用户名: 密码: 验证码:
3,5-DNBA降解菌和生物膜形成菌对硝基芳香烃废水的生物强化处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然环境中能降解硝基芳香烃等异型生物质的微生物种类和数量很少,向污染水体投加有强降解能力的土著或外来野生型或基因工程茵的生物强化研究在实验室反应器中取得了一定的成功,但在实际废水处理中常因降解茵不易定殖而无法长期维持处理效果。本文研究了成膜力较强的细菌和降解茵混合培养的成膜特性,旨在探索促进降解细菌定殖于废水处理系统中的新策略.
     一、硝基芳香烃降解茵的分离筛选及降解特性
     以含多种硝基芳香烃的合成废水为进水设置反应器,投加长期受硝基芳香烃和其他化学品污染的环境样品,经敞开式大通量方法富集一段时间,从反应器中分离到一株3,5-二硝基苯甲酸(3,5-DNBA)降解菌株(A3);根据其形态特征、生理生化特征及16SrDNA同源性比较,初步鉴定为睾丸酮丛毛单胞菌(Comamonas testosteroni).
     进一步研究了A3的降解特性与生物学特性,A3能以200mg/L 3,5-二硝基苯甲酸为唯一碳源,12h的降解率可达95%以上,24h可溶性有机碳(DOC)由72.5mgC/L降至10.2mgC/L,将3,5-二硝基苯甲酸降解矿化;A3以200mg/L 3,5-二硝基苯甲酸为唯一碳、氮源时将底物转化为一种黄色产物,培养液颜色在以后的几天中始终未消退,24h时DOC为56.5mgC/L,3,5-二硝基苯甲酸未完全降解;A3降解3,5-二硝基苯甲酸的适宜温度为20—30℃,适宜pH为5~9.
     二、生物膜上细菌的分离鉴定及细菌生物学特性对生物膜形成贡献的评价
     从废水处理系统、生活污水下水口等多处生物膜上共分离获得18株细菌,异位测定结果显示它们的生物膜形成能力有很大的差异,成膜力最强的与最弱的相差28倍,对其中有较强成膜力的7株细菌进行了鉴定,它们分别为Pseudomonas sp.M8、Pseudomonas putida M9、Aeromonas caviae M1O、Bacillus cereus M19、Pseudomonasplecoglossicida M21、Aeromonas hydrophila M22和C.testosterone A3;进一步测定了18株细菌可能与成膜力有关的5个生物学特性,采用相关分析和通径分析评估了这5个细茵生物学特性对生物膜形成的贡献,它们对生物膜形成影响的相对重要性依次为:胞外多糖>鞭毛>AHL群体感应信号分子>胞外蛋白>群游力。
     三、2种功能菌株荧光蛋白基因的标记
     为了了解降解菌和生物膜形成菌混合培养或投加到废水处理系统后2种菌在生物膜中的数量分布和A3定殖情况,对降解菌株A3和有较强成膜能力的M9和M22进行了荧光标记,采用三亲接合法和电转化法成功地将带有绿色荧光蛋白基因的质粒pTR102gtp转入了C.testosteroni A3、P.putida M9和A.AJdrophila M22菌株,将带有红色荧光蛋白基因的质粒pJZ402rfp转入了C.testosteroni A3。荧光检测显示,细菌个体和群落都显示出明亮的绿色或红色荧光。
     四、不同生物膜形成菌对降解菌定殖的影响
     将有较强成膜能力的5株细菌与降解菌组合,研究了降解菌株A3分别与5株成膜力较强的菌株M8、M9、M19、M21和M22混合培养时的降解能力、生物膜形成量和生物膜抗冲击能力等指标,结果显示混合培养时的生物膜形成量是降解菌A3单独培养的1.76~5.95倍,其中M9和M22与A3混合培养不但促进了生物膜的大量形成且生物膜附着牢固,培养24h形成的双菌生物膜比A3单菌和其他3种双菌生物膜表现出更强的抗3,5-二硝基苯甲酸冲击能力,每次更换合成废水6h后3,5-二硝基苯甲酸降解率即分别达63.3~91.6%和70.7~89.4%;连续冲击前后A3M9和A3M22双菌生物膜中的总菌数和A3菌数比A3单菌和其他3种双菌生物膜高2~3个数量级,M9和M22促进了降解菌在生物膜中的定殖,说明某些生物膜形成菌强化降解菌固定于生物膜中的这种自固定作用可能会促使处理系统保持更持久稳定的降解能力。
     五、不同营养条件对生物膜形成影响的研究
     研究了不同营养物对A3与M9和A3与M22混合培养的影响,表明3,5-二硝基苯甲酸基础盐合成废水(DCMM)中添加不同浓度的LB培养液对反应系统降解3,5-二硝基苯甲酸的降解效率没有显著影响,但容易被细菌利用的LB培养液含量的增加对生物膜形成量有很强的促进作用;用流式细胞仪测定了A3与P.putida M9(pTR102gfp)和A3与A.Aydrophila M22(pTR102gfp)在不同营养条件下混合培养时2种功能菌的比例,随DCMM中LB培养液含量从0%增加至5%生物膜上P.putida M9(pTR102gfp)和A.AyJrophila M22(pTR102gfp)所占的比例分别从43.8%增加至82.3%和从39.2%增加至79.6%。
     采用激光共聚焦显微镜观察了A3M9gfp和A3rfpM22gfp生物膜结构和生物膜中2种菌的数量分布情况,生物膜三维结构显示A3被均匀地固定于生物膜内部;从生物膜形成量、生物膜中降解菌数和生物膜质量综合评价添加2%LB的DCMM合成废水中不但能形成较大量的生物膜,固定于生物膜中的降解菌数量也较高;实验室条件下对2种功能菌混合培养形成生物膜情况的研究结果对实际废水处理中调节废水营养成分强化降解菌定殖具有一定的指导意义。
     六、生物膜法废水处理中2种功能菌的生物强化作用
     具有较强成膜力的细菌如能促进降解菌定殖于生物膜内,使其通过自固定作用固定于载体表面,将有可能长期保持生物强化降解效果。采用8L反应器测定了2种功能菌在生物接触氧化工艺中的生物强化作用,结果显示投加A3和M9的1号反应器和投加A3的2号反应器能在24h内快速降解3,5-二硝基苯甲酸,并且在以后35d的运行过程中保持了良好的降解效果,DCMM选择平板培养和DGGE检测结果都证明反应器内生物膜中有降解菌A3的存在;只接种城市污水处理厂活性污泥的3号反应器在前2周的运行过程中基本不降解3,5-二硝基苯甲酸,但15d后降解率快速增加,21d后对3,5-二硝基苯甲酸的降解效果与1号和2号反应器无明显差异,3号反应器生物膜的DGGE图谱中未发现与A3菌株相似的条带,说明土著微生物经2~3周的驯化也可降解3,5-二硝基苯甲酸;运行35d时未投加生物膜形成菌株M9的2个反应器生物膜DGGE图谱中也发现与M9菌株相似的条带,说明M9可能存在于接种污泥或反应器运行环境中并且容易形成生物膜。
Microorganisms that can degrade xenobiotic,such as nitroaromatic compounds are quite scarce in natural environment.The study of bioaugmentation of adding indigenous or exogenous wild type microorganisms or genetically engineered microorganisms into contaminated waters has made some achievements in laboratory scale.But in reality,very often,due to the flowing-off of degrading bacteria,the bioaugmentation can not be remained.This paper is to explore the bioaugmentation strategies with the mixed inoculant of biofilm-forming bacteria and degrading bacteria to approach new ways of immobilizing degrading bacteria into the wastewater treatment system.
