用户名: 密码: 验证码:
非比例阻尼条件下海洋平台模型修正与损伤诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国已有相当数量的海洋平台接近或即将达到其设计寿命,但为了开发相邻地区新发现的石油储量,往往需要这些平台超龄服役。另外,还有一些油田的部分平台其服役期限虽然还未达到设计寿命,但这些平台由于设计施工不当或使用过程中受到腐蚀、疲劳、碰撞以及恶劣环境载荷的作用,各构件出现不同程度的损伤,致使平台结构的整体安全性和完整性受到威胁。因此,如何合理评价这些平台的健康状况成为迫切需要解决的问题。为更好的保证服役中及需超期服役海洋平台的安全服役,针对目前大部分模型修正与损伤诊断方法未考虑阻尼特性及在处理实测模态不完备性方面的不足,本文在阻尼矩阵识别、结构损伤诊断及试验模型边界条件修正三个方面进行基础性的研究工作;同时,开展新方法——动力等效子结构法的前期的研究工作;接下来在实验室中通过一钢质悬臂梁模型验证理论方法的正确性;最后,通过对埕北22B井组平台海上动力测试,探讨测试方案的可行性及获取其低阶动力特性的可能性。
     本文在理论上将交叉模型交叉模态(CMCM)方法从无阻尼体系推广到阻尼体系,解决应用空间不完备的低阶实测模态进行模型修正与损伤诊断的问题。在阻尼矩阵识别方面,文中提出两种阻尼矩阵识别方法——整体阻尼矩阵识别方法与单元阻尼矩阵识别方法。前者适用于复杂结构,后者适用于相对简单的结构,并且两种方法均可处理实测模态空间不完备问题。在损伤识别方面,直接应用CMCM方法的修正系数α_n作为损伤诊断指标适用于实测模态测试误差较小的情况,新发展的损伤定位指标MSECI_n较α_n在刚度损伤定位方面具有更好的鲁棒性,并且发展的复合指标诊断方法能充分发挥上述两种损伤指标的优势,推动了CMCM方法的实际工程应用。当模型实验精度要求较高时,为充分考虑地基对模型的约束程度,文中提出基于边界条件的试验模型修正方法,通过调整物理模型与地基的边界条件,实现修正后的有限元模型与真实模型在低阶动力特性上一致或尽可能吻合的要求,该方法不仅适用于实测模态空间不完备的情形,而且所选用的初始估计矩阵的形式具有常规性,工程意义明显。文中还探讨新的动力子结构方法——动力等效子结构方法,其数值结果证实,当子结构选取比较合理时,可以实现子结构与整体结构在低阶模态上的动力等效。钢质悬臂梁物理模型实验亦证实基于边界条件的试验模型修正方法、复合指标诊断方法及动力等效子结构方法均具有较好的工程应用前景。埕北22B井组平台海上动力测试结果表明,所采用的海洋平台动力测试方案切实可行,具有较好的通用性,而且可以比较精确的获得平台的低阶频率,但识别的振型其精度需待提高。
     Friswell在其书中提到,在现有模型修正领域有三个公认的难题:其一是实测模态与理论模态的配对问题;其二是实测模态与理论模态的比例问题;最后是结构的阻尼模拟问题。本文的研究成果不仅可考虑结构的阻尼特性,甚至可将阻尼模拟为非比例阻尼,而且该方法既不要求实测模态与理论模态配对,也不要求二者的比例问题。可以说本文在一定程度上解决了模型修正领域的三个难题,理论创新性明显;所进行的物理模型实验及海洋平台现场动力测试推动了文中方法在海洋平台中的应用,工程意义明显。其研究成果虽然主要服务于海洋平台的模型修正与损伤诊断,但也可应用于航空航天、土木工程以及汽车工程结构的同类问题。
Though most platforms close to their service life, they have to be used continuously even out of their service life for the new exploitation of oil in the nearby areas. In some oil fields, there are portion platforms whose safty and integraty are threatened by damages in some members, which may be caused for lots of reasons, such as improper design and construction, corrosion, fatigue, collision and abominable environment loads, though these platforms have not finished their service life. Then how to evaluate the health level of these platforms become emergent issues. Therefore, to assure the safety of these platforms and to overcome the drawbacks of model updating and damage detection methods at present on damping simulation and spatial incompleteness consideration, foundamental studies on the damping matrix identification, the damage detection and the experiment model updating based on interface modification are performed; and a new method, i.e., dynamically equivalent substructures is proposed, and foundamental studies are performed as well. Then the correctness and feasibility of above methods are demonstrated using a steel cantilever beam. Finally, dynamic test for the CB22B platform is performed, and the feasibility of test scheme and the possibility of obtaining the first few dynamic properties are discussed as well.
