用户名: 密码: 验证码:
大坝风险分析的若干计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国人口将在很长时期内保持较大密度,随着经济的快速增长,水库一旦失事将造成更大的生命、财产损失,水资源开发与公共安全的矛盾日益突出。风险管理作为大坝安全管理的延续与补充,越来越受到各个国家的重视。它将大坝安全与下游公共安全联系起来,是评价由于修建水库而对下游所产生威胁严重程度的有效手段,可以较好地解决水资源开发与公共安全之间的矛盾。风险管理的核心技术是分析水库大坝破坏的可能性,以及下游地区生命、财产损失的严重性。作为一门新兴学科,大坝风险管理还存在许多亟待解决的问题,尤其是在定量分析方面。在这一背景下,本文对风险管理中的风险分析环节进行研究,主要内容为:
     (1)基于层次分析法和改进粒子群算法,建立了混凝土重力坝风险因素识别模型。针对传统层次分析法权值计算结果精度低、计算过程不稳定的不足,直接从判断矩阵的定义出发,将权值计算和一致性检验归结为非线性约束优化问题,采用改进粒子群算法求解。采用该模型对混凝土重力坝进行了风险因素识别,结果表明,该模型能够筛选出影响大坝运行安全的主要风险因素,计算结果精度较高,计算过程稳定。
     (2)在显式极限状态函数条件下,根据可靠指标的几何含义,提出了基于人工蜂群算法的可靠指标计算方法。该方法采用人工蜂群算法搜索标准正态空间内极限状态曲面到原点的最短距离,将其作为可靠指标。算例分析结果表明,该方法能够处理非线性程度较高的极限状态函数,是一种准确、稳健的可靠指标计算方法。在隐式极限状态函数条件下,提出了基于最小二乘支持向量机的失效概率计算方法。该方法以数值分析结果作为学习样本,建立最小二乘支持向量机预测模型,以该模型为基础进行Monte Carlo仿真求解失效概率。采用该方法计算了重力坝坝踵抗拉可靠度,结果表明,该方法能够在保证计算精度的前提下有效地提高计算效率。
     (3)考虑混凝土重力坝在服役期内的抗力下降,以及下游地区人口、经济的增长情况,建立了重力坝抗滑稳定时变风险分析模型。首先以上游年最大水深符合正态分布为前提,将抗力随机过程和荷载随机过程离散为随机变量,推导抗滑稳定时变可靠度分析的功能函数,获得大坝时变危险度。然后计算下游地区人口、经济随时间的变化情况,转化为下游时变易损度。最后将大坝时变危险度和下游时变易损度之积作为大坝时变风险,为设计和运行管理提供参考。
     (4)为了解决大坝易损性分析中计算精度与计算效率之间的矛盾,提出了基于最小二乘支持向量机的重力坝易损性分析方法。利用最小二乘支持向量机的函数逼近能力,采用少量的数值分析结果作为学习样本,建立地震动-坝体响应的非线性映射关系,在此基础上进行Monte Carlo仿真,获得大坝易损性曲线。以坝体累积滑动位移为评价指标,使用该方法进行了混凝土重力坝稳定易损性分析,结果表明,该方法能够同时保证较高的计算精度和计算效率。
     (5)针对模糊C均值聚类方法容易陷入局部最优以及聚类结果受初始值影响大的不足,引入人工蜂群算法控制聚类过程,提出了基于人工蜂群—模糊C均值聚类的群坝风险水平划分方法。将坝体危险性和损失严重性的各项指标作为风险属性,使用该方法对汶川地震造成的多处堰塞湖和震损水库进行风险水平划分,结果表明,该方法可以为群坝的除险加固决策提供客观、合理的依据。针对投影寻踪模型的不足,考虑投影向量长度的影响,改进了投影寻踪模型,更加合理地描述多维数据的结构。采用坝体危险性和损失严重性投影值之积表示风险的相对大小,提出了群坝风险排序方法。使用该方法对汶川地震造成的多处堰塞湖进行风险水平排序,结果表明,该方法能够获得细致、客观的评价结果,为群坝除险排序提供详细的依据。
Since the population of our country will maintain a large density and the economic will be growing rapidlly in the future, the dam failure will cause much greater loss of life and property, therefore the conflicts between water resources development and public security have become increasingly prominent. As the continuation and supplement of dam safety management, dam risk management has been paid more and more attentions worldwide. Both the safety of dam and the consequence in downstream area are considered to evaluate the risk of dam construction, and it could be an efficient tool to resolve the contradiction between water resources development and public security. The key issues of dam risk management are calculating the possibility of dam failure in a certain mode and evaluating the relevant loss. As a new developing discipline, there remain a number of problems in dam risk management, especially in aspect of quantitative analysis. Based on such background, this dissertation studied several calculating methods of dam risk analysis, and the main contents are summarized as follow:
     (1) Based on analytic hierarchy progress and improved particle swarm optimization algorithm, an identification model of dam operaing risk factors was established. According to the insufficiency of low accucary and unstable calculating process, the determination on priority weights of hierarchy elements and the consistence check of comparison matrix were attributed to nonlinear constrained optimization problem, which could be solved by improved particle swarm optimization algorithm. The proposed model was employed to recognize risk factors on dam safety, and it was shown that the identification model was efficient with accurate and stable results.
