用户名: 密码: 验证码:
毛白杨与毛新杨转录组图谱构建及若干性状的遗传学联合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,复杂数量性状遗传学研究一直是遗传学研究的重点和难点,这是因为:一方面,多数的经济性状都属于数量性状,深入揭示这些复杂性状的遗传学机制是对其进行遗传改良的前提;另一方面,复杂数量性状通常由多基因协同调控,其遗传机制相当复杂。QTL作图和分离QTL内主效基因的成功,为开展复杂性状的研究奠定了重要的理论和实践基础。木本植物的遗传连锁作图和QTL定位研究发展较快,许多树种都构建了较高密度的基因组DNA遗传连锁图谱,并且定位了许多重要性状的QTL位点。然而,多年生木本植物的生殖周期较长、遗传背景复杂等特点严重制约了通过图位克隆(positional cloning)分离QTL的发展,长期以来使得木本植物的QTL研究仅限于理论水平。杨树是木本植物遗传学研究的模式物种,也是第一个全基因组测序的木本植物,其遗传学资源十分广泛。本研究通过利用毛白杨(Populus tomentosaCarr.)与毛新杨(P.tomentosa×P.bolleana)的F_1代回交群体,构建了两张特异组织材料的转录组图谱(transcriptome maps),并利用该转录组图谱对包括生长、生理和木材品质在内的28个性状进行了QTL分析。同时借助杨树基因组学和转录组学手段,对QTL区间内的候选基因进行了分析和筛选,显著地缩小了候选基因的筛选范围,为将来分离林木QTL内主效基因奠定了重要基础。主要研究结果如下:
     (1)利用毛新杨与毛白杨回交子代7年生群体,构建了木本植物首张未成熟木质部转录组图谱,其中毛白杨的转录组图谱包括18个较大的连锁群,全长为1536cM,毛新杨转录组图谱由13个较大的连锁群构成,总长度为1030cM,两者分别覆盖预测基因组长度的72.3%和67.1%。为了进一步改善图谱质量,成功的构建了毛白杨和毛新杨的根萌苗幼化群体,并利用该群体构建了根萌苗转录组图谱。随后,对两组特异组织转录组图谱进行了比较分析和整合研究,整合后形成的图谱在图谱长度、标记密度以及标记平均距离上均得到明显改善。
     (2)在构建三组转录组图谱(木质部图谱、根萌苗图谱及整合图谱)基础上,对群体的生长、光合生理以及木材品质等28个性状进行了QTL定位分析,并对各图谱的QTL定位结果进行了比较。利用单标记作图法,共获得402个相关联的标记,其中7个生长性状检测到127个相关联标记,10个光合生理性状检测到166个相关标记,同时检测到109个与11个木材品质性状相关联的标记。利用整合图谱,采用区间作图策略,发现了大量的QTL位点,当LOD>1时,共检测到118个QTL位点,其中LOD>3的位点有10个,单个QTL对表型变异的贡献量一般小于10%,但是也检测到了若干个贡献量在30%以上的主效QTL位点。
     (3)利用QTLs两侧的标记序列,将14个QTLs位点从遗传连锁图谱上转移到杨树基因组上,对QTLs区间内的基因数目、基因频率、基因功能进行了分析。发现所得QTL位点在基因组上的物理距离在500Kb到3500Kb之间,QTLs内基因数目由34到284个不等,表现出在该杂交群体的生殖过程中,基因组不同染色体区域内迥异的交换频率分布。
     (4)利用杨树芯片数据库(UPSC-BASE)中668张杨树表达芯片数据,构建了杨树基因共表达模型,进而利用该模型对木材形成过程中,可能参与纤维素合成和木质素合成的基因进行了预测。在预测出的可能参与木材形成的基因中,有部分基因已经证明的确参与了木材形成过程,表明该模型具有很好的预测能力。同时利用该模型检测出大量的未知功能基因,这些基因的功能将在后续工作中加以证明。
     (5)应用上述基因共表达模型,对2个控制纤维素含量和1个控制木质素含量的QTLs内基因进行候选基因筛选,缩小控制QTL内主效基因的筛择范围。利用两个纤维素合成酶PCESA4和PTCESA7,对控制纤维素含量的QTLαCC4内基因进行共表达分析,预测出该QTL内estExt_Genewisel_v1.C_LG_X12954(PU07734)、fgenesh4_pg.C_LG_XI000690(PU05329)和grail3.0062007201(PU01733)最有可能是该QTL的主效基因。根据同样的策略,对QTLαCC5和QTLLC1两个位点内的主效基因进行了预测。
For years,genetics of complex traits is always situated in the most difficult center of genetics because most economic traits are quantitative nature and are the most significant targets for improvement which needs more understanding of the genetic mechanisms underlying the complex traits.However,the facts that hundreds of gene networks contribute to the formation of phenotype lead to a worse situation.The success of QTL mapping and major QTL cloning built a theoretical and practical foundation for research on genetics of complex traits.Recently,linkage mapping and QTL analysis involving with woody plants have been developed rapidly,and plenty of tree species established dense genomic DNA linkage maps and abundant QTLs controlling the important traits had been located on the genetic maps.However,the nature of long reproductive cycle and high heterozygous genomic background for perennial plants blocks the development of positional-cloning the QTLs in practical phase.Populus L.which had been full-sequenced and accumulated abundant informative resources is a model species for genetic research on woody plants.In this study,a F_1 backcross population of(Populus tomentosa×Populus bolleana)×Populus tomentosa was used for constructing the first transcriptome maps for woody plants and QTLs analysis was carried out for 28 traits related to growth, photosynthetic traits and wood quality.Furthermore,gene contents within QTL genomic intervals had been deeply analyzed and some most potential QTL candidate genes had been screened out by introducing the genomic and transcriptomic tools.This study is first try to identify QTL in woody plant genome by focusing on the candidate gene selection with gene co-expression prediction approach which can dramatically shrink the primary candidate gene pool and efficiently picking up the most potential genes for further research.
     In detail,as follow:
     1) Two separate transcriptome maps were constructed with developing xylem for P. tomentosa and its hybrid P.tomentosa×p.bolleana.For P.tomentosa(male parent),the map comprised of 18 linkage groups which is a total of 1536cM in length,for P.tomentosa×p.bolleana(female parent),13 linkage groups in length of 1030cM made of the map.The coverage of deduced genome is 72.3%and 67.1%for both parents,respectively.To improve the quality of the transcriptome maps,another transcriptome maps for parents had been constructed with the whole plant of sucker seedling(without root) collecting from the juvenilized population.Afterward,two set of transeriptome maps had been compared and integrated into combined maps which had an obvious improvement in map length,marker density and average marker intervals.
     2) QTL analysis was carried out for 28 traits with these 3 sets of transcriptome maps (combined maps included) and QTL results had been drawn a comparison.With single marker mapping method,402 associated markers had been detected for all traits,including 127 markers for 7 growth traits,166 for 10 photosynthetic traits and 109 for wood quality traits.By using interval mapping,118 QTLs were detected at LOD>1.0,only 10 QTLs existed when LOD>3.0.For each QTL,contribution to the phenotype variation was limited under 10 percents,but also some major QTLs with over 30 percents contribution for some phenotypes had been discovered.
     3) Fourteen QTL intervals had been transferred from genetic maps into the Populus genome by anchoring the boundary markers covering the QTLs into the whole sequence of Populus.Analysis had been done on the gene contents within each QTL including gene number,gene frequency and gene function.What had been found is every index varied dramatically depending on different QTLs,for example,the gene number varied from 34 to 284 and the physical length of QTLs ranged from 500Kb to 3500Kb.It can be drawn a conclusion that recombination frequency within hotspot and cold spot changed according to the different chromosome segments.
     4) A gene co-expression model had been constructed with 668 public Populus cDNA chips data which had been used to predict the potential novel genes required in the process of wood formation.Of the top potential genes required in cellulose synthesis and lignin synthesis,some had been testified for their function in this biological process which also was a guarantee for the prediction with this model.
     5) With this co-expression model in use,the candidate genes within two QTLs controlling cellulose content and one QTL controlling lignin content had been searched in order to deduce the gene mumber for selection.The results showed that 3 mostly highly co-expressed with two cellulose synthesis enzymes had been discovered including gene model estExt_Genewisel_vl.C_LG_XI2954(PU07734),fgenesh4_pg.C LG_XI000690 (PU05329) and grail3.0062007201(PU01733).Using the same methods,corresponding candidate genes had been selected for another two QTLs.
引文
1.黄福平,梁月荣,陆建良,等.应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱.茶叶科学,2006,26(3):171-176
    2.黄少伟.松树分子标记辅助育种研究进展.林业科学研究,2006,19(6):799-806
    3.李博,张志毅,张德强,等.植物杂种优势遗传机理研究.分子植物育种,2007,6(s):36-45
    4.李坚.木材科学.北京:高等教育出版社,2002.
    5.李维明,唐定中,卢浩然.检测作物数量性状基因与遗传标记连锁关系的方差分析法及其应用.作物学报,1993,19(2):97-102
    6.苏晓华,张绮纹,郑先武,等.美洲黑杨(Populus deltoids Marsh.)×青杨(P.cathayana Rehd.)分子连锁图谱的构建.林业科学,1998,34(6):209-213
    7.孙涌栋,张兴国,侯瑞贤,等.授粉后黄瓜果实膨大相关基因的鉴别.植物生理与分子生物学学报,2005,31(4):403-408
    8.肖月华,罗明,韦宇拓,等.棉花纤维起始期基因表达的cDNA-AFLP分析.农业生物技术学报,2003,11(1):20-24
    9.徐伟英.杨树.哈尔滨:黑龙江人民出版社,1988
    10.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994.
    11.张德强,张志毅,杨凯,等.运用AFLP技术估计毛白杨及其杂种毛新杨的遗传杂合水平.林业科学,2003,39(3):48-52
    12.Alexander A M,Claus V,A Rod Griffin,et al.Genetics of Postzygotic Isolation in Eucalyptus:Whole-Genome Analysisof Barriers to Introgression in a Wide Interspecific Cross of Eucalyptus grandis and E.globules.Genetics,2004,166:1405-1418
    13.Bachem C,Oomen R,Visser R.Transcript imaging with cDNA-AFLP:a step by step protocol.Plant Mol Biol Rep,1998,16:157-173
    14.Barreneche T,Bodenes C,Lexer C,et al.A genetic linkage map of Quercus robur L.(pedunculate oak) based on RAPD,SCAR,microsatellite,minisatellite,isozyme and 5S rDNA markers.Theor Appl Genet,1998,97:1090-1103
    15.Barton N H,Turelli M.Evolutionary quantitative genetics:How little do we Know? Annual Review of Genetics,1989,23:337-370
    16.Basten,C J,B S Weir,Z B Zeng.QTL Cartographer,Version 1.17.2004,Department of Statistics,North Carolina State University,Raleigh,NC.
    17.Basten C J,Weir B S,Zeng Z B.Zmap-a QTL cartographer.In Proceedings of the 5th World Congress on Genetics Applied to Livestock Production:Computing Strategies and Software,edited by C Smith,J S Gavora,B Benkel,J Chesnais,W Fairfuli,J P Gibson,B W Kennedy and E B Burnside.1994,22:65-66.Published by the Organizing Committee,5th World Congress on Genetics Applied to Livestock Production,Guelph,Ontario,Canada.
    18.Beedanagari S R,Dove S K,Wood B W,et al.A first linkage map of pecan cultivars based on RAPD and AFLP markers.Theor Appl Genet,2005,110:1127-1137
    19.Botstein D R,White R L,Solcick M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Am.J.Hum.Genet,1980,32:314-331
    20.Bradshaw H D,Ceulemans R,Davis J,Stettler RF.Emerging model systems in plant biology:.poplar(Populua) as a model forest tree.J Plant growth regulator,2000,19(3):306-313
    21.Bradshaw H D.Molecular generics of Populus,In:Stettler R.F.(ed),Biology of Populus and its implications for management and conservation,NRC Research Press,New York,1996,pp:183-200
    22.Bradshaw H D,Stettler R F.Molecular genetics of growth and development in Populus.I.Triploidy in hybrid poplars.Theor Appl Genet,1993,86:301-307
    23.Bradshaw H D,Stettler R F.Molecular genetics of growth and development in Populus.Ⅱ.Segregation distortion due to genentic load.Theor Appl Genet,1994,89:551-558
    24.Bradshaw H D,Stettler RF.Molecular genetics of growth and development in Populus.Ⅳ.Mapping QTLs with large effects on growth,form,and phenology traits in a forest tree.Genetics 1995,139:963-973
    25.Bradshaw H D,Villar M,Watson BD,et al.Molecular genetics of growth and development in Populus.Ⅲ A genetic linkage map of a hybrid poplar composed of RFLP,STS and RAPD markers.Theor Appl Genet,1994,89:167-178
    26.Brown G R,Bassoni D L,Gill G P,et al.Identification of Quantitative Trait Loci Influencing Wood Property Traits in Loblolly Pine(Pinus taeda L.).Ⅲ.QTL Verification and Candidate Gene Mapping.Genetics,2003,164:1537-1546
    27.Brown G R,Kadel E E,Bassoni D L,et al.Anchored Reference Loci in Loblolly Pine(Pinus taeda L.)for Integrating Pine Genomics.Genetics,2001,159:799-809
    28.Brugmans B,Carmen A F,Bachem C W B.A novel method for the construction of genome wide transctiptome maps.The Plant Journal,2002,31(2):211-222
    29.Butcher P A,Moran G F.Genetic linkage mapping in Acacia mangium.2.Development of an integrated map from two outbred pedigrees using RFLP and microsatellite loci.Theor Appl Genet,2000,101:594-605
    30.Byrne M J C,Murrell B,Allen G F.Moran.An integrated genetic linkage map for eucalyptsusing RFLP,RAPD and isozyme markers.TheorAppl Genet,1995,91:869-875
    31.Cervera M T,Storme V,Ivens B,et al.Dense genetic linkage maps of three Populus species(Populus deltoides,P.nigra and P.trichocarpa)based on AFLP and Microsatellite markers.Genetics,2001,158:787-809
    32.Chagne D,Lalanne C,Madur D,et al.A high density genetic map of maritime pine based on AFLPs.Ann For Sci,2002,59:627-636
    33.Chantret N,Mingeot D,Sourdille P,et al.A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat.Theoretical and Applied Genetics,2001,103:962-971.
    34.Chen X,Salamini F,Gebhardt C.A potato molecular-function map for carbohydrate metabolism and transport.Theor Appl Genet,2001,102:284-295
    35.Coklem T.Isozyme variation and linkage in six conifer species,1981,p.11-17.In Proceedings of the Symposium on Isozymes of North American Forest Trees and Forest Insects,1979,Berkeley,California.U.S.For.Serv.Gen.Tech.Rep.PSW-48.
    36.Costa P,Pot D,Dubos C,et al.A genetic map of Maritime pine based on AFLP,RAPD and protein markers.Theor Appl Genet,2000,100:39-48
    37.Delseny M,Quiros C F,Sadowski J.Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map.Mol Gen Genomics,2003,268:656-665
    38.Dirlewanger E,Cosson P,Boudehri K,et al.Development of a second-generation genetic linkage map for peach Prunus persica(L.)Batsch]and characterization of morphological traits affecting flower and fruit.Tree Genetics & Genomes,2006,3:1-13
    39.Dondini L,O Lain O,Geuna F,et al.Development of a new SSR-based linkage map in apricotand analysis of synteny with existing Prunus maps.Tree Genetics & Genoraes,2007,3:239-249
    40.Emebiri L C,Devey M E,Matheson A C,et al.Age-related changes in the expression of QTLs for growth in radiata pine seedlings.Theor Appl Genet,1998,97:1053-1061
    41.Eisen M B,Spellman P T,Brown P O,et al.Cluster analysis and display of genome-wide expression patterns.Proc.Natl.Acad.Sci.USA,1998,95,14863-14868
    42.El-Din,El-Assal S,et al.A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2.Nat.Genet.2001,29,435-440
    43.Falconer D S and Mackay T F C.Introduction to quantitative genetics(Fourth edition).UK,Longrnan Group Limited,1996
    44.Fern(?)ndez-Fern(?)ndez F,Evans K M,Clarke J B,et al.Development of an STS map of an interspecific progeny of Malus.Tree Genetics & Genomes,2008,4(3):469-479
    45.Ferrara C T,Wang P,Neto E C,et al.Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling.PLoS Genet,2008,4(3):e1000034.doi:10.1371/journal.pgen.1000034
    46.Frary A,Nesbitt T C,Frary A,et al.fw2.2:A quantitative trait locus key to the evolution of tomato fruit size.Science.2000,289:85-88
    47.Frewen B E,Chen T H H,Howe G T,et al.Quantitative Trait Loci and Candidate Gene Mapping of Bud Set and Bud Flush in Populus.Genetics.2000,154:837-845
    48.Gaudet M,Jorge V,Paolucci I,et al.Genetic linkage maps of Populus nigra L.including AFLPs,SSRs,SNPs,and sex trait.Tree Genetics & Genomes,2008,4:25-36
    49.Glazier A M,Nadeau J H,Aitman T J.Finding genes that underlie complex traits.Science.2002,298:2345-2349
    50.Grattapaglia D,Bertolucci F L G,Penchel R,et al.Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers.Genetics,1996,144:1205-1214
    51.Grattapaglia D,Sederoff R.Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-test-cross:mapping strategy and RAPD markers.Genetics,1994,137:1121-1137
    52.Gentzbittel L,Mestries E,Mouzeyar S,et al.A composite map of expressed sequences and phenotypic traits of the sunflower(Helianthus annuus L.) genome.Theor Appl Genet,1999,99:218-234
    53.Hansen B G,Haikier B A,Kliebenstein D J.Identifying the molecular basis of QTLs:eQTLs add a new dimension.Trends in Plant Science,2008,2(13):72-77
    54.Hayashi E,Kondo T,Terada K,et al.Linkage map of Japanese black pine based on AFLP and RAPD markers including markers linked to resistance against the pine needle gall midge.Theor Appl Genet,2001,102:871-875
    55.Homin K L,Amy K H,Jon S J,et al..Coexpression Analysis of Human Genes Across Many Microarray.Data Sets Genome Res.2004,14:1085-1094
    56.Horn R,Lecouls A C,Callahan A,et al.Candidate gene database and transcript map for peach,a model species for fruit trees.Theor Appl Genet,2005,110:1419-1428
    57.Hulbert S H,Ilott T W,Legg E J,et al.Genetic analysis of the fungus,Bremia lactucae,using restriction fragment length polymorphisms.Genetics,1988,120:947-958
    58.Jansen R C.Interval mapping of multiple quantitative trait loci.Genetics,1993,135:205-211
    59.Jansson S and Douglas C J.Populus:A model system for plant biology.Annu.Rev.Plant Biol.,2007,58:435-58
    60.Jermstad K D,Bassoni D L,Jech K S,et al.Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir.I.Timing of vegetative bud flush.Theor.Appl.Genet.2001,102:1142-1151
    61.Jermstad K D,Bassoni D L,Wheeler N C,et al.A sexaveraged genetic linkage map in coastal Douglas-fir(Pseudotsuga menziesii[Mirb.]Franco var 'menziesii') based on RFLP and RAPD markers.Theor Appl Genet,1998,97:762-770
    62.Jorge V A,Dowkiw P,Faivre Rampant,et al.Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar:genetic mapping and QTL detection.New Phytologist,2005,167:113-127
    63.Karine M.Oliveira K M,Pinto L R,Marconi T G,et al.Functional integrated genetic linkage map based on EST markers for a sugarcane(Saccharum spp.) commercial cross.Mol Breeding,2007,20:189-208
    64.Kaya Z,Sewell M M,Neale D B.Identification of quantitative trait loci influencing annual H-and diameter-increment growth in loblolly pine(Pinus taeda L.).Theor Appl Genet,1999,98:586-592
    65 Kemmeren P,van Berkum N L,Vilo J,et al.Protein Interaction Verification and Functional Annotation by Integrated Analysis of Genome-Scale Data.Mol.Cell,2002,9:1133-1143.
    66.Kirst M,Basten C J,Myburg A A,et al.Genetic Architecture of Transcript-Level Variation in Differentiating Xylem of a Eucalyptus Hybrid.Genetics,2005,169:2295-2303
    67.Komulainen P,Brown G R,Mikkonen M,et al.Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda.Theor Appl Genet,2003,107:667-678
    68.Korzun V,Malyshev S,Voylokov AV,et al.A genetic map of rye(Secale cereale L.) combining RFLP,isozyme,protein,microsatellite and gene loci.Theor Appl Genet,2001,102:709-717
    69.Kroymann J,et al.Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus.Proc.Natl.Acad.Sci.U.S.A.,2003,100(Suppl.2),14587-14592
    70.Kuang H,Richardson T,Carson S,et al.Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D.Don.Genetic map with distorted markers.Theor Appl Genet,1999,98:697-703
    71.Lander E J,Botstein E.Mapping Mendelian factor underlying quantitative traits using RFLP linkage maps.Genetics,1989,12:185-199.
    72.Lander E S,Green P,Abrahamson J,et al.Map maker:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics,1987,1:174-181
    73.Le Guen V D,Lespinasse G,Oliver M,et al.Molecular mapping of genes conferring field resistance to South American Leaf Blight(Mieroeyclus ulei) in rubber tree.Theor Appl Genet,2003,108:160-167
    74.Li B,Jiang X B,Zhang Z Y,et al.Seedling test and genetic analysis of white poplar clones.Forestry Studies in China,2008,10(3):149-152
    75 Li S W,Zhang Z Y,He C Z,et al.Variation analysis of seed and seedling traits of cross combination progenies in Populus.For Stud China,2005,7(3):61-69
    76.Ledig F T and Conkle M T.Gene diversity and genetic structure in a narrow endemic,torrey pine (Pinus torreyana Parry Ex Carr.).Evolution,1983,37(1):79-85
    77.Li G,Gao M,Yang B,et al.Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping.Theor Appl Genet,2003,107:168-180
    78.Li,Wu.Genetic causes of heterosis in juvenile aspen:a quantitative comparison across intra- and inter-specific hybrids.Theor Appl Genet,1996,93:380-391
    79.Liebhard R,Koller B,Gianfranceschi L,et al.Creating a saturated reference map for the apple (Malus domestica Borkh.) genome.Theor Appl Genet,2003,106:1497-1508
    80.Lincoln S,Daly M,Lander E.Constructing genetic maps with MAPMAKER/EXP 3.0.Whitehead Institute Technical Report,3rd ed.Whitehead Institute,Cambridge,Massachusetts,1992
    81.Liu Z,Furnier G R.Comparison of allozyme,RFLP,and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen.Theor Appl Genet,1993,87:97-105
    82.Maliepaard C,Alston FH,van Arkel G,et al.Aligning male and female linkage maps of apple(Malus pumila Mill.) using multi-allelic markers.Theor Appl Genet,1998,97:60-73
    83.Marques C M,Araujo J A,Ferreira J G,et al.AFLP genetic maps of Eucalyptus globulus and E.tereticornis.Theor Appl Genet,1998,96:727-737
    84.Marques M,Brondani R P V,Grattapaglia D,et al.Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species.Theor Appl Genet,2002,105:474-478.
    85.M D Edwards,C W Stuber,J F Wendel.Molecular-Marker-Facilitated Investigations of Quantitative-Trait Loci in Maize.I.Numbers,Genomic Distribution and Types of Gene Action.Genetics,1987,116;113-125
    86.Morgante M,Salamini F.From plant genomics to breeding practice Current Opinion in Biotechnology,2003,2(14):214-219
    87.Morreel K,Goeminne G,Storme V,et al.Genetical metabolomics of flavonoid biosynthesis in Populus:a case study.The Plant Journal,2006,47,224-237
    88.Mouchel C F,et al.Natural genetic variation in Arabidopsis identifies BREVIS RADIX,a novel regulator of cell proliferation and elongation in the root.Genes Dev.2004,18:700-714
    89.Myburg A A,Griffin A R,Sederoff R R,et al.Comparative genetic linkage maps of Eucalyptus grandis,Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach.Theor Appl Genet,2003,107:1028-1042
    90.Nadeau J H,Sankoff D.Counting on comparative maps.Trends in Genetics.1998,12(14):495-501
    91.N'Diaye A,Van de Weg W E,Kodde L P,et al.Construction of an integrated consensus map of the apple genome based on four mapping populations.Tree Genetics & Genomes.2008,4:727-743
    92.Nelson C.D,Nance W L and Doudrick R L(1993) A partial genetic linkage map of slash pine (Pinus elliottii Engelm.Var elliottii) based on random amplified polymorphic DNAs.Theor Appl Genet 87:145-151
    93.Ng Y K,Wu W,Zhang L X.Positive correlation between gene coexpression and positional clustering in the zebrafish genome.BMC Genomics,2009,10:42(doi:10.1186/1471-2164-10-42)
    94.Nicholas K U,Ritland K,Mansfield S D.An AFLP linkage map for Douglas-fir based upon multiple full-sib families.Tree Genetics & Genomes.2008,4:181-191
    95.Pan Y X,Ma J,Zhang G Y,et al.cDNA-AFLP analysis and transcriptome map establishment during thickening of secondary cell wall of cotton fiber.Chinese Science Bulletin,2007,52(12):1425-1429
    96.Paterson A H,Lander H E,Hewett J D,et al.Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment polymorphisms.Nature.1988,3(35):721-726
    97.Pelgas B,Beauseigle S,Acher(?)V,et al.Comparative genome mapping among Picea glauca,P.mariana×P.rubens and P.abies,and correspondence with other Pinaceae.Theor Appl Genet,2006,113:1371-1393
    98.Persson S,Wei H R,Milne J,et al.Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets.PNAS,2005,102(24):8633-8638
    99.Peter C B,Brad M P,Ren(?)E V.Detection and stability of quantitative trait loci(QTL)in Eucalyptus globules.Tree Genetics & Genomes,2008,4:85-95
    100.Pfaff T,Kahl G.Mapping of gene-specific markers on the genetic map of chickpea(Cicer arietinum L.)Mol Gen Genomics,2003,269:243-251
    101.Pierantoni L,Dondini L,Cho K H,et al.Pear scab resistance QTLs via a European pear(Pyrus communis)linkage map.Tree Genetics & Genomes.2007,3:311-317
    102.Pugh T,Fouet O,Risterucci A M,et al.A new cacao linkage map based on codominant markers:development and integration of 201 new microsatellite markers.Theor Appl Genet.2004,108:1151-1161
    103.Rae A M,Street M R,Robinson K M,et al.Five QTL hotspots for yield in short rotation coppice bioenergy poplar:The Poplar Biomass Loci.BMC Plant Biology,2009,9:23(doi:10.1186/1471-2229-9-23)
    104.Ritter E,Ruiz de Galarreta J I,van Eck H J,et al.Construction of a potato transcriptome map based on the cDNA-AFLP technique.Theor Appl Genet,2008,116:1003-1013
    105.Rosana P V,Brondani,Emlyn R W,et al.A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus.BMC Plant Biology,2006,6:20
    106.Rosa R A,Angiolillo A,Guerrero C,et al.A first linkage map of olive(Olea europaea L.)cultivars using RAPD,AFLP,RFLP and SSR markers.Theor Appl Genet.2003,106:1273-1282
    107.Sambrook J,Russell D W.Molecular Cloning:A Laboratory Manual(Version 2).Cold Spring Harbor Laboratory Press Cold Spring Harbor,NY.1999
    108.Sax K.The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris.Genetics,1923,8:552-560
    109.Scalfi M,Troggio M,Piovani P,et al.A RAPD,AFLP and SSR linkage map,and QTL analysis in European beech(Fagus sylvatica L.).Theor Appl Genet.2004,108:433-441
    110.Schnurbusch T,Paillard S,Schori A,et al.Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region.Theoretical and Applied Genetics,2004,108:477-484.
    111.Sewell M M.,D L Bassoni,R A Megraw,et al.Identification of QTLs influencing wood property traits in loblolly pine(Pinus taeda L.).I.Physical wood properties.Theor.Appl.Genet.2000,101:1273-1281.
    112.Sewell M M,M F Davis,G A Tuskan,et al.Identification of QTLs influencing wood property traits in loblolly pine(Pinus taeda L.).Ⅱ.Chemical wood properties.Theor.Appl.Genet.2002,104:214-222.
    113.Sewell M M,Sherman B K,Neale D B.A Consensus Map for Loblolly Pine(Pinus taeda L.).I.Construction and Integration of Individual Linkage Maps From Two Outbred Three-Generation Pedigrees.Genetics.1999,151:321-330
    114.Travis S E,Ritland K,Whitham T G,et al.A Genetic linkage map of Pinyon pine(Pinus edulis)based on amplified fragment length polymorphisms.Theor Appl Genet.1998,97:871-880
    115.Silvio S,Roberto T.To clone or not to clone plant QTLs:present and future challenges.Trend in Plant Science.2005,10(6):297-304
    116.Simpson S P.Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines.Theor Appl Genet.1989,77:815-819
    117.Sjodin A,Bylesjo M,Skogstrom O,et al.UPSC-BASE- Populus transcriptomics online The Plant Journal,2006,48:806-817
    118.Smith E C.A study of cytology and speciation in the genus Populus L.J Arnold Arboretum.1943,24:275-305
    119.Smyth G K,Yang Y H,Speed T P.Statistical issues in microarray data analysis.In:Functional Genomics:Methods and Protocols,M.J.Brownstein and A.B.Khodursky(eds.).Methods in Molecular Biology.Humana Press,Totowa,NJ,2003,224:111-136
    120.Stein N,Prasad M,Scholz U,et al.A 1,000-1oci transcript map of the barley genome:new anchoring points for integrative grass genomics.Theor Appl Genet,2007,114:823-839
    121.Sterky F,Regan S,Kadsson J,et al.Gene discovery in the wood-forming tissues of poplar:analysis of 5692 expressed sequence tags.Proc Natl Acad Sci,1998,95:13330-13335
    122.Stuart J M.,Segal E,Koller D,et al.A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules.Science,2003,302:249-255.
    123.Takahashi Y,Shomura A,Sasaki T,et al.Hd6,a rice quantitative wait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2.PNAS.2001,98(14):7922-7927
    124..Tanksley S D.Mapping polygenes.Annual Review of Genetics.1993,27:205-233
    125.Taylor G.Populus:Arabidopsis for Forestry.Do We Need a Model Tree? Annals of Botany,2002,90(6):681-689
    126.Temesgen B,Brown G R,Harry D E,et al.Genetic mapping of expressed sequence tag polymorphism(ESTP) markers in loblolly pine(Pinus taeda L.).Theor Appl Genet,2001,102:664-675
    127.Thoday J M.Location ofpolygenes.Nature.1961,191:368-370
    128.Trivedi P,Edwards J W,Wang J L,et al.HDBStat!:A platform-independent software suite for statistical analysis of high dimensional biology data.BMC Bioinformatics.2005,6:86(doi:10.1186/1471-2105-6-86)
    129 Tsarouhas,V,Gullberg U,Lagercrantz U.Mapping of quantitative trait loci controlling timing of bud flushing Salix.Hereditas.2003,138:172-178
    130.Tuskan G A,Difazio S,Jansson S,et al.The genome of black cottonwood,Populus tricocarpa (Torr.& Gray).Science.2006,313:1596-1604
    131.Tuskan G A,Difazio S P and Teichmann T.Poplar genomics is getting popular:,the impact of the poplar genome project on tree research.Plant Biology,2004,6:2-4
    132.Verhaegen D,Plomion C,Gion J M,et al.Quantitative trait dissection analysis in Eucalyptus using RAPD markers.1.Detection of QTL in interspecific hybrid progeny,stability of QTL expression across different ages.Theor Appl Genet,1997,95:597-608
    133.Vos P,Hogers R,Bleeker M.AFLP:a new technique for DNA fingerprinting.Nucleic Acids Res.1995,23:4407-4414
    134.Wang D,Karle R,Brettin T S,et al.Genetic linkage map in sour cherry using RFLP markers.Theor Appl Genet.1998,97:1217-1224
    135.Wang G,Pan J S,LI X Z,et al.Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits.Science in China Ser.C Life Sciences,2005,48(3):213-220
    136.Werner J D,et al.Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation.Proc.Natl.Acad.Sci.U.S.A.2005,102:2460-2465
    137.Woolbright S A,DiFazio S P,Yin T,et al.A dense linkage map of hybrid cottonwood(Populus fremontii×P.angustifolia)contributes to long-term ecological research and comparison mapping in a model forest tree.Heredity.2008,100,59-70
    138.Wu R,Bradshaw H D,Stettler R F.Developmental quantitative genetics of growth in Populus.Theor Appl Genet,1998,97:1110-1119
    139.Wu R L,Han Y F,Hu J J,et al.An integrated genetic map of Populus deltoids based on amplified fragment length polymorphisms.Theor Appl Genet.2000,100:1249-1256
    140.Xue W Y,Xing Y Z,Weng X Y,et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nature Genetics.2008,40:761-767
    141.Yang Y H,Dudoit S,Luu P,et al.Normalization for cDNA microarray data:a robust composite method addressing single anf multiple slide systematic variation.Nucleic Acids Research.2002,30(4):15
    142.Yano M,Katayose Y,Ashikari M,et al.Hdl,a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice,Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS.Plant Cell.2000,12:2473-2483
    143.Yin T M,DiFazio S P,Gunter L E,et al.Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map.Theor Appl Genet,2004,109:451-463
    144.Zeng.Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci.Proc.Natl.Acad.Sci.USA.1993,90:10972-10976.
    145.Zeng.Precision Mapping of Quantitative Trait Loci.Genetics,1994,136:1457-1468
    146.Zeng Z B,Kao C H,Basten C J.Estimating the genetic architecture of quantitative traits.Genet.Res,1999,74:279-289
    147.Zhang D Q,Zhang Z Y,Yang K,et al.Genetic mapping in(Populus tomentosa×Populus bolleana)and P.tomentosa Carr.using AFLP markers.Theor Appl Genet,2004,108:657-662
    148.Zhang D Q,Zhang Z Y,Yang K.QTL Analysis of growth and chemical content traits in an interspecific backcross family of white poplars(Populus tomentosa×P.bolleana)×P.tomentosa.Can J For Res,2006,38(8):2015-2023
    149.Zhang Q,Zhang Z Y,Lin S Z,et al.Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar.Plant Biology,2008,10(3):310-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700