     In theory, this thesis extends the Cross Model Cross Mode (CMCM) method from undamped systems to damped systems employing few spatially incomplete measured data for model updating and damage detection. For damping identification, two methods, i.e., global damping matrix indentification and local damping matrix identification are proposed. The former one can be used for complex structures, the latter one is suitable for simple structures, and the above two damping matrix identification methods can both solve the spatial incompleteness of measured data. For damage detection, using correction coefficientsα_n as damage indicators is available only when the measurement errors are very small, and the robustness of developed indicator, i.e., the magnified idicator MSECI_n is better thanα_n in damage localization; thus the proposed damage detection method, i.e., composite indicator method, can synthesize the advantages of above two indicators, and the achievements can contribute to the application of the CMCM method in engineering. When the required precision of experiment is strict, the thesis proposes experiment model updating method based on interface modification, which can match a few measured modal data. This method is suitable to spatial incompleteness and the initial damping matrix is common, thus engineering meaning is obvious. In addition, the thesis studies the new dynamic substructure method, i.e., dynamically equivalent substructure method, and numerical studies reveal that if the selected substructure is proper, the modified substructure is dynamically equivalent or close to the whole structure in a few measured modal data. From the experiment of a steel cantilever beam, one concludes that the composite indicator method, the experiment model updating method based on interface modification and the dynamically equivalent substructure method display the promising application in engineering. Dynamic test for CB22B platform indicates, the adopted scheme is feasible and universal, and the first few frequencies can be measured reasonably, while the accuracy for mode shapes identification should be improved in the future work.
     Friswell mentioned in his book that there are three challenges for model updating, that is pairing, scaling between measured and analytical modal, and damping simulation. One side, achievements in this thesis doesn’t require pairing and scaling; and on the other hand is that damping properties can be considered. In other words, three challenges are solved at a certain level, thus theoretical innovation is obvious. In addition, the experiment and dynamic test on CB22B platform improved the application of proposed methods in engineering. In general, achievements can be applied not only to offshore platforms, but also to aviation and spaceflight, civil engineering and automobile engineering.
引文
[1]Idichandy V G and Ganapathy C. Structural Integrity Monitoring of Fixed offshore Platforms. In: Proceeding of the IABSE Colloquium, Bergamo, 1987. 237~261
    [2]郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势.振动与冲击,2002,21(2):1~6
    [3]Crohas H and Lepert P. Damage-Detection Monitoring Method for Offshore Platforms is Field Tested. Oil & Gas Journal, 1982, 80(8): 94~103
    [4]Minas C and Inman D J. Identification of a Nonproportional Damping Matrix from Incomplete Modal Information. Journal of Vibration and Acoustics, 1991, 113: 219 ~ 224
    [5]Beliveau J-G. Identification of Viscous Damping in Structures from Modal Information. ASME Journal of Applied Mechanics, 1976, 43: 335~338
    [6]Caravani P and Thomson W T. Identification of Damping Coefficients in Multidimensional Linear Systems. ASME Journal of Applied Mechanics, 1974, 41: 379~382
    [7]Chen S Y, Ju M S and Tsuei Y G. Estimation of Mass, Stiffness, and Damping Matrices from Frequency Response Functions. Journal of Vibration and Acoustics, 1996, 118: 78~82