     (2) For explicit limit state function, a reliability index calculating method was presented according to its geometric meaning. The artificial bee colony algorithm was used to search the minimum distance from the limit state surface to the origin in standard Gaussian space and the reliability index would be obtained. Several testings verified that the proposed method was efficent and stable, especial for high order and complex limit state functions. For implicit limit state function, a failure probability calculating method of was proposed using least squares support vector machine. The results of finite element method were used as training samples to establish least squares support vector machine. Based on the trained learning machine, Monte Carlo simulation was run for computing the failure probability. The proposed method was used to calculate the cracking probability of gravity dam heel, and the results showed the accuracy and enfficiency of this method.
     (3) During the service period of dam, the structure resistance would deteriorate, and meantime the population and economic in downstream area would increase. Considering the above-mentioned aspects, a time dependent risk analysis model was proposed. On the assumption that the annual maximum water depth belongs in normal distribution, the stochastic processes of resistance and load were discretized into stochastic variables, and the time dependent dam danger degree could be obtained. Then the population and economic status in the downstream area were integrated into time dependent vulnerability. Finally, the time dependent risk could be calculated through mutiplying time dependent danger degree by time dependent vulnerability. The results could provide useful information to structure design and resevoir operation.
     (4) To solve the conflict between efficiency and precision in dam fragility analysis, a least squares support vector machine based fragility analysis method was presented. The numerical results were used to train least squares support vector machine, and the nonlinear relationship between dynamic load and the response of dam body could be established. Finally, the high accurate fragility curve could be obtained by Monte Carlo simulation based on the trained least squares support vector machine. Using cumulative sliding displacement as the indicator of dynamic stability, the fragility of gravity dam stability was analysed, and the results verified the high efficiency and precision of the proposed method.
     (5) Aim at the diefficiency of fuzzy c-means clustering algorithm, a new clustering algorithm was presented by combining the gradient information of fuzzy c-means clustering algorithm and the stochastic searching mode of artificial bee colony algorithm. Taking risk index as attribution, the risk level of barrier lakes and quake-damaged reservoirs caused by Wenchuan earthquake were classified the using the proposed clustering method. The examples showed that the presented method could provide scientific and reasonable information for rescue plans. Considering the affections of length of projection value vector, an improved projection pursuit model was presented. The projection values of dam danger and consequence were calculated to describe relative degree of dam danger and consequence respectively and their product was used to curve the relative degree of risk. The prioritization of barrier lakes caused by Wenchuan earthquake was obtained with this method, and the results showed that the proposed method could provide detailed and objective information for rescue plans.
引文
[1]孙继昌.中国的水库大坝安全管理[J].中国水利,2008(20):10-14.
    [2]马永锋,生晓高.大坝失事原因分析及对策探讨[J].人民长江,2001,32(10):53-54,59-60.
    [3]张有天.从岩石水力学观点看几个重大工程事故[J].水利学报,2003(5):1-10.
    [4]周克发,李雷.我国已溃决大坝调查及其生命损失规律初探[J].大坝与安全,2006(5):14-18.
    [5]李君纯.青海沟后水库溃坝原因分析[J].岩土工程学报,1994,16(6):1-14.
    [6]BAECHER G B, PATE M E, DENEUFVILLE R. Ri sk of dam failure in benefit-cost analysis[J]. Water Resources Research,16(3):449-456.
    [7]李雷,王仁钟,盛金保,等.大坝风险评价与风险管理[M].北京:中国水利水电出版社,2006.
    [8]刘宁.治水新思路是“十五”水利成就的重要构成[J].中国水利,2006(8):7-10.
    [9]杨启贵,高大水.我国病险水库加固技术现状及展望[J].人民长江,2011,42(12):6-11.
    [10]李雷,蔡跃波,盛金保.中国大坝安全与风险管理的现状及其战略思考[J].岩土工程学报,2008,30(11):1581-1587.
    [11]彭雪辉.风险分析在我国大坝安全上的应用[D].南京:南京水利科学研究院,2003.
    [12]The Health and Safety Executive. The tolerability of risk from nuclear power stations[M]. London:HMSO,1992.
    [13]姜树海.防洪设计标准和大坝的防洪安全[J].水利学报,1999(5):19-25.
    [14]解家毕,孙东亚.事件树法原理及其在堤坝风险分析中的应用[J].中国水利水电科学研究院学报,2006,4(2):133-137.
    [15]BAECHER G B, J T CHRISTIAN. Reliability and Statistics in Geotechnical Engineering [M].England John Wiley and Sons Ltd,2003.
    [16]贾超,李亚非,陈进.浅谈高坝建设的可靠风险分析[J].水利学报,2007(S1):118-122.
    [17]余建星.工程风险评估与控制[M].北京:中国建筑工业出版,2009.
    [18]THOMPSON K D, STEDINGER J R, HEATH D C. Evaluation and presentation of dam failure and flood risks [J]. Journal of Water Resources Planning and Management,1997,123(4): 216-227.
    [19]BICAK H A, JENKINS G P, OZDEMIRAG A. Water flow risks and stakeholder impacts on the choice of a dam site[J]. Australian Journal of Agricultural and Resource Economics,2002,16(2):257-277.
    [20]KWON H H, MOON Y I. Improvement of overtopping risk evaluations using probabilistic concepts for existing dams[J]. Stochastic Environmental Research and Risk Assessment,2006,20 (4):223-237.
    [21]徐祖信,郭子中.开敞式溢洪道泄洪风险计算[J].水利学报,1989(4):50-54.
    [22]冯平,陈根福,纪恩福,等.岗南水库超汛限水位蓄水的风险分析[J].天津大学学报,1995,28(4):572-576.
    [23]冯平,陈根福,纪恩福,等.水库联合调度下超汛限蓄水的风险效益分析[J].水力发电学报,1995(2):8-16.
    [24]冯平,陈根福.超汛限水位蓄水的风险效益分析[J].水利学报,1996(6):29-33.
    [25]赵永军,冯平.河道防洪堤坝水流风险的估算[J].河海大学学报,1998,26(3):71-75.
    [26]王本德,周惠成,程春田,等.水库预蓄效益与风险控制模刑简介[J].大连理工大学学报,1999,39(5).
    [27]王才君,郭生练,刘攀,等.三峡水库动态汛限水位洪水调度风险指标及综合评价模型研究[J].水科学进展,2004,15(3):376-381.
    [28]麻荣永,黄海燕,廖新添.土坝漫坝模糊风险分析[J].安全与环境学报,2004,4(5):15-18.
    [29]程卫帅,陈进.防洪体系系统风险评估模型研究[J].水科学进展,2005, 16(1):114-120.
    [30]张翔,夏军,贾绍凤.干旱期水安全及其风险评价研究[J].水利学报,2005,36(9):1138-1142.
    [31]王冰,冯平.梯级水库联合防洪应急调度模式及其风险评估[J].水利学报,2011,42(2):218-225.
    [32]范子武,姜树海.允许风险分析方法在防洪安全决策中的应用[J].水利学报,2005,36(5):618-623.
    [33]BAECHER G B, PATE M E, DENEUFVILLE K. Risk of dam failure in benefit-cost analysis [J]. Water Resources Research,1980,16(3):449-456.
    [34]PATECORNELL M E, TAGARAS G. Risk costs for new dams economic analysis and effects of monitoring[J]. Water Resources Research,1986,22(1):5-14.
    [35]VICK S G, ATKINSON G M, WILMOT C I. Risk analysis for seismic design of tailings dams[J]. Journal of Geotechnical Engineering,1985,111(7):916-933.
    [36]MENDOZA F J C, LZQUIERDO A G. Design of a model to assess the environmental risk of leachate dams[J]. Waste Management,2008,28(11):2122-2133.
    [37]MENDOZA F J C, LZQUIERDO A G. Environmental risk index:a tool to assess the safety of dams for leachate[J]. Journal of Hazardous Materials,2009,162(1):1-9.
    [38]李君纯.李君纯土石坝工程论文集[M].南京:河海大学出版社,2006.
    [39]曹楚生.从大坝设计和风险分析石大坝安全[J].水利水电工程设计,2000,19 (1):1-2, 5,54.
    [40]杜德进,张为民,张秀丽,等.风险评估在丰满水电站大坝的应用研究[J].大坝与安全,2002(6):6-10.
    [41]彭雪辉,李雷,王仁钟.大坝风险分析及其在沙河集水库大坝的应用[J].水利水运工程学报,2004(4):21-25.
    [42]周元春,薛桂玉,何金平,等.大坝安全风险评估初探[J].中国农村水利水电,2005(10):47-49,53.
    [43]贾超,金峰,张楚汉.考虑损伤情况下结构风险损失模型的研究[J].吉林大学学报(地球科学版),2005,35(1):70-73.
    [44]王仁钟,李雷,盛金保.水库大坝的社会与环境风险标准研究[J].安全与环境学报,2006,6(1):8-11.
    [45]沈怀至,金峰,张楚汉.基于功能的混凝土重力坝抗震风险模型研究[J].岩土力学,2008,29(12):3323-3328.
    [46]金峰,贾超,王品江,等.基于功能的高坝建设方案的风险决策研究[J].岩土力学,2006,27(8):1421-1424.
    [47]BENJAMIN J R. Risk and decision analyses applied to dams and levees[J]. Structural Safety,1983,1(4):257-268.
    [48]FRANCK B M, KRAUTHAMMER T. Development of an expert system for preliminary risk assessment of existing concrete dams[J]. Engineering with Computers,1988,3(3): 137-148.
    [49]PATEV R C, PUTCHA C S. Development of fault trees for risk assessment of dam gates and associated operating equipment[J].International Journal of Modelling and Simulation,2005,25(3):190-201.
    [50]YEGIAN M K, MARCIANO E A, GHAHRAMAN V G. Seismic risk analysis for earth dams[J]. Journal of Geotechnical Engineering,1991,117(1):18-34.
    [51]VICK S G, BROMWELL L G. Risk analysis for dam design in karst[J]. Journal of Geotechnical Engineering,1989,115(6):819-835.
    [52]YENIGUN K, ERKEK C. Reliability in dams and the effects of spillway dimensions on risk levels[J]. Water Resources Management,2007,21(4):747-760.
    [53]KUO J T, YEN B C, HSU Y C, et al. Risk analysis for dam overtopping—Feitsui Reservoir as a case study[J]. Journal of Hydraulic Engineering,2007,133(8):955-963.
    [54]王卓甫,章志强,杨高升.防洪堤结构风险计算模型探讨[J].水利学报,1998(7):64-67.
    [55]徐卫亚,邢万波,魏文自.堤防失事风险分析和风险管理研究[J].岩石力学与工程学报,2006,25(1):47-55.
    [56]杨坤,周创兵,王同旭.多种外界随机荷载综合作用下的坝坡风险评价[J].岩土力学,2009,30(10):3057-3062.
    [57]王忠法,黄建和,邱忠恩.风险分析方法与三峡工程投资风险分析[J].人民长江,1997,28(7):4-6,47.
    [58]李继清,张玉山,王丽萍,等.水利工程经济效益风险分析研究[J].水力发电学报,2003(1):9-14.
    [59]钟登华,张建设,曹广晶.基于AHP的工程项目风险分析方法[J].天津大学学报,2002,35(2):162-166.
    [60]钟登华,蔡绍宽,李玉钦.基于网络分析法(ANP)的水电工程风险分析及其应用[J].水力发电学报,2008,27(1):11-17.
    [61]吴中如,苏怀智,郭海庆.重大水利水电病险工程运行风险分析方法[J].中国科学E辑:技术科学,2008,38(9):1391-1397.
    [62]马福恒,何心望,吴光耀.土石坝风险预警指标体系研究[J].岩土工程学报,2008,30(11):1734-1737.
    [63]周建方,唐椿炎,许智勇.贝叶斯网络在大坝风险分析中的应用[J].水力发电学报,2010,29(1):192-196.
    [64]谢赤,张娟,孙柏.大型水电工程造价风险评估及其关键因素识别[J].水力发电学报,2010,29(3):63-68,75.
    [65]田林钢,彭远春.AHP在某河道整治工程风险管理中的应用[J].人民黄河,2011,33(2):15-16.
    [66]王卓甫.用风险决策方法选抒施工导流方案[J].水利学报,1989(11):28-34.
    [67]王卓甫.施工导流风险分析[J].水利学报,1992(5):65-71.
    [68]王卓甫.考虑洪水过程不确定的施工导流风险计算[J].水利学报,1998(4):33-37.
    [69]周宜红,肖焕雄.三峡工程大江截流风险决策研究[J].武汉水利电力大学学报,1999,32(1):4-6.
    [70]胡志根,刘全,贺吕海,等.基于Monte-Carlo方法的土石围堰挡水导流风险分析[J].水科学进展,2002,13(5):634-638.
    [71]胡志根,胡建明,李燕群.过水土石围堰下游护坡的溢流设计风险率模型[J].水科学进展,2003,14(5):621-625.
    [72]钟登华,冯志军,毛寨汉.基于最大龙口流速指标的立堵截流施工风险随机模拟研究[J].水利学报,2003(4):15-23.
    [73]Johnson D,秦良基.美国华盛顿州采用以风险为基础的大坝安全分析方法的十年成功经[J].大坝与安全,2001(1):45-50.
    [74]王正旭.美国的大坝安全管理[J].水利发展研究,2003(3):51-58.
    [75]高建明,王喜奎,曾明荣.个人风险和社会风险可接受标准研究进展及启示[J].中国安全生产科学技术,2007,3(3):29-34.
    [76]熊威,田波,卢建华.水库大坝安全评价技术与方法探讨[J].人民长江,2011,42(12):24-27.
    [77]李雷,李君纯,等.江西省部分大中型水库安全现状调研报告[R].南昌:水利部大坝安全管理中心、江西省水利厅水管处,2000.
    [78]TOSUN H, ZORLUER I, ORHAN A, et al. Seismic hazard and total risk analyses for large dams in Euphrates basin, Turkey[J]. Engineering Geology,2007,89(1-2):155-170.
    [79]TOSUN H, SEYREK E. Total risk analyses for large dams in Kizilirmak basin, Turkey [J]. Natural Hazards and Earth System Sciences,2010,10(5):979-987.
    [80]SRIVASTAVA A, BABU G L S. Total risk rating and stability analysis of embankment dams in the Kachchh Region, Gujarat, India[J]. Engineering Geology,2010,115(1-2): 68-79.
    [81]SINGH M, KIJKO A, BERG L. Seismic risk ranking for large dams in South Africa[J]. Acta Geophysica,2011,59(1):72-90.
    [82]赵国藩,曹居易,张宽权.工程结构可靠度[M].北京:科学出版社,2011.
    [83]CORNELL C A. A probability-based structural code[J]. Journal of American Concrete Institute,1969,66(12):974-985.
    [84]LIND N C. The design of structural design norms[J]. Journal of Structural Mechanics, 1972,1(3):357-370.
    [85]HASOFER A M, LIND N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division,1974,100(1):111-121.
    [86]WU T H, KRAFT L M. Safety analysis of slopes[J]. Journal of the Soil Mechanics and Foundations Division,1970,96(2):609-630.
    [87]VANMARCKE E H. Reliability of earth slopes[J]. Journal of the Geotechnical Engineering Division-ASCE,1977,103 (11):1247-1265.
    [88]LI K S, LUMB P. Probabilistic design of slopes[J]. Canadian Geotechnical Journal, 1987,24(4):520-535.
    [89]CHRISTIAN J T, LADD C C, BAECHER G B. Reliability applied to slope stability analysis[J]. Journal of Geotechnical Engineering,1994,120(12):2180-2207.
    [90]LIANG R Y, NUSIER 0 K, MALKAWI A H. A reliability based approach for evaluating the slope stability of embankment dams[J]. Engineering Geology,1999,54(3-4):271-285.
    [91]MALKAWI A I H, HASSAN W F, ABDULLA F A. Uncertainty and reliability analysis applied to slope stability[J]. Structural Safety,2000,22(2):161-187.
    [92]ZHANG C, YANG C H, CHEN F. Key Engineering Materials, Hainan,2006[C]. Zurich:Trans Tech Publications Incorporated,2007.
    [93]KRUGER C M, NETO A C, KRUGER D A V. Proceedings of the 1st International Symposium on Life-Cycle Civil Engineering, Varenna,2008[C]. Boca Raton:Lifc-Cycle Civil Engineering,2008,
    [94]JIANG S H, HOU J G, HE Y M. System reliability analysis of deep sliding stability of gravity dams[J]. Advanced Materials Research,2011,243-249:5641-5649.
    [95]WU X M, QIE Z H, ZHANG Z Y, et al. Proceedings of 2009 International Conference on Machine Learning and Cybernetics, llebei,2009[C]. New York:IEEE Press,2009.
    [96]XU Q, LI J, CHEN J Y. Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin,2009[C]. New York:IEEE Press,2009.
    [97]吴世伟.重力坝可靠度校核方法的探讨[J].华东水利学院学报,1984(2):66-75.
    [98]李守义,寇效忠.重力坝深层抗滑稳定可靠度分析[J].水利学报,1998(S1):24-27.
    [99]王东,陈建康.重力坝可靠度参数敏感性探讨[J].四川大学学报(工程科学版),2001,33(4):1-5.
    [100]王长德,袁文革.面板堆石坝下游坝坡稳定可靠度分析[J].武汉水利电力大学学报,1997,30(3):7-10.
    [101]张超,杨春和,徐卫亚.尾矿坝稳定性的可靠度分析[J].岩土力学,2004,25(11):1706-1711.
    [102]HAN B, LIAOHJ, SASSA K, et al. Key Engineering Materials, Hainan,2006[C]. Zurich: Trans Tech Publications Incorporated,2007.
    [103]武清玺,吴世伟,吕泰仁.基于有限元法的重力坝可靠度分析[J].水利学报,1990(1):58-64.
    [104]吴世伟,李同春.重力坝最大可能破坏模式的探讨[J].水利学报,1990(8):20-28,19.
    [105]姚耀武,申超.非线性随机有限元法及其在可靠度分析中的应用[J].岩土工程学报,1996,18(2):37-46.
    [106]姚耀武,杨柏华.用于结构可靠度分析的随机有限元法[J].水利学报,1995(8) :33-45.
    [107]刘光廷.随机徐变应力影响下重力坝时变可靠度初探[J].水利学报1999(5):49-56.
    [108]张明,麦家煊,吴清高.随机边界元法及其在水工结构可靠度分析中的应用[J].水力发电学报,2002(1):46-53.
    [109]陈刚,张林,何显松,等.基于人工神经网络的沙牌RCC拱坝可靠度分析[J].四川大学学报(工程科学版),2002,34(4):34-37.
    [110]陈刚,张林,陈健康,等.复合形法在拱坝结构可靠度分析中的应用[J].水利学报,2003(2):98-101,106.
    [111]熊铁华,常晓林.基于响应面的三维随机有限元法在大型结构可靠度分析中的应用[J].武汉大学学报(工学版),2005,38(1):125-128.
    [112]武清玺,俞晓正.混凝土面板堆石坝可靠度计算方法研究[J].岩土工程学报,2004,26(4):468-472.
    [113]武清玺,俞晓正,赵魁芝.响应面法及其在混凝土面板堆石坝可靠度分析中的应用[J].岩石力学与工程学报,2005,24(9):1506-1511.
    [114]YANMAZ A M, BESER M R. On the reliability-based safety analysis of the Porsuk dam[J]. Turkish Journal of Engineering and Environmental Sciences,2005,29(5): 309-320.
    [115]BABU G L S, SRIVASTAVA A. Reliability analysis of earth dams[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(7):995-998.
    [116]CHEN J Y, XU Q, LI J, et al. Improved response surface method for anti-slide reliability analysis of gravity dam based on weighted regression[J]. Journal of Zhejiang University-Science A,2010,11 (6):432-439.
    [117]梁爱虎,陈厚群,侯顺载.地面最大加速度的概型分布参数对重力坝抗震动力可靠度的影响[J].世界地震工程,1994(4):10-13,9.
    [118]梁爱虎,陈厚群,侯顺载.混凝土拱坝抗震设计中动力可靠度分析方法的探讨[J].水利学报,1995(5):67-71.
    [119]梁爱虎,陈厚群,侯顺载.随机地震动场激励下拱坝多点输入的抗震可靠度分析[J].地震工程与工程振动,1996,16(1):49-59.
    [120]李振富,王日宣.重力坝抗震动力可靠度分析[J].天津大学学报,1995,28 (5): 668-672.
    [121]何蕴龙,陆述远,段亚辉.重力坝地震动力可靠度分析方法研究[J].水利学报,1998(4):66-69.
    [122]武清玺,卓家寿.二次序列响应面法分析重力坝的动力可靠度[J].振动工程学报,2001,14(2):224-227.
    [123]范书立,陈健云,范武强,等.地震作用下碾压混凝土重力坝的可靠度分析[J].岩石力学与工程学报,2008,27(3):564-571.
    [124]徐强,陈健云,李静.基于拉格朗日乘数法计算大坝结构可靠度[J].工程力学,2009,26(11):108-113.
    [125]徐强,陈健云,李静,等.基于贝叶斯理论的大坝体系可靠度计算方法[J].大连理工大学学报,2011,51(1):84-89.
    [126]沈怀至,张楚汉,寇立夯.基于功能的混凝土重力坝地震破坏评价模型[J].清华大学学报(自然科学版),2007,47(12):2114-2118.
    [127]沈怀至,金峰,张楚汉.基于性能的重力坝-地基系统地震易损性分析[J].工程力学,2008,25(12):86-91.
    [128]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [129]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [130]王连芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.
    [131]KENNEDY J, EBERHART R.1995 IEEE International Conference on Neural Networks Proceedings, Perth,1995[C]. New York:IEEE Press,1995.
    [132]EBERHART R, KENNEDY J. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya,1995[C].New York:IEEE Press,1995.
    [133]ANGELINE P J.1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage,1998[C]. New York:IEEE Press,1998.
    [134]汪应洛.系统工程[M].北京:机械工业出版社,2001.
    [135]DITLEVSEN O. Principle of normal tail approximation[J]. Journal of the Engineering Mechanics Division,1981,107(6):1191-1208.
    [136]HOHENBICHLER M, RACKWITZ R. Non-normal dependent vectors in structural safety[J]. Journal of the Engineering Mechanics Division,1981,107(6):1227-1238.
    [137]VAL D, BLJUGER F, YANKELEVSKY D. Optimization problem solution in reliability analysis of reinforced concrete structures[J]. Computers and Structures,1996, 60(3):351-355.
    [138]KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization,2007,39(3):459-471.
    [139]KARABOGA D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation,2009,214(1):108-132.
    [140]KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm [J]. Applied Soft Computing,2008,8(1):687-697.
    [141]贡金鑫,仲伟秋,赵国藩.结构可靠指标的通用计算方法[J].计算力学学报,2003,20(1):12-18.
    [142]贡金鑫.工程结构可靠度计算方法[M].大连:大连理工大学出版社,2003.
    [143]吴世伟,张思俊,余强.坝上游水位变化规律及统计量[J].华东水利学院学报,1984(4):66-74.
    [144]解伟.坝体上游年最大静水荷载概率分布的模糊判别[J].水利学报,2003(6):124-128.
    [145]祁庆和.水工建筑物[M].北京:中国水利水电出版社,1997.
    [146]水利部水利水电规划设计管理局.SL319-2005混凝土重力坝设计规范[S].北京:中国水利水电出版社,2005.
    [147]ELHEWY A H, MESBAHI E, PU Y. Reliability analysis of structures using neural network method[J]. Probabilistic Engineering Mechanics,2006,21(1):44-53.
    [148]PAPADRAKAKIS M, PAPADOPOULOS V, LAGAROS N D. Vulnerability analysis of large concrete dams using the continuum strong discontinuity approach and neural networks[J]. Structural Safety,2008,30(3):217-235.
    [149]VAPNI V N,许建华,张学工.统计学习理论[M].北京:电子工业出版社,2009.
    [150]SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing Letters,1999,9(3):293-300.
    [151]VAPNIK V N,张学工.统计学习理论的本质[M],北京:清华大学出版社,2000.
    [152]SUYKENS J A K, LUKAS L, VANDEWALLE J. ISCAS 2000:IEEE International Symposium on Circuits and Systems-Proceedings, Geneva,2000[C]. New York:IEEE Press,2000.
    [153]BROWNE M W. Cross-validation methods [J]. Journal of Mathematical Psychology,2000, 44(1):108-132.
    [154]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社,2005.
    [155]张俊芝,李桂青.服役重力坝系统可靠度及概率寿命探讨[J].水利学报,2000(4):40-45.
    [156]SU HZ, WEN Z P, HU, et al. Evaluation model for service life of dam based on time-varying risk probability[J]. Science in China Series E-Technological Sc i ences,2009,52(7):966-973.
    [157]American Concrete Institute Committee. Service life prediction:state-of-the art report[R]. Farmington Hills:ACI,2000.
    [158]United Nations Department of Humanitarian Affairs. Mitigating natural disasters: phenomena, effects and options-a manual for policy makers and planners[R]. New York:UNDHA,1991.
    [159]United Nations Department of Humanitarian Affairs. Glossary:Internationally agreed glossary of basic terms related to disaster management[R]. New York:UNDHA, 1992
    [160]刘希林,莫多闻.泥石流风险及沟谷泥石流风险度评价[J].工程地质学报,2002,10(3):266-273.
    [161]贡金鑫,赵国藩.考虑抗力随时间变化的结构可靠度分析[J].建筑结构学报,1998,19(5):43-51.
    [162]赵国藩,贡金鑫,赵尚传.工程结构生命全过程可靠度[M].北京:中国铁道出版社,2004.
    [163]刘希林,莫多闻.泥石流易损度评价[J].地理研究,2002,21(5):569-577.
    [164]李雷,王仁钟,盛金保.溃坝后果严重程度评价模型研究[J].安全与环境学报2006,6(1):1-4.
    [165]林皋,陈健云.混凝土大坝的抗震安全评价[J].水利学报,2001(2):8-15.
    [166]林皋.汶川大地震中大坝震害与大坝抗震安全性分析[J].大连理工在学学报,2009,49(5):657-666.
    [167]RASHID Y R. Ultimate strength analysis of prestressed concrete pressure vessels [J]. Nuclear Engineering and Design,1968,7 (4):334-344.
    [168]ROTS J G, DEBORST R. Analysis of mixed mode fracture in concrete[J].Journal of Engineering Mechanics,1987,113(11):1739-1758.
    [169]WANG G , PEKAU 0 A, ZHANG C H et al. Seismic fracture analysis of concrete gravi ty dams based on nonlinear fracture mechanics[J. Engineering Fracture Mechanics, 2000,65(1):67-87.
    [170]MIRZABOZORG H, GHAEMIAN M. Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach[J]. Earthquake Engineering and Structural Dynamics,2005,34(3):247-269.
    [171]沈怀至,周元德,王进廷.基于弥散裂缝模型的重力坝简化地震分析[J].水利学报,2007,38(10):1221-1227.
    [172]楼梦麟,王东静.设有纵缝的重力坝地震反应分析方法[J].水利学报,1997(:3):78-83.
    [173]涂劲,候顺载,陈厚群.纵缝对重力坝地震反应影响的研究[J].水利学报,2000(12):53-58.
    [174]张贵科,徐卫亚.重力坝纵缝非连续接触的数值模拟[J].水利学报,2005, 36(8):982-987.
    [175]王刚,马震岳,张运良.考虑纵缝影响的重力坝静动力荷载组合作用分析[J].水利学报,2009,40(2):244-249.
    [176]王刚,马震岳,张运良,等.考虑重力坝纵缝结合程度的非线性有限元数值模拟[J].水力发电学报,2009,28(2):41-46.
    [177]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [178]BENSON D J, HALLQUIST J 0. A single surface-contact algorithm for the post-buckling analysis of shell structures[J]. Computer Methods in Applied Mechanics and Engineering,1990,78 (2):141-163.
    [179]潘坚文,张楚汉,徐艳杰.强震输入方式与地基模型对重力坝反应的影响[J].岩土工程学报,2010,32(1):82-88.
    [180]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [181]范书立.混凝土重力坝的动力模型破坏试验及可靠性研究[D].大连:大连理工大学,2007.
    [182]王刚.长服役期重力坝整体安全性研究与加固施工数值仿真分析[D].大连:大连理工大学,2008.
    [183]马玉宏,赵桂峰.地震灾害风险分析及管理[M].北京:科学出版社,2008.
    [184]TEKIE P B, ELLINGWOOD B R. Seismic fragility assessment of concrete gravity dams [J].Earthquake Engineering and Structural Dynamics,2003,32(14):2221-2240.
    [185]TSOMPANAKIS Y, LAGAROS N D, PSARROPOULOS P N, et al. Probabilistic seismic slope stability assessment of geostructures[J]. Structure and Infrastructure Engineering,2010,6(1-2):179-191.
    [186]OOMMEN T, BAISE L G. Model development and validation for intelligent data collection for lateral spread displacements[J]. Journal of Computing in Civil Engineering,2010,24(6):467-477.
    [187]GOH A T C, GOH S H. Support vector machines:their use in geotechnical engineering as illustrated using seismic liquefaction data[J]. Computers and Geotechnics,2007, 34(5):410-421.
    [188]王威,马东辉,苏经宇,等.基于RS-SVM的地下管线震害预测方法研究[J].应用基础与工程科学学报,2009,17(2):274-280.
    [189]ALLIARD P M, LEGER P. Earthquake safety evaluation of gravity dams considering aftershocks and reduced drainage efficiency[J]. Journal of Engineering Mechanics, 2008,134(1):12-22.
    [190]FEMA. Federal guidelines for dam safety:earthquake analysis and design of dams[M]. Washington D C:FEMA,2005.
    [191]LEGER P, KATSOULI M. Seismic stability of concrete gravity dams[J]. Earthquake Engineering and Structural Dynamics,1989,18(6):889-902.
    [192]CHOPRA A K, ZHANG L. Earthquake-induced base sliding of concrete gravity dams[J]. Journal of Structural Engineering,1991,117(12):3698-3719.