     The soil and sediments contaminated by nitroaromatic compounds and some other chemicals for a long time were inoculated into a bioreactor full of synthetic wastewater with nitroaromatic compounds.One 3,5-dinitrobenzoic acid-degrading bacterium A3, isolated from the wastewater treatment system which operated one month,was identified preliminarily as Comamonas testosteroni based on its morphological characters, physiological and biochemical analyses and 16S rDNA series same source analysis.This bacterium degradation rate of 12h could reach above 95%,using 200mg/L 3,5-dinitrobenzoic acid as sole carbon source.24h dissolved organic carbon(DOC) was reduced from 72.5mgC/L to 10.2mgC/L,indicated that 3,5-dinitrobenzoic acid was degraded through mineralization but not transformed into other organic matter.But the strain A3 transformed 3,5-dinitrobenzoic acid into a yellow product,cultivated liquor was not discolored all along in the next several days,when 200mg/L 3,5-dinitrobenzoic acid was used as the sole carbon and nitrogen sources.DOC being 56.5mgC/L in 24h,indicated that the yellow product was not further degraded easily.The suitable temperature for A3 degradation of 3,5-dinitrobenzoic acid was 20-30"C and pH value was 5-9.
     A total number of 18 bacterial isolates were obtained from the biofilms of wastewater treatment systems and of little carpolite in soil.Results of their in vivo detection showed a great difference in their abilities to form biofilms:the bacteria with the strongest biofilm-forming capacity can form biofilms biomass 28 times stronger than that formed by the weakest.The phylogeny affiliation of those isolates showing high biofilm formation capacity has been determined through a 16s rDNA sequencing and they were grouped into 7 bacterial species including Pseudomonas sp.,Pseudomonas putida,Aeromonas caviae, Bacillus cereus,Pseudomonas plecoglossicida,Aeromonas hydrophila and Comamonas testosteroni.Selected biological characteristics that are potentially related to biofilm forming capacity were investigated and the relative importance of these biological properties in biofilm formation was statistically assessed by path analysis.According to the coefficient of determination,the relative importance of the five biological characteristics to biofilm formation was in the order from greatest to least:exopolysaccharide>flagella>N-acyl-homoserine lactones(AHLs) signaling molecules>extracellular protein>swarming motility.
     In order to investigate the distribution of the degrading bacteria and biofilm-forming bacteria in a dual-species biofilms or in the biofilm of the wastewater treatment system and immobilization of A3 in biofilms,C.testosteroni A3,P.putida M9 and A.hydrophila M22 were tagged using fluorescence labeling,pTR102gfp plasmid in E.coli DH5a was introduced into C.testosteroni A3,P.putida M9 and A.hydrophila M22 by triparental mating and pJZ402rfp plasmid was introduced into C.testosteroni A3 by electroporation. Fluorescent measurement shows that both the bacteria and the colonies have bright green or red fluorescence.
     The degrading ability,the biofilm biomass,the resistance of biofilm to shock loading and the fxation of A3 were investigated in a bioreactor with mixed inoculation of high biofilm-forming bacteria and degrading bacterium A3.The results showed that the biofilm biomass formed by all the mixed inoculation was 1.76-5.95 times higher than that of the single inoculation of A3.The dual-species biofilms,A3 with M9 and A3 with M22,had a strong resistance to 3,5-DNBA shock loading during successive replacement of DCMM2 synchetic wastewater(3,5-dinitrobenzoic acid mineral medium containing 2%LB broth), and degradation rate reached 63.3~91.6%and 70.7~89.4%,in 6 h after each time of replacement.It was found that the colony forming units(CFUs) the total and A3 cells of biofilms formed by A3 with M22 or M9,were significantly higher than those of other three dual-species biofilms.The relatively high quantity of degrading strains in biofilm also demonstrated that strain A3 can be well maintained in these two dual-specises biofllms over time.Thus,strain M9 and M22 did enhance the degrading strain A3 fixed.Therefore,it seems feasible to use some specific biofilm-forming bacteria as an viable option for bioaugmentation to enhance immobilization of degrading bacteria in biofilm in an engineering setting,and the self-immobilization may also help maintain a durable and stable degradation capacity.