    [8]Fabunmi J, Chang P and Vorwald J. Damping Matrix Identification Using the Spectral Basis Technique. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110: 332~337
    [9]Fritzen C-P. Identification of Mass, Damping and Stiffness Matrices of Mechanical Systems. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986, 108: 9~16
    [10]Gaylard M E. Identification of Damping Matrices: An Autocorrelation-Style Technique. Identification in Engineering Systems. In: Proceedings of the International Conference held at Swansea, March 1996. 225~237
    [11]Hasselman T K. A Method of Constructing a Full Modal Damping Matrix from Experimental Measurements. AIAA Journal, 1972, 10: 526~527
    [12]Ibrahim S R. Dynamic Modeling of Structures from Measured Complex Modes. AIAA Journal, 1983, 21(6): 898~901
    [13]Lancaster P. Expression for damping Matrices in Linear Vibration Problems. Journal of the Aerospace Sciences, 1961, 256
    [14]Pilkey D F. Computation of a Damping Matrix for Finite Element Model Updating [Doctor dissertation]. Faculty of the Virginia Polytechnic Institute and State University, Virginia, 1998
    [15]Mottershead J E and Foster C D. An Instrument variable Method for the Estimation of Mass, Stiffness, and Damping Parameters from Measured Frequency Response Functions. Mechanical Systems and Signal Processing, 1988, 2(4): 379~390
    [16]Alvin K F, Park K C and Peterson L D. Extraction of Undamped Normal Modes and Nondiagonal Damping Matrix from Damped System Realization Parameters. Journal of Sound and Vibration, 1993:151~167
    [17]Starek L and Inman D J. A Symmetric Inverse Vibration Problem for Nonproportional, Underdamped Systems. ASME Journal of Applied Mechanics. 1997, 64(3):601~605
    [18]Wang J-H. Mechanical Parameter Identification with Special Consideration of Noise Effects. Journal of Sound and Vibration, 1988, 125(1): 151~167
    [19]Roemer M J and Mook D J. Mass, Stiffness, and Damping Matrix Identification: An Integrated Approach. ASME Journal of Vibration and Acoustics, 1992, 114: 358~363
    [20]Gaylard M E. Identification of proportional and other sorts of damping matrices using a weighted response-integral method. Mechanical Systems and Signal Processing, 2001, 15(2): 245~256
    [21]Slavic J, Simonovski I and Boltezar M. Damping identification using a continuous wavelet transform: application to real data. Journal of Sound and Vibration, 2003, 262: 291–307
    [22]Srikantha P A and Woodhouse J. Viscous damping identification in linear vibration. Journal of Soundand Vibration, 2007, 303: 475~500
    [23]Ewins D J. Modal Testing: Theory, Practice and Application, 2nd Edition, Research Studies Press, 2000
    [24]Friswell M I and Mottershead J E. Finite Element Model Updating In Structural Dynamics, Kluwer Academic Publishers, 1995
    [25]Mottershead J E and Friswell M I. Model updating in structural dynamics: A survey. Journal of Sound and Vibration, 1993, 167, 347~376
    [26]Vandiver J K. Detection of structural failure on fixed platforms by measurement of dynamic response. In: Proceedings of the 7th Annual Offshore Technology Conference, 1976. 243~252
    [27]Begg R D, Mackenzie A C and Dodds C J. Structural Integrity Monitoring Using Digital Processing of Vibration Signals. In: Proceedings of the 8th Annual Offshore Technology Conference. Houston, 1976. 305~311
    [28]Loland O and Dodds J C. Experience in developing and operating integrity monitoring system in North Sea. In: Proceedings of the 8th Annual Offshore Technology Conference. Houston, 1976. 313~319
    [29]Wojnarowski M E and Stiansen S G. Structural integrity evaluation of a fixed platform using vibration criteria. In: Proceedings of the 9th Annual Offshore Technology Conference.1977. 247~ 256
    [30]Vandiver J K. Detection of structural failure in fixed platforms by measurement of dynamic response. Journal of Petroleum Technology, 1977, 29:305~310
    [31]杨和振.环境激励下海洋平台结构模态参数识别与损伤诊断研究[博士学位论文].中国,青岛.中国海洋大学. 2004
    [32]Cawley P and Adams R D. The location of defects in structures from measurement of natural frequencies. Strain Analysis, 1979, 14(2): 49~57
