用户名: 密码: 验证码:
微型光纤光栅光谱仪的研制及在物理实验中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光谱检测是一种在科研和生产中广泛采用的技术。随着科研和生产技术的发展和进步,光谱检测技术正向原位和在线测量方向发展,因此对光谱检测仪器提出了微型化的要求。本文针对这一要求,设计、制作了一台微型光纤光栅光谱仪。微型光纤光栅光谱仪选用小型光栅单色仪、电荷耦合器件(Charge Coupled Device简称CCD)和复杂可编程逻辑器件(Complex programmable logical Device简称CPLD)等最新技术研制。CCD作为感光元件,具有尺寸小、重量轻、功耗小、线性好、噪声低、动态范围大、光谱响应范围宽、寿命长、实时传输和自扫描等一系列优点。在对光栅光谱仪输出的光学信号进行光电转换后,经电路处理转换成数字信号,传送到上位机存储、处理和分析。通过电子电路,可以对微弱的光信号转换后的电信号进行放大和降噪处理,从整体上提高了测量系统的性能,实现了对光谱信息快速采样、存储、传输和数据处理等功能,从而使光谱的测量实现了数字化,拓宽了光谱测量的应用领域。系统的硬件电路由CPLD控制,包括CCD的驱动时序、A/D采样转换时序、数据缓存读写时序和上、下位机之间的数据与命令的通迅时序等。CPLD采用Verilog语言实行模块化编程,在Quartus II开发环境中编译、综合、仿真,并烧写器件。整个系统可通过JTAG接口进行现场编程烧录,调整电路的工作状态或是硬件控制程序的升级、更新。上、下位机之间的命令和数据的通讯,采用USB2.0协议,支持即插即用(Plug and Play),传输速度可达到480Mbps,与CPLD的高速逻辑处理能力和响应速度相配合,能针对CCD的大数据量像素的光电信号进行高速采集和实时处理,这些功能由USB接口控制芯片实现。此外,系统从USB口汲取电源,能满足整个硬件电路正常工作所需,无须外加电源,为野外的便携式应用提供了可能。上位机的应用程序采用LabView语言编写,具有结构简单明了,交互界面友好等特点。研制的样机经测试,表明具有测量光谱范围宽、测量分辨率高、特别适用于光谱学实验教学和便携式的现场光谱采集。该光谱仪已被高校应用到实验教学中。
Spectrum examination is widely used in scientific research and production. With the development of scientific research and production, the trend of spectrum examination is from indoor to outdoor in situ examination and on-line monitor. So the spectrometer is required to be more minimal. The thesis describes a set of micro fiber grating spectrometer, which is made up of fiber, mini grating monochromator, CCD and CPLD. The CCD is the photosensitive component and has the feature of minimal size, light weight, low power consumption, linearity, low noise, wide dynamic response, real time transport and self-scans. The CCD transforms the photo intensity to electric signal. After this step, the electric signal is transformed to digital values by the electric system. At the end, these digital values are uploaded to PC where they are stored, processed and analyzed. With the help of electric system, the electric signal which is transformed from weak photo signal is amplified and the S/N ratio is increased that improves the performance of grating spectrometer. The whole electric system is under the control of the CPLD, which includes the CCD driver timing, A/D sample and transform timing, data buffer read and write timing and the communication between system and PC. The CPLD is programmed in Verilog and compiled, synthesized, simulated and burned helping the environment of Quartus II. The CPLD also supports on-line programming by JTAG, this helps the hardware of system to upgrade and update conveniently. The communication between system and PC is following the USB2.0 protocol, which support P&P (plug and play) and the data transport speed can reach to 480Mbps. The USB2.0 works with the logic process ability and response speed of CPLD matches the CCD to sample and transform photo signal quickly and real-time process. Besides these, the whole electric system is powered by the USB interface. The application program on PC is based on LabView, which has the feature of simple structure and friendly interface. The test of the Demo System shows it has the feature of wide spectrum range, high resolving power. So the system is especially suitable in the education of spectrum experimentations and the application of portable filed examination. It has been applied in the experiment teaching in university.
引文
[1] 吴国安. 光谱仪器设计. 第 1 版. 北京: 科学出版社, 1978, 10-18,4-5
    [2] E.L.Grove. Analytical emission spectroscopy. America: Marcel Dekker, 1971, 2-3
    [3] G.R.Harrison, R.C.Lord, J.R.Loofbovrow. Practical spectroscopy. America: Prentiee HALL INC, 1963, 15-25
    [4] 林美荣, 张包铮. 原子光谱学导论. 第 1 版. 北京: 科学出版社, 1990, 29-31
    [5] M.F. Hasler, H.W. Dietert. Direct reading instrument for spectrochemical analysis. JOSA, 1944, 1944 (34): 751
    [6] G.H. Dieke, H.M. Crosswhite. Direct intensity measurements of spectrum lines with phto-multiplier tubes. JOSA, 1945, 1945 (35): 472
    [7] G.H. Dieke, H.M. Crosswhite. Spectrochemical analysis with the oscillograph. JOSA, 1946, 1946 (36): 192
    [8] 林中, 范世福. 光谱仪器学. 第 1 版. 北京: 机械工业出版社, 1989, 27-29
    [9] (苏)劳季安(Раутиан,С.Г.). 现代光谱学技术. 成龙飞译. 第 1 版. 北京: 机械工业出版社, 1987, 1-6
    [10] Volanthen M, Geiger H, Cole M J, et al. Measurement of arbitrary strain profiles within fiber gratings. Electron·Lett, 1996, 32 (11): 1028-1029
    [11] XIE Fang, ZHANG Shulian, LI Yan, et al. A study on sensing network using astraingauge to interrogate the wavelength shift of fiber Bragg gratings. J of Opt·Electronics·Laser, 2001, 12 (5): 503-505
    [12] Bhatia V, Vengsarkar A M, Optical fiber long-period grating sensors. Opt· Lett, 1996, 21(9): 692-694
    [13] Xu M G, Geiger H, Dakin J P. Fiber grating pressure sensor with enhanced sensitivity using a glass bubble housing. Electron·Lett, 1996, 32(2): 128-129
    [14] JIANGDE-Sheng, HE Wai. Review of applications for fiber Bragg grating sensors. J of Opt·electronics·Laser, 2002, 13(4): 420-430
    [15] Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabryperot wavelength filter. Opt·Lett, 1993, 18(16): 1370-1372
    [16] Jackson D A, Ribeiro A B L, Beekie L, et al. Simple multiplexing scheme for a fiber-optic grating sensor network. Opt·Lett, 1993, 18(14): 1192-1194
    [17] Yu You-long, Tam Hwayaw, Chung Weng-hong. A fiber Bragg grating sensor system with interferometric demodulation technique. Acta Optica Sinica, 2001, 21(8): 987-989
    [18] 李川, 张以谟, 赵永贵. 光纤光栅: 原理 技术与传感应用. 第 1 版, 北京: 科学出版社, 2005, 116-117
    [19] Kersey A D. Fiber Grating Sensors. Journal of Lightwave Technology, 1995, 15(8): 1442-1463
    [20] Dakin J P, Volanthen M. Distributed and Multiplexed Fiber Grating Sensors Including Discussion of Problem Areas. IEICE Transaction on Electronics, 2000, E83-C(3): 391-399
    [21] Breidne M. Fiber Bragg Grating-A Versatile Photonics Component. SPIE, 2000, 4016: 104-111
    [22] Zhang L, Shu X, Bennion I. Advances in UV-Inscribed Fiber Grating Optic Sensor Technologies. Proceeding of IEEE Sensor, 2002, 2002(1): 31-35
    [23] Caucheteur C. Fiber Bragg Grating Sensor Demodulation Technique By synthesis of Grating Parameters from its Reflection Spectrum. Optics Communications, 2004, 240(4): 329-336
    [24] Zhao Y, Liao Y B. Discrimination Methods and Demodulation Techniques for Fiber Bragg Grating Sensor. Optics and Lasers in Engineering, 2004, 41(1):1-18
    [25] 王以铭. 电荷耦合器件原理与应用. 第 1 版. 北京: 科学出版社, 1987, 7
    [26] 王庆有. CCD 应用技术. 第 1 版. 天津: 天津大学出版社, 2000, 12,30-45
    [27] 王晓峰, 于国萍, 魏正和等. 光栅单色仪信号采集和处理的改进. 物理实验, 2004, 24(11): 19-21
    [28] 叶培德. CCD 应用技术的新进展. 激光与红外, 1990, 20(2): 16-19
    [29] 常丹华. 基于 CPLD 技术的 CCD 驱动时序产生方法. 仪表技术与传感器, 2001, 2001(3), 26
    [30] 方佩敏. 新编传感器原理·应用·电路详解. 第 1 版. 北京: 电子工业出版社, 2003, 143-145
    [31] Luděk Bartoněk, Ji ?í Keprt. THE USE OF CCD IMAGE LINE SENSORS IN VIDEO AND COMPUTER SYSTEMS. USA: PHYSICS, 2002: 40-41
    [32] 兰荣清. 可编程逻辑器件在线阵 CCD 驱动器中的应用. 计算机工程与应用, 1997, 33(11): 12
    [33] 江思敏. PCB 和电磁兼容设计. 第 1 版. 北京: 机械工业出版社, 2006, 46-48
    [34] 许秀贞, 李自田, 薛利军. CCD 噪声分析及处理技术. 红外与激光工程, 2004, 33(4): 344
    [35] Kriss Michael, Parulski Ken, David Lewis. Critical technologies for still imaging systems[A]. SPIE[C]. 1989, 1082: 157-183
    [36] 佟首峰, 阮锦, 郝志航. CCD 图像传感器降噪技术的研究. 光学精密工程, 2002, 8(2): 140-145
    [37] 江孝国, 祁双喜, 王婉丽等. CCD 输出信号的低噪声处理电路研究. 光电子·激光, 2001, 12(11): 1126-1129
    [38] 陈新坤. 原子发射光谱分析原理. 第 1 版. 天津: 天津科学技术出版社, 1991, 1
    [39] 李树荣, 付敬业, 蔡小舒等. 光纤光谱仪的波长标定. 新技术新工艺, 2002, 2002(10): 14
    [40] 潘建根. 光源光谱测色仪器的检定方法. 中国照明电器, 2003, 2003(8): 24
    [41] 谢中, 周艳明, 王秋艳等. 在 WGD-8A 光栅光谱仪上实现变温荧光特性测量. 物理实验, 2005, 25(1): 25-27
    [42] 周艳明, 谢中, 王秋艳等. 改进的荧光光纤温度计系统. 物理实验, 2005, 25(2): 7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700