     Investigation of the effects of different nutrient status on the mixed inoculation of A3 with M9 or M22 showed that different amounts of LB broth added into 3,5-dinitrobenzoic acid mineral medium(DCMM) had no significant effects on the degradation rates of 3,5-DNBA,but the increase of LB broth from 0%to 5%,the nutriment enhanced the formation of biofilms greatly.The results from flow cytometer showed tnat the ratios of fluorescing bacteria in dual-specises biofilm of A3 with P.putida M9(pTR102gfp) and A3 with A.hydrophila M22(pTR102gfp) enhanced with the increase of LB broth.The P. putida M9(pTR102gfp) and the A.hydrophila M22(pTR102gfp) on the biofilms increased from 43.8%to 82.3%and from 39.2%to 79.6%,respectively.The distribution of the two bacteria within the biofilms and the three-dimensional differentiation observed by confocal laser scanning microscopy(CLSM) showed that A3 was homogeneously fixed in the biofilms;The overall evaluation indicated that 2%LB of addition to DCMM wastewater was the best to obtain a higher biofilm biomass and a higher percentage of degrading bacteria immobilized in the biofilms.The above investigation on the biofilm formation by the mixed culture of two functional bacteria carded out in the laboratory conditions was of significance in practical treatment of the wastewater by regulating the nutrient composition to promote immobilization of the degrading bacteria.
     If the bacteria with high biofilm-forming capability are able to enhance the self-immobilization of the degrading bacteria,this immobilization might make the degrading abilities run in a long term.The bioaugmentation of derading bacterium A3 and biofilm-forming bacteria M9 was detected in an 8L bioreactors.The results show that 3.5-DNBA can be quickly degraded in the reactor 1 with A3 and M9 and the reactor 2 with only A3,and in the following 35 days,the degradation is well remained.The results from the culture of selecting agar plates and DGGE detection demonstrated the existence of degrading bacterium A3 within the biofilm.In the reactor 3 with the only activated sludge from the municipal wastewater treatment factories,almost none of 3,5-DNBA has been degraded within first two weeks.However,after 15 days the degradation rate of 3,5-DNBA was greatly increased.And after 21 days the degrading rate from reactor 3 was no more different from the ones from reactor 1 and reactor 2.DGGE profles of the biofilm of reactor 3 are lack of the band similar to Strain A3,demonstrating that the aboriginal microorganisms can degrade 3,5-DNBA if they had been cultured for 2~3 weeks.On the 35th day,on the DGGE pattern of biofilms in those two reactors into which M9 had not been added,bands that were similar to Strain M9 were found.And this showed that M9 might exist in inoculated sludge or environment and it had quite high capability to form biofilm.
引文
[1]王连生.有机污染化学[M].北京:科学出版社,1990.
    [2]Nishino S F,Spain J C.Degradation of nitrobenzene by a pseudomonas pseudoalcaligenes[J].Applied Environ Microbiology,1993,59(8):2520-2525.
    [3]李湛江,韦朝海,任源,等.硝基苯降解菌生长特性及其降解活性[J].环境科学,1999,20(5):20-24.
    [4]蔡邦成,高士祥,肖琳,等.一株硝基苯高效降解菌的筛选及其降解特性[J].环境科学与技术,2003,26(4):1-4.
    [5]Lecher H H,Thurubeer T,Leisinger T,et al.3-Nitrobenzenesufonate,3aminobenzenesufonate,and 4aminobenzenesufonate as sole carbon sources for bacteria[J].Appl Environ Microbial,1989,55:492-494.
    [6]N-22-Mineralization and Desulfonation of 3-Nitrobenzenesulfonic Acid by Alcaligenes sp.GA-1
    [7]Weisburger E K,Russfield F,Homburger J,et al.Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity[J].Environ Pathol Toxicol,1978,2:325-3561.
    [8]吴建峰,沈锡辉,周宇光,等.一株降解对氯硝基苯的Comamonas sp.CNB1的分离鉴定及其降解特性[J].微生物学报,2004,44(1):8-12.
    [9]Katsivela E,Wray V,Pieper D H,et al.Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium,strain LW1[J].Appl Environ Microbiol,1999,65:1405-1412.
    [10]杨彦希,尹萍,李文忠,等.转化三硝基甲苯的细菌及其应用[J].微生物学报,1979,19(4):408-415.
    [11]李文忠,尹萍,杨彦希.弗氏柠檬酸细菌完整细胞TNT降解酶的性质[J].微生物学报,1987,27(3):257-263.
    [12]Munnecke D M,Hsieh D P.Microbial decontam ination of parathion and p-nitrophenol in aqueous media[J].Appl Microbiol,1974,28(2):212-217.
    [13]Zeyer J,Kearney P C.Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida [J].J Agric Food Chem,1984,32(2):238-242.
    [14]Bruhn C,Ienke H,Knackmuss H2J.Nitro2substituted aromatic compounds as nitrogen source for bacteria[J].Appl Environ Microbiol,1987,53(1):208-210.
    [15]Schackmann A,Muller R.Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic contitions[J].Appl Microbiol Biotechonl,1991,34(6):809-813.
    [16] Nishino S F, Spain J C. Degradation of nitrobenzene by a pseudomonas pseudoalcaligenes [J]. Appl Environ Microbiol, 1993, 59(8): 2520-2525.
    
    [17] Traxler R W. Bacterial degradation of alpha-TNT Dev [J]. Ind Microbiol, 1974, 16: 71-76.
    [18] Won W D. Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites [J]. Appl Environ Microbiol, 1976, 31(4): 576-580.
    [19] McCormick N G. Microbial transformation of 2,4,6-trinitro to luene and other nitroaromatic compounds [J]. Appl Environ Microbiol, 1976, 31(6): 49-958
    [20] Spanggord R J. Biodegradation of 2,4-dinitrotoluene by a pseudomonas sp [J]. Appl Environ Microbiol, 1991, 57(11): 3200-3250.
    [21] Haigler B E, Spain J C. Biodegradation of 4-nitrotoluene by pseudomonas sp. strain 4NT [J]. Appl Environ Microbiol, 1993, 59 (7): 2239-2243.
    [22] Haigler B E. Biodegradation of 2-nitotoluene by pseudomonas sp. strain JS42 [J]. Appl Environ Microbiol, 1994, 60 (9): 3466-3469
    [23] Rhys, Williams W. A novel pathway for the catabolism of 4-nitrotoluene by pseudomonas [J]. J Gen Microbiol, 1993, 139(9): 1967-1972.
    [24] Gilcrease P C, Murphy V G. Biconversion of 2,4-diamino-6-nitrotoluene to a novelmetabolite under anoxic and aerobic conditions [J]. Appl Environ Microbiol, 1995, 61(12): 4209-4214.
    [25] Noguera D R, F reedman D I. Reduction and acetylation of 2,4-dinitroteluene by a pseudomonas aeruginosa strain [J]. Appl Environ Microbiol, 1996, 62(7): 2257-2263.
    [26] Spain J C. Enzymatic oxidation of p-nitrophenol [J]. Biochem Biophys Res Commun, 1979, 88(2): 634-641.
    [27] Ecker S. Catabolism of 2,6-dinitrophenol by Alcaligeneseu trophus JMP 134 and JM P222 [J]. Arch Microbiol, 1992, 158(2): 149-154.
    [28] Oren A. Reduction of nitro substituted aromatic compounds by the haloph ilic anaerobic eubacteria Haloanaerobium praevalens and Sporohacter marismortui [J]. Appl Environ Microbiol, 1991, 57(11): 3367-3370.
    [29] Lenke H. Degradation of 2, 4-dinitrophenol by two Rhodococcusery thropolis strains HL24-1 and HL24-2 [J]. Appl Environ Microbiol, 1992, 58(9): 2928-2932.
    [30] Lenke H, Knackmuss H J. Initial hydrogenation during catabolism of picric acid by Rhodococcusery thropolis FIL 2422 [J]. Appl Environ Microbiol, 1992, 58(9): 2933-2937.
    [31] Dickel O, Knackmuss H J. Catabolism of 1, 3-dinitrobenzene by Rhodococcus sp. OT21 [J]. Arch Microbiol, 1991, 157(1): 76-79.
    [32] Blasco R, Castillo F. Characterization of a nitrophenol reductase from the phototrophic bacterium Rhodobacter capsulatus EIF Ⅰ[J].Appl Environ Microbiol,1993,59(6):1774-1778.
    [33]Groenewegen P E J,Bont J A M.Degradation of 4-nitrobenzoatevia 4-hydroxyl-aminobenzoate and 3,4-dihydroxybenzoate in Comamonas acidovorans NBA 210[J].Arch Microbiol,1992,158(4):381-386.
    [34]Nishino S F,Spain J C.Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp.Strain JS765[J].Appl Environ Microbiol,1995,61(6):2308-2313.
    [35]Hanne L F.Degradation and induction specificity in actinomycetes that degrade p-nitrophenol [J].Appl Environ Microbiol,1993,59(10):3505-3508.
    [36]Vorbeck C.Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain[J].J Bacteriol,1994,176(3):932-957.
    [37]Vanderberg L A.Catebolism of 2,4,6-trinitrotoluene by Mycobacterium vaccae[J].Appl Microbiol Biotechnol,1995,43(5):937-945.
    [38]Gorontzy T.Microbial transformation of nitroaromatic compounds under anaerobic conditions[J].J Gen Microbiol,1993,139(6):1331-1336.
    [39]Boopathy R,Kulpa C F.Nitroaromatic compounds serve as nitrogen souce for Desulfovibrio sp.(Bstrain)[J].Can J Microbiol 1993,39(4):430-433.
    [40]Valli K.Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium[J].Appl Environ Microbiol,1992,58(1):221-228.
    [41]Stahl J D,Aust S D.Metabolism and detoxification of TNT by Phanerochaete chrysosporium[J].Biochem Biophys Res Commun.1993,192(2):477-482.
    [44]Hanne L F.Degradation and induction specificity in actinomycetes that degrade p2nitrophenol[J].Appl Environ Microbiol,1993,59(10):3505-3508.
    [42]Hofrichter M.Metabolism of phenolchloro and nitrophenols by the Penicillium strain Bi 7/2isolated from a contaminated soil[J].Bidegradation,1993,3(4):415-421.
    [43]尹萍,杨彦希,杨惠芳.麦芽糖假丝酵母降解酚类化合物的研究[J].环境科学,1997,18(1):10-13.
    [44]Cartwright N J,Cain R B.Bacterial degradation of the nitrobenzoic acid.Reduction of the nitro group[J].J Biochem.1959,73(2):305-314.
    [45]Pasti Grigsby.Transformation of 2,4,6-trinitrotoluene(TNT) by actinomycetes isolated from TNT contaminated and uncontaminated environments[J].Appl Environ Microbiol,1996,62(3):1120-1123.
    [46]Drzyzga O.Cometabolic transformation and cleavage of nitrodiphenylamines by three newly isolated sulfated-reducing bacterial strains[J].Appl Environ Microbiol,1996,62(5):1710-1716.
    [47] Hammill T B. Degradation of 2-sec-butyl-4,6-dinitrophenol (Dinoseb) by Clostridium bifermentans KMR-1 [J]. Appl Environ Microbiol, 1996, 62(5): 1842-1846.
    [48] Haigler B E, Spain J C. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways [J]. Appl Environ Microbiol, 1991, 57(11): 3156-3162.
    [49] Valli K. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium [J]. Appl Environ Microbiol, 1992, 58 (1): 221-228.
    [50] Walker J E, Kaplan D I. Biological degradation of explosives and chemical agents [J]. Bidegradation, 1992, 3(3): 369-385.
    [51] Stoodley P, Sauer K, Davies D G, et al. Biofilms as complex differentiated communities, Annual Review of Microbiology [J]. Pro Quest Biology Journals, 2002, 56: 187-209.