    [33]Biswas M, Pandey A K and Samman M M. Diagnostic experimental spectral/modal analysis of a highway bridge. The International Journal of Analytical and Experimental Modal Analysis, 1990, 5(1):33~42
    [34]Messina A, Williams J E and Contursi T. Structural damage detection by a sensitivity and statistical-based method. Journal of Sound and Vibration, 1996, 216(5): 791~808
    [35]Salawu O S and Williams C. Bridge assessment using forced-vibration testing. Journal of Structure and Engineering, 1995, 121 (2): 161~173
    [36]Kim J T, Ryu Y S, Cho H M et al. Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Engineering Structure, 2003, 25 (1): 57~67
    [37]Salawu O S. Detection of structural damage through changes in frequency: A review. Engineering Structure, 1997, 19 (9):718~723
    [38]Farrar C R, Baker W E, Bell T M et al. Dynamic Characterization and Damage Detection in the I-40 Bridge Over the Rio Grande, Los Alamos National Laboratory report LA-12767-MS, 1994
    [39]Doebling S W, Farrar C R and Prime M B. A summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 1998, 30(2):91~105
    [40]Salawu O S and Williams C. Damage location using vibration mode shapes. In: Proceedings of 12th IMAC, Honolulu, Hawaii, 1994. 933~939
    [41]张德文等.模型修正与破损诊断.北京:科学出版社,1999
    [42]Pandey A K, Biswas M and Samman M M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991, 145(2):321~332
    [43]Sheinman I. Damage detection and updating of stiffness and mass matrices using mode data. Computers and Structures, 1996, 59(1):149~156
    [44]Parloo E, Guillaume P and Van Overmeire M. Damage assessment using mode shape sensitivities. Mechanical Systems and Signal Processing, 2003,17(3): 499~518
    [45]West Walter M. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen. In: Proceedings of the 4th International Modal Analysis Conference, Los Angeles, CA , 1986. 1~5
    [46]Allemang R J and Brown D I. A correlation coefficient for modal vector analysis. In: Proceedings of the 1th International Modal Analysis Conference, 1982. 110~116
    [47]Lieven N A J and Evins D J. Spatial correlation of mode shapes. The coordinate modal assurance criterion (COMAC). In: Proceedings of the 6th International Modal Analysis Conference, 1988. 690~695
    [48]Farrao C R and Jauregui D V. Damage Detection Algorithms Applied to ExPerimental and Numerical Modal Data From the I-40 Bridge.Los Alamos National Laboratory Report LA-13074-MS, 1996
    [49]Ho Y K, Ewins D J. On structural damage identification with mode shapes. In: Proceedings of European COST F3 Conference on System identification & Structural Health Monitoring, Madrid, Spain, 2000. 677~686
    [50]Williams C and Salawu O S. Damping as a damage indication parameter. In: Proceedings of 15th International Modal Analysis Conference, Orlando, FL, USA, 1997. 1531~1536
    [51]Ndambi Mulambula J-M. Damage assessment in reinforced concrete beams by damping analysis [Doctor dissertation]. Mechanics of Materials and Constructions, Vrije University Brussel, Beigium, 2002
    [52]Salane H J and Baldwin J W. Identification of modal Properties of bridges. Journal of Structural Engineering, 1990, 116(7), 2008~2021
    [53]Friswell M I, Inman D J and Pilkey D F. Direct Updating of Damping and stiffness Matrices. AIAA Journal, 1998, 36(3):491~493
    [54]Kuo Y, Lin W and Xu S. New methods for finite element model updating problems. AIAA Journal, 2006, 44(6): 1310~1316
    [55]Chu M T and Golub G H. Inverse Eigenvalue Problems: Theory, Algorithms, and Applications, Oxford University Press, 2005
    [56]Banks H T, Inman D J, Leo D J et al. An Experimentally Validated Damage Detection Theory in Smart Structures. Journal of Sound and Vibration, 1996, 191(5):859~880
    [57]Banks H T and Inman D J. On the significance of modeling internal damping in the control of structures. Journal of Guidance, Control and Dynamics, 1992, 15(6): 1509~1512