    [193]MIR R A, TAYLOR C A. An investigation into the base sliding response of rigid concrete gravity dams to dynamic loading[J]. Earthquake Engineering and Structural Dynamics,1996,25(1):79-98.
    [194]ARABSHAHI H, LOTFI V. Earthquake response of concrete gravity dams including dam-foundation interface nonlinearities[J]. Engineering Structures,2008,30(11): 3065-3073.
    [195]SCHOTANUS M I J, FRANCHIN P, LUPOI A, et al. Seismic fragility analysis of 3D structures[J]. Structural Safety,2004,26(4):421-441.
    [196]BURATTI N, FERRACUTI B, SAVOIA M. Response surface with random factors for seismic fragi lity of reinforced concrete frames [J]. Structural Safety,2010,32(1):42-51.
    [197]吴子燕,王其昂,韩晖,等.基于响应面法的桥梁地震易损性分析研究[J].西北工业大学学报,2011,29(1):103-107.
    [198]BEZDEK J C, EHRLICH R, FULL W. FCM:The fuzzy cmeans clustering algorithm[J]. Computers and Geosciences,1984,10(2-3):191-203.
    [199]AI-SULTAN K S, SELIM S Z. A global algorithm for the fuzzy clustering problem[J]. Pattern Recognition,1993,26(9):1357-1361.
    [200]BUCKLES B P, PETTY F E, PRABHU D, et al. Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando,1994[C].New York:IEEE Press,1994.
    [201]WANG L, LIU Y S, ZHAO X X, et al. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian,2006[C]. New York:IEEE Press,2006.
    [202]刘静,钟伟才,刘芳,等.免疫进化聚类算法[J].电子学报,2001,29(12A):1868-1872.
    [203]张学工.模式识别[M].北京:清华大学出版社,2010.
    [204]COSTA J E, SCHUSTER R L. The formation and failure of natural dams[J] Geological Society of America Bulletin,1988,100(7):1054-1068.
    [205]国家减灾委员会抗震求灾专家组,科学技术部抗夜求灾专家组.汉川地震灾害综合分析与评估[M].北京:科学出版社,2008.
    [206]ERMINI L, CASAGLI N. Prediction of the behaviour of landslide dams using a geomorphological dimensionless index[J]. Earth Surface Processes and Landforms, 2003,28(1):31-47.
    [207]LIU Y C, CHEN C S. A new approach for application of rock mass classification on rock slope stability assessment[J]. Engineering Geology,2007,89(1-2):129-143.
    [208]XU S G, ZHANG S T, ZHU C B, et al. Three practical methods for analyzing slope stability[J].Acta Geologica Sinica-English Edition,2008,82(5)S4:1083-1088
    [209]龚晓南.对岩土工程数值分析的几点思考[J].岩土力学,2011, 32(2):321-325.
    [210]陈吕彦,王思敬,沈小克.边坡岩体稳定性的人工神经网络预测模型[J].岩土工程学报,2001,23(2):157-161.
    [211]FERENTINOU M D, SAKELLARIOU M G. Computational intelligence tools for the prediction of slope performance[J]. Computers and Geotechnics,2007,34(5):362-384.
    [212]SAMUI P. Slope stability analysis:a support vector machine approach[J]. Environmental Geology,2008,56(2):255-267.
    [213]PARK D, RILETT L R. Forecasting freeway link travel times with a multilayer feedforward neural network[J]. Computer-Aided Civil and Infrastructure Engineering,1999,14(5):357-367
    [214]SAMUI P. Slope stability analysis:a support vector machine approach[J]. Environmental Geology,2008,56(2):255-267.
    [215]FRIEDMAN J H, TUKEY J W. A projection pursuit algorithm for exploratory data analysis[J]. IEEE Transactions on Computers,1974,C23(9):881-890.
    [216]FRIEDMAN J H, STUETZLE W. Projection pursuit regression[J]. Journal of the American Statistical Association,1981,76(376):817-823.
    [217]HALL P. On polynomial-based projection indices for exploratory projection pursuit [J].Annals of Statistics,1989,17(2):589-605.
    [218]WANG S J, YANG Z F, DING J. Projection pursuit cluster model and its application in water quality assessment[J]. Journal of Environmental Sciences,2004,16(6): 994-995.
    [219]WANG S J, NI C J. Application of projection pursuit dynamic cluster model in regional partition of water resources in China[J]. Water Resources Management, 2008,22 (10):1421-1429.
    [220]FRIEDMAN J H. Exploratory projection pursuit[J].Journal of the American Statistical Association,1987,82(397):249-266.
    [221]夏元友.系统加权聚类法及其在滑坡稳定性预测中的应用[J].自然灾害学报,1997,6(3):85-91.
    [222]ZHANG W, LI B, GONG F Q. Stability classification model of mine-lane surrounding rock based on distance discriminant analysis method [J]. Journal of Central South University of Technology,2008,15(1):117-120.
    [223]傅琼华,段智芳.群坝风险评估指数排序方法的探讨[J].中国水利水电科学研究院学报,2006,4(2):107-110,150.
    [224]陈斌,梁国钱,郑香英.水库群洪灾风险的综合评价及加固决策研究[J].中国农村水利水电,2010,(3):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700