    [52] Houdt R V, Aertsen A, Jansen A, et al. Biofilm formation and cell-to-cell signaling in Gram-negative bacteria isolated from a food processing environment [J]. J Appl Microbiol, 2004, 96:177-184.
    [53] Jiang Y H, Yang F, Lin Y H, et al. Microbial diversity and prevalence of virulent pathogens in biofilms developed in a water reclamation system [J]. Research in Microbiology, 2003, 154: 623-629.
    [54] Anna V, Mark J B, Andrew S, et al. N-acyl-L-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge [J], Environmental Microbiology, 2004, 6(4): 424-433.
    [55] Rob Van H, Chris W. Michiels. Role of bacterial cell surface structures in Escherichia coli biofilm formation [J]. Research in Microbiology. 2005, 156: 626-633.
    [56] Fernandez L A, Berenguer J. Secretion and assembly of regular surface structures in Gram-negative bacteria [J]. FEMS Microbiol Rev, 2000, 24: 21-44.
    [57] Soutourina O A, Bertin P N. Regulation cascade of flagellar expression in Gram-negative bacteria [J]. FEMS Microbiol Rev, 2003, 27: 505-523.
    [58] Claire P C, GeArard P, Thanh T L, et al. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella,curli and colanic acid [J]. Environmental Microbiology, 2000, 2(4): 450-464.
    [59] Rosalina G, Ali A R, Susana M, et al. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation [J]. Mol Microbiol, 2002, 43: 383-397.
    [60] Miller M B, Bassler B L. Quorum sensing in bacteria [J]. Annu Ren Microbiol, 2001, 55: 165-1991.
    [61] David G D, Matthew R P, James P P, et al. The involvement of cell-to-cell signals in the development of a Bacterial Biofilm[J].Sci,1998,280:295-298.
    [62]Lynch M J,Swift S,Kirke D F,et al.The regulation of biofilm development by quorum sensing in Aeromonas hydrophila[J].Environ Microbiol,2002,4:18-28.
    [63]Huber B,Reidel K,Hentzer M,et al.The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility[J].Microbiology,2001,147:2517-2528.
    [64]Wimpenny J.Ecological determinants ofbiofilm formation[J].Biofouling.1996,10:43-63.
    [65]Ohashi A,Harada H.Adhesion strength of biofilm developed in an attached-growth reactor[J].Water Sci Technol,1994,29:10-19.
    [66]Kwok W K,Picioreanu C.Influence of biomass production and detachment force on biofilm structures in a biofilm airlift suspension reactor[J].Biotechnol Bioeng,1998,58:400-407.
    [67]Percival S L.Biofilm,Mains Water and Stainless Steel[J].Wat.Res.1998,32(7):2187-2201.
    [68]Hunt A P,Parry J D.The effect of substratum roughness and river flow rate on the development of a freshwater biofilm community[J].Biofouling.1998,12(4):287-303.
    [69]李彤,庄辉.细菌生物膜的研究进展[J],中华微生物学和免疫学杂志,2002,22(3):343-346.
    [70]Peys K.Development of a membrane biofilm reactor for the degradation of chlorinated aromatics [J].Wat Sci Tech,1997,36(1):205-214.
    [71]Decho A W.Imaging of an alginate polymer gelusing atomic force microscopy[J].Carbohydrate Research,1999,315:330-333.
    [72]Beech I B.Comparative studies of bacterial biofilms on seel surfaces using atomic force microscopy and environmental scanning electron microscopy[J].Biofouling,1996,10(1-3):65-77.
    [73]Satoshi O.Significance of the Spatial Distributin of Microbial Species in Mixed-Population Biofilms[J].Biofouling,1997,11(2):119-136.
    [74]Said E F,Spiros N A.Is bioaugrnentation a feasible strategy for pollutant removal and site remediation?[J].Current Opinion in Microbiology,2005,8:268-275.
    [75]王海,张甲耀,魏明宝.生物强化技术在生物修复中的应用[J].环境科学与技术,2003,26:80-83.
    [76]全向春,刘佐才,范广裕,等.生物强化技术及其在废水治理中的应用[J].环境科学研究,1999,12(3):22-27.
    [77]Dejonghe W,Goris J,Fantrouddi S E,et al.Effect of dissemination 2,4-dichlorophenoxyacetic acid(2,4-D) degradation plasmid on 2,4-D degradation and on bacterial community structure in two different soil horizons[J].Applied Environmental Microbiology,2000,66(8):3297-3304.
    [78]Newby D T,Gentry T J,Pepper I.Comparison of 2,4-dichlorophenoxyacetic acid degradation plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors [J]. Applied Environmental Microbiology, 2000, 66: 3399-3407.
    [79] Digiovanni G D, J W Neilson, I L Pepper and N A Sinclair. Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients [J]. Applied Environmental Microbiology, 1996, 62(7): 2521-2526.
    [80] Beaudoin D L, Bryers J D, Cunningham A B, et al. Mobilization of broad host range plasmid from Pseudomonas putida to established biofilmof Bzcillus azotoformans [J]. Biotechnol Bioeng, 1998, 57:272-279.
    [81] De R H, Demolder K, Wilde K De et al. Transfer of the catabolic plasmid RP4: Tn4371 to indigenous soil bacteric and its effect on respiration and biphenyl breakdown [J]. FEMS Microbiology Ecology, 1994, 15: 71-78.
    [82] Nusslein K, D Maris, K Timmis, D F Dwyer. Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. Introduced into activated sludge microcosms [J]. Applied Environmental Microbiology, 1992, 58 (10): 3380-3386.
    [83] Dirk S, Kurt P, Annemie R et al. Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement from inoculum to contaminant bacteria [J]. Environmental Microbiology, 2002,4(2): 70-80.
    [85] Shailaja S, Ramakrishna M, Venkata S M, et al. Biodegradation of di-n-butyl phthalate (DnBP) in bioaugmented bioslurry phase reactor [J], Bioresource Technology xxx (2006) xxx-xxx
    [86] E Marro'n-Montiel, N Ruiz-Ordaz, C Rubio-Granados, et al. 2,4-D-degrading bacterial consortium Isolation, kinetic characterization in batch and continuous culture and application for bioaugmenting an activated sludge microbial community [J], Process Biochemistry 2006, 41: 1521-1528.
    [87] Nico B, Johan G, Paul D V, Willy V, and Eva M T. Bioaugmentation of Activated Sludge by an Indigenous 3-Chloroaniline-Degrading Comamonas testosterone Strain, I2gfp [J]. Applied and Environmental Microbiology, 2000, 66(7): 2906-2913.
    [88] Quan X, Shi H C, Wang J L, et al. Biodegradation of 2,4-dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture [J]. Chemosphere, 2003, 50: 1069-1074.
    [89] Alan F, Brid Q. The enhancement of 2-chlorophenol degradation by a mixed microbial community when augmented with Pseudomonas putida CP1 [J]. Water Research, 2002, 36: 2443-2450.
    [90] Alexander H R, Peter G, Nicola J. High bacterial coaggregation: an integral process in the development of multi-species biofilms [J]. TRENDS in Microbiology, 2003, 11(2): 94-100.
    [91] Rickard A H, McBain A J, Ledder R G, et al. Coaggregation between freshwater bacteria within biofilm and planktonic communities [J]. FEMS Microbiology Letters, 2003, 220(1): 133-140.
    
    [92] Rickard A H, Gilbert P, High NJ, et al. Bacterial coaggregation: an integral process in the development of multi-species biofilms [J]. Trends Microbiol, 2002,11(2): 94-100.
    
    [93] Buswell C M, Herlihy Y M, Marsh P D, et al. Coaggregation amongst aquatic biofilm bacteria [J]. J Appl Microbiol, 1997, 83: 477-484.
    [1]Haigler B E,Spain J C.Biotransmation of nitrobenzene by bacteria containing toluene degradation pathways[J].Applied Environ Microbiology,1991,57(11):3156-3161.
    [2]尹萍,杨彦希.微生物降解硝基芳香烃及其在环境保护中的应用[J].环境科学,1998,19(6):79-83.
    [3]郑金来,李君文,晁福寰.苯胺、硝基苯和三硝基甲苯生物降解研究进展[J].微生物学通报,2001,28(5):85-92.
    [4]Ecker S.Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP134 and JM P222[J].Arch.Microbiol.,1992,158(2):149-154.
    [5]王竞,周集体,张劲松,等.假单胞菌JX165及其完整细胞对硝基苯的好氧降解[J].中国环境科学,2001,21(2):144-147.
    [6]吴建峰,沈锡辉,周宇光,等.一株降解对氯硝基苯的Comamonas sp.CNB1的分离鉴定及其降解特性[J].微生物学报,2004,44(1):8-12.
    [7]Masahiro Takeo,Takeya Nagayama,Ken Takatani,et al.Mineralization and Desulfonation of 3-Nitrobenzenesulfonic Acid by Alcaligenes sp.GA-1[J].Jouranl of Fermentation and Bioengineering.1997,83(5):505-509.
    [8]Zeyer J,Kearney P C.Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida [J].J.Agric.Food Chem.,1984,32(2):238-242.
    [9]Nishino S F,Spain J C.Oxdidative pathway for the degradation of nitrobenzene by Comamonas sp.Strain JS765[J].Applied Environ Microbiology,1995,61(6):2308-2313.
    [10]Ali-Sadat S,Mohan K S,Satish K W.A novel pathway for the biodegradation of 3-nitrotoluene in Pseudomonas putida[J].FEMS Microbiology Ecology,1995,17:169-176.
    [11]《水和废水监测分析方法》编委会.水和废水监测分析方法监测方法[M].北京:中国环境科学出版社,2002.
    [12]东秀珠.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [1]O'Toole G,Kaplan H B,Kolter R.Biofilm formation as microbial development[J].Annu.Rev.Microbiol.,2000,54:49-79.
    [2]Leslie A P,Roberto K.Genetic analysis of Escherichia coli biofilm formation:roles of flagella,motility,chemotaxis and type Ⅰ pili[J].Mol.Microbiol.,1998,30:285-293.
    [3]Moens S,Vanderleyden J.Functions of bacterial flagella[J].Crit.Rev.Microbiol,1998,22:67-100.
    [4]Stoodley,P.,Sauer,K.,Davies,D.G.and Costerton,J.W.Biofilms as complex differentiated communities.Annual Review of Microbiology,2002,56(1):187-209.
    [5]Jiang Y H,Yang F,Lin Y H et al.Microbial diversity and prevalence of virulent pathogens in biofilms developed in a water reclamation system[J].Research in Microbiology,2003,154:623-629.
    [6]Brigitte C,Danielle C.Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises[J].International Journal of Food Microbiology,2004,97:111-122.
    [7]Mortona T L,Greenway D L,Gaylardeb C C.Consideration of some implications of to biocides the resistance of biofilms[J].International Biodeterioration and Biodegradation,1998,41:247-259.
    [8]O'Toole,G.,Kaplan,H.B.and Kolter,R.Biofilm formation as microbial development.Annual Review of Microbiology,2000,54(5):49-79.
    [9]Jun Z,Yunrong C,Shunpeng L.Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules:detection of autoinducers in mesorhizobium huakuii[J].Applied and Environmental Microbiology,2003,69:6949-6953.
    [10]高轶静,钟增涛,郑会明,等.华癸根瘤菌中自体诱导物的初步研究[J].微生物学报,2005,45(1):19-2.
    [11]Shaw P D,Ping G,Daly SL,et al.Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography,Proc Natl Acad Sci,USA,1997,94:36-6041.
    [12]Jun Z,Mekalanos J J.Quorum Sensing-Dependent Biofilms Enhance Colonization in Vibrio cholerae[J].Develop.Cell,2003,5:647-656.
    [13]Eberl L,Molin S,Givskov M.Surface motility of Serratia liquefaciens MGI[J].J.Bacteriol.,1999,181:1703-1712.
    [14] Petra T, Martin S, Karl-Erich J, et al. Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa[J]. Microbio. Res., 2005, 160: 165-176.
    [15] Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances [J]. Analyt. Chem., 1956, 28: 350-356.
    [16] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem., 1976, 72: 248-254.
    [17] Rosalina G, Susana M, Maria A, et al. Lateral flagella are required for increased cell adherence, invasion and biofilm formation by Aeromonas spp. [J]. FEMS Microbiol Lett, 2003, 224:77-83.
    [18] Hidalgo M D, Garcia-Encina P A. Biofilm development and bed segregation in a methanogenic fluidized bed reactor [J]. Water Res., 2002, 36: 3083-3091.
    [19] Ruth D, Jos V, Jan M. Quorum sensing and swarming migration in bacteria [J].FEMS Microbiol. Rev., 2004, 28:261-289.
    [20] Swift S, Karlyshev A V , Fish L, et al. Quorum sensing in Aeromonas hydrophila and Aeromonas Salmonicida: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acyl homoserine lactone signal molecules [J]. J. Bacteriol., 1997, 179(17): 5271-5281.
    [21] Lynch M J, Swift S, Kirke D F, et al. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila [J]. Environ. Microbiol., 2002, 4:18-28.
    [22] Artem Khlebnikov, Falilou Samb, Paul Peringer. Use of a dynamic gassing-out method for activity and oxygen diffusion coefficient estimation in biofilms [J]. Water Science and Technology, 1998, 37(4-5): 171-175.
    [23] Meriem B, Marc D, Nevenka A. Survival and activity of Comamonas Testosteroni in mixed population. Wat. Res. [J]. 1997,31(11): 2802-2810.
    [24] Sal C S A, Boaventura R A R. Biodegradation of phenol by Pseudomonas putida DSM 548 in a trickling bed reactor [J]. Biochemical Engineering Journal, 2001, 9: 211-219.
    [25] Holden P A, Hunt J R, Firestone M K. Toluene diffusion and reaction in unsaturated Pseudomonas putida biofilms. Biotechnology and Bioengineering. 1997,56(6): 656-670.
    [26] Gavin R, Rabaan A A, Merino S, et al. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Molecular Microbiology. 2002, 43(2): 383-397.
    [27] David G D, Matthew R P, James P P, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280(4): 295-298.
    [28] Paul N D, Leslie A P, Roberto K. Exopolysaccharide production is required for development of Escherichia coliK-12 biofilm architecture [J]. J. Microbiol., 2000, 182: 3593-3596.
    [29] Leslie A P, Roberto K. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility,chemotaxis and type I pill[J].Mol.Microbiol.,1998,30:285-293.
    [30]Houdt R V,Aertsen A,Jansen A,et al.Biofilm formation and cell-to-cell signaling in Gram-negative bacteria isolated from a food processing environment[J].J Appl.Microbiol.,2004,96:177-184.
    [31]袁志发,周静宇.试验设计与分析[M].第1版,北京:高等教育出版社,2000,142-208.
    [32]Ghini R,Morandi M A.Biotic and abiotic factors associated with soil supperssiveness to Rhizoctonia solani[J].Science Agriculture,2006,63:153-160.
    [33]Klausen M,Heydorn A,Paula R,et al.Biofilm formation by Pseudomonas aeruginosa wild type,flagella and type Ⅳ pili mutants[J].Molecular Microbiology,2003,48(6):1511-1524.
    [34]Mikkel Klausen,Ame Heydom,Paula Ragas.Biofilm formation by Pseudomonas aeruginosa Wild type,flagella and type Ⅳ pili mutants[J].Molecular Microbiolog,2003,48(6):1511-1524.
    [35]Martin J L,Simon S,David F K,et al.The regulation ofbiofilm development by quorum sensing in Aeromonas hydrophila[J].Environ Microbiol,2002,4:18-28.
    [1]Martin C,Yuan T,Ghia E.Green Fluorescent Protein as a Marker for Gene Expression[J].Science,1994,263:802-804.
    [2]Kerry L T,Scott R D C,Howard C.Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex[J].J Microbiol Meth,2004,57:95-106.
    [3]Lucy C S,Ian W S,Martin V J,et al.Green fluorescent protein as a novel species-specific marker in enteric dual-species biofilms[J].Microbiology,1998,144:2095-2101.
    [4]Eberl L,Schulze R,Ammendola A,et al.Use of green fluorescent protein as a marker for ecological studies of activated sludge communities[J].FEMS Microbiology Letters,1997,149:77-83.
    [5]邱珊莲,李顺鹏.甲基对硫磷降解菌GFP标记菌株的构建及其在土壤和植物中的定殖研究.南京 南京农业大学硕士学文论文,2005,30-60.
    [6]杜寒春,李顺鹏,沈标.根瘤菌对禾本科作物生长的促进作用研究.南京:南京农业大学硕士学文论文,2005,57-66.
    [7]Moiller S,Steinberg C,Andersen J B,et al.In situ gene expression in mixed-culture biofilms evidence of metabolic interaction between community members[J].Appl Environ Microbiol,1998,64,721-732.
    [1] Van L, Top E M, Verstraete W. Bioaugmentation in activated sludge: current features and future perspectives [J]. Appl Microbiol Biotechnol. 1998, 50:16-23.
    [2] McClure N C, Fry J C, Weightman A J. Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated-sludge unit [J]. Applied and Environmental Microbiology, 1991, 57:366-373.
    [3] McClure, N C, Weightman A J, Fry J C. Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated sludge unit [J]. Applied and Environmental Microbiology, 1989, 55:2627-2634.
    [4] Nublein K, Maris D, Timmis K, et al. Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms [J]. Applied and Environmental Microbiology, 1992, 58: 3380-3386.
    [5] Yu Liu, Joo-Hwa Tay. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge, Water Research, 2002, 36: 1653-1665.
    [6] Chandy J P, Angles M L. Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay [J]. Wat. Res. 2001, 35(11): 2677-2682.
    [7] Acuna M E, Villanueva C, Cardenas B, et al. The effect of nutrient concentration on biofilm formation on peat and gas phase toluene biodegradation under biofiltration conditions [J]. Process Biochemistry, 2002,38: 7-13.
    [8] Stoodley P, Sauer K, Davies DG,et al. Biofilms as complex differentiated communities[J]. Annual Review of Microbiology, 2002, 56(1): 187-209.
    [9] Leslie A P, Roberto K. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili [J]. Mol. Microbiol., 1998, 30: 285-293.
    [10] Klausen M, Heydorn A, Paula R, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants [J]. Molecular Microbiology, 2003, 48(6): 1511-1524.
    
    [11] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001,367-368.
    
    [12] Lucy C, Skillman, Ian W, Sutherland, et al. Green fluorescent protein as a novel speciesspecific marker in enteric dual-species biofilms [J]. Microbiology, 1998,144: 2095-2101.
    
    [13] Bechet M, Blondeau R. Factors associated with the adherence and biofilm formation by Aeromonas caviae on glass surfaces [J]. Journal of Applied Microbiology, 2003, 94: 1072-1078.
    [14] Jun Z, Mekalanos J J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae [J]. Develop Cell, 2003, 5: 647-656.
    [15] Y V Nanchaaiah, V P Venugopalan, S Wuertz, et al. Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm [J]. Journal of Microbiological Methods, 2005, 60: 179-187.
    [16] Thurnheer T, Gmur R, Guggenheim B. Multiplex FISH analysis of a six-species bacterial biofilm [J]. Journal of Microbiological Methods, 2004, 56: 37-47
    [17] MortonaT L H G, Greenway D L A, Gaylardeb C C, et al. Consideration of some implications of to biocides the resistance of biofilms [J]. International Biodeterioration & Biodegradation 1998, 41: 247-259.
    [18] Blumenroth P, Wagner D. Survival of inoculants in polluted sediments: effect of strain origin and carbon source competition [J]. Microb Ecol, 1998, 35: 279-288.
    [19] Goldstein M G, Mallory L M, Alexander M. Reasons for possible failure of inoculation to enhance biodegradation [J]. Applied and Environmental Microbiology, 1985, 50:977-983.
    [20] Schmidt S K, Alexander M. Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations [J]. Applied and Environmental Microbiology, 1985, 49:822-827.
    [21] Swindoll C M, Aelion C M, Pfaender F K, et al. Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities [J]. Applied and Environmental Microbiology, 1988, 54: 212-217.
    [22] Ragusaa S R, McNevina D, Qasem S, et al. Indicators of biofilm development and activity in constructed wetlands microcosms [J]. Water Research, 2004, 38: 2865-2873.
    [23] Chady J P, Angles M L. Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay[J]. Wat Res, 2001, 35(11): 2677-2682.
    [24] Robert J C M, Marvin W, David J S, et al. Evidence of autoinducer activity in naturally occurring biofilms [J]. FEMS Microbiology Letters, 1997, 154: 259-263.
    [25] Anna Valle, Mark J, Andrew S. Whiteley, et al. N-acyl-L-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge [J]. Environmental Microbiology, 2004, 6(4): 424-433.
    [26] Paul N D, Leslif A P, Roberto K, et al., Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture [J]. J Bacteriol 2000, 182: 3593-3596.
    [27] Davies D G, Chakrabarty A M, Geesey G G, et al. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa [J], Applied and Environmental Microbiology, 1993,59: 1181-1186.
    [1]刘洋,陈双基,刘建国.生物强化技术在废水处理中的应用[J].环境污染治理技术与设备2002,3(5):36-40.
    [2]Nico B,Johan G,Paul D V,Willy V,and Eva M T.Bioaugmentation of Activated Sludge by an Indigenous 3-Chloroaniline-Degrading Comamonas testosterone Strain,I2gfp[J].Applied and Environmental Microbiology,2000,66(7):2906-2913.
    [3]Alan F,Brid Q.The enhancement of 2-chlorophenol degradation by a mixed microbial community when augmented with Pseudomonas putida CP1[J].Water Research,2002,36:2443-2450.
    [4]E.Marro'n-Montiel,N.Ruiz-Ordaz,C.Rubio-Granados,et al.2,4-D-degrading bacterial consortium isolation,kinetic characterization in batch and continuous culture and application for bioaugmenting an activated sludge microbial community[J].Process Biochemistry 2006,41:1521-1528.
    [5]Nico B,Johan G,Paul D E.Bioaugmentation of activated sludge by an indigenous 3-Chioroaniline- Degrading Comamonas testosteroni strain I2gfp[J].Applied and Environmental Microbiology,2000,66(7):2906-2913.
    [6]Rickard A H,Gilbert P,High N J,et al.Bacterial coaggregation:an integral process in the development of multi-species biofilms[J].Trends Microbiol.,2002,11(2):94-100.
    [7]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M],北京:中国环境科学出版社,2002,第4版:211-213.
    [8]Maria Alcina Pereira,Kees Roest,Alfons J.M.Stams,et al.Molecular monitoring of microbial diversity in expanded granular sludge bed(EGSB) reactors treating oleic acid[J].FEMS Microbiology Ecology,2002,41:95-103.
    [9]Cord Schlotelburg,Claudia von Wintzingerode,Regine Hauck,Microbial structure of an anaerobic bioreactor population that continuously dechlorinates 1,2-dichloropropane[J].FEMS Microbiology Ecology,2002,39:229-237.
    [10]王荫榆,李会荣,贾士芳,吴正钧,郭本恒.应用变性梯度凝胶电泳和16S rDNA序列分析对kefir 粒中细菌多样性的研究[J].微生物学报,2006,46(2):310-313.
    [11]何丽明,李志勇,吴杰,胡叶,蒋群.基于PCR2DGGE指纹的南海海绵共附生细菌优势种群的揭示与系统发育分析[J].微生物学报,2006,46(3):487-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700