    [58]Hu S-L J, Li H J and Wang S Q. Cross Model Cross Mode Method for Model Updating. Mechanical System and Signal Processing, 2007, 21(4): 1690~1703
    [59]Hu S-L J, Li H J. Simultaneous Mass, Damping and Stiffness Updating for Dynamic Systems. AIAA Journal, 2007, 45(10):2529~2537
    [60]Hu S-L J, Liu F S, and Li H J. Model updating and damage detection of damped systems using incomplete complex modes. In: World forum on smart materials and smart structures technologies, Chongqing, China, 2007
    [61]Pandey A K and Biswas M. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration, 1994, 169(1):3~17
    [62]Pandey A K and Biswas M. Experimental verification of flexibility difference method for locating damage in structure. Journal of Sound and Vibration, 1995 ,184(2) :311~328
    [63] Pandey A K and Biswas M. Damage diagnosis of truss structures by estimation of flexibility change, Modal Analysis, 1995, 10(2):104~107
    [64]Raghavendrachar M and Aktan A E. Flexibility by multireference impact testing for bridge diagnostics. Journal of structural Engineering, 1992,118(8):2186~2203
    [65]Bernal D. Load vectors for damage localization. Journal of Engineering Mechanics, 2002, 128(1): 7~14
    [66]Doebling S W. Damage detection and model refinement using elemental stiffness perturbations with constrained connectivity. AIAA Paper, 1996, No.1307:360~370
    [67]Kaouk M and Zinunerman D C. Structoral damage assessment using a generalized minimum rank perturbation theory. AIAA Journal, 1994, 32(4):836~842
    [68]Doebling S W. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification. AIAA Journal, 1996, 34(12):2615~2621
    [69]Shi Z Y, Law S S and Zhang L M. Structural damage localization from modal strain energy change. Journal of Sound Vibration, 1998, 218(5):825~844
    [70]Shi Z Y, Law S S and Zhang L M. Structural damage detection from modal strain energy change. Journal of Engineering Mechanics, ASCE, 2000, 126(12):1216~1223
    [71]Shi Z Y, Law S S and Zhang L M. ImProved damage quantification from elemental modal strain energy change. Journal of Engineering Mechanics, ASCE, 2002, 128(5):521~529
    [72]Law S S, Shi Z Y and Zhang L M. Structural damage detection from incomplete and noisy modal test data. Journal of Engineering Mechanics, ASCE, 1998, 124(11):1280~1288
    [73]Law S S, Chan T H T and Wu D. Efficient numerical model for the damage detection of large scale structure. Engineering Structures, 2001, 23(5):436~451
    [74]Messina A, Willams E J and Contursi T. Structural damage detection by a sensitivity and statistical-based method. Journal of Sound and Vibration, 1998, 216(5):791~808
    [75]Li H J, Yang H Z and Hu and Hu S-L J. Modal strain energy decomposition method for damage localization. Journal of Engineering Mechanics, ASCE, 2004, 132(9):941~951
    [76]Hu S-L J, Wang S Q and Li H J. Cross Modal Strain Energy for Estimating DamageSeverity. Journal of Engineering Mechanics, ASCE, 2006, 132(4): 429~437
    [77]刘元志,李耀雄.结构损伤诊断技术的研究状况与展望.国外建材科技,2002,23(4): 99~100
    [78]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展.土木工程学报,2003,36(5): 105~110
    [79]Li G Q, Hao K C, Lu Y et al. A flexibility approach for damage identification of cantilever-type structures with bending and shear deformation. Computers and Structures, 1999, 73(6): 565~572
    [80]Mares C and Surace C. An application of genetic algorithms to identify damage in elastic structures. Journal of Sound and Vibration, 1996, 195(2): 195~215
    [81]Tsai W H, Kung D N and Yang J C S. Application of system identification technique to damage detection and location in offshore platform. In: Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, 1988. 77~84
    [82]Cornwell P, Doebling S W and Farrar C R. Application of the strain energy damage detection method to plate-like structures. Journal of Sound and Vibration, 1999, 224(2): 359~374
    [83]Ovanesova A V, Suarez L E. Applications of wavelet transforms to damage detection in frame structures. Engineering Structures, 2004, 26(1): 39~49
    [84]Chen H P, Bicanic N. Assessment of damage in continuum structures based on incomplete modal information. Computers and Structures, 2000, 74(5): 559~570
    [85]Hwang H Y, Kim C. Damage detection in structures using a few frequency response measurements. Journal of Sound and Vibration, 2004, 270 (1-2): 1~14
    [86]Lew J-S. Using transfer function parameter changes for damage detection of structures, AIAA Journal, 1995, 33(11):2189~2193
    [87]Zimmerman D C, Simimermacher T and Kaouk M. Structural damage detection using frequency response function. In: Proceedings of 13th IMAC, 1995. 179 ~184
    [88]Maia N M M. Location of damage using curvature of the frequency response functions. In: Proceedingsof 15th IMAC, Florida, 1997. 942 ~946
    [89]Mark J S. Detecting structural damage using transmittance function. In: Proceedings of 15th IMAC, Florida, 1997. 638~644
    [90]Collins J D, Hart G C, Hasselman T K and Kennedt B. System identification of structures, AIAA Joumal,1974,12(2):1 85~190
    [91]Ricles J M and Kosmatka J B. Damage Detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity,AIAA Journal,1992,30(7):2310~2316
    [92]Sohn H and Law K H. A Bayesian Probabilistic Approach for Structure Damage Detection. Earthquake Engineering and Structural Dynamics, 1997, 26:1259~1281
    [93]Beck J L and Katafygiotis L S. Updating Models and Their Uncertainties.I: Bayesian Statistical Frameworks, Journal of Engineering Mechanics, ASCE, 1998, 124(4):455~461
    [94]Liu R-L. Identification and Damage Deteclion of Trusses Using Modal Data, Journal of Structural Engineering, ASCE, 1995, 121(4):599~608
    [95]Papadopoulos L and Garcia E. Structural Damage Identification: A Probabilistic Approach, AIAA Journal, 1998, 36(11): 2137~2145
    [96]Doebling S W, Farrar C R and Goodman R S. Effects of measurement statistics on the detection of damage in the alamosa canyon bridge. In: Proceedings of the 15th International Modal Analysis Conference, Orlando, FL, February3-6, 1997. 919~929
    [97]Xia Y, Hao H. Statistical damage identification of structures with frequency changes. Journal of Sound and Vibration, 2003, 263: 853~867
    [98]梁艳春.计算智能与力学反问题中的若干问题.力学进展,2000 , 30 (3): 321~331
    [99]Elkordy M F, Chang K C and Lee G C. A structural damage neural network monitoring system. Microcomputers in Civil Engineering, 1994, 9(2):53~96
    [100]Barai S V, Paridey P C. Vibration signature analysis using artificial neural networks. Journal of Computing in Civil Engineering, 1995, 9(4):259~265
    [101]于德介,雷慧,程军圣.基于神经网络与柔度变化的结构破损诊断.振动工程学报,2001,14(3):345~348
    [102]Chen Q, Chan Y W, Wbrden K. Structural fault diagnosis and isolation using neural networks based on response-only data. Computers and structures, 2003, 81:2165~2172
    [103]Levin R I, Lieven N A J. Dynamic finite element model updating using neural networks. Journal of sound and vibration, 1998, 210:593~607
    [104]姜绍飞,倪一清,高赞明.基于概率神经网络的青马悬索桥损伤定位的仿真研究.工程力学,2002(s)I:965~969
    [105]王柏生,倪一清,高赞明.用概率神经网络进行结构损伤位置识别.振动工程学报, 2001,14(l):60~64
    [106]Ni Y Q, Jiang S F and Ko J M. Application of adaptive probabilistic neural network to damage detection of Tsing Ma bridge. In: Health Monitoring and Management of Civil Infrastructure Systems, SPIE, USA, 2001, 4337:347~356
    [107]Rajasekaran S, Febin M F and Ramasamy J V. Artificial fuzzy neural networks in civil engineering. Computers and structures, 1996, 61(2):291~302
    [108]Sawyer J P, Rao S S. Structural damage detection and identification using fuzzy logic. AIAA Journal, 2002, 38(12):2328~2335
    [109]Adeli H, Park H S. Counterpropagation neural networks in structural engineering. Journal of Structural Engineering, ASCE, 1995, 121(8):1205~1212
    [110]李宏男,孙鸿敏.小波分析在土木工程领域中的应用.世界地震工程,2003,19(2):16~22
    [111]Yoshihiro K. Identification of nonlinear structura1dynamic systems using wavelets. Journal of Engineering Mechanlcs, ASCE, 1998, 24(10):1059~1066.
    [112]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与实验分析.土木工程学报,2003,36(5):52~57
    [113]Kim H, Melhem H. Fourier and wavelet analysis for fatigue assessment of concrete beams. Experimental Mechanics, 2003, 43(3):131~140
    [114]Inoue H, kishimoto K, Shibuya T. Experimental wavelet analysis of flexural waves in beams. Experimental Mechanics, 1996, 36(3):212~217
    [115]Zhu X Q, Law S S. Wavelet-based crack identification of bridge beam from operational deflection time history. International Journal of Solids and Structures, 2006, 43(7-8):2299~2317
    [116]Yan Y J, Yam L H. Detection of delamination damage in composite plates using energy spectrum of structural dynamic responses decomposed by wavelet analysis. Computers and structures, 2004, 82:347~358
    [1]Ewins D J. Modal Testing: Theory, Practice and Application, 2nd ed., Research Studies Press, 2000
    [2]林循泓,潘得引,臧朝平,张思.振动模态参数识别及其应用.东南大学出版社,1994年12月第一版
    [3]Guyan R J. Reduction of stiffness and mass matrices. AIAA Journal, 1965, 3(2): 380
    [4]Paz M. Dynamic condensation. AIAA Journal, 1984, 22(5):724~727
    [5]O’Callahan J C. A Procedure for an improved Reduced System (IRS) Model. In: Seventh International Modal Analysis Conference, Las Vegas, 1989. 17~21
    [6]O’Callahan J C, Avitabile P and Riemer R. System Equivalent Reduction Expansion Process (SEREP). In: Proceedings of the 7th international Modal Analysis Conference, Las Vegas, Nevada, February, 1989.29~37
    [7]Michael P and Ephrahim G. Improvement in model reduction schemes using the system equivalent reduction expansion process. AIAA Journal, 1996, 34(10):2217~2219
    [8]Pilkey D F. Computation of a Damping Matrix for Finite Element Model Updating [Doctor dissertation]. Faculty of the Virginia Polytechnic Institute and State University, Virginia, 1998
    [9]Gelb A. Applied Optimal Estimation, M.I.T. Press, 1974
    [10]Menke W. Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, Inc., New York, 1984
    [11]Friswell M I, and Mottershead J E. Finite Element Model Updating In Structural Dynamics, Kluwer Academic Publishers, 1995
    [12]Hu S-L J, Li H J and Wang S Q. Cross Model Cross Mode Method for Model Updating. Mechanical System and Signal Processing, 2007, 21(4): 1690~1703
    [13]Hu S-L J, Li H J. Simultaneous Mass, Damping and Stiffness Updating for Dynamic Systems. AIAA J, 2007, 45(10):2529~2537
    [14]Hu S-L J, Liu F S, and Li H J. Model updating and damage detection of damped systems using incomplete complex modes. In: World forum on smart materials and smart structures technologies, Chongqing, China, 2007
    [1]Clough R W and Penzien J. Dynamics of structures.McGraw-Hill, Inc, 2nd ed., 1993
    [2]Ewins D J. Modal Testing: Theory, Practice and Application, 2nd ed., Research Studies Press, 2000
    [3]Gelb A. