Y, Yu S, Xing C, Fan S, Song M. DNA methylation in cotton hybrids and their parents. Mol Biol (Mosk),2008,42:195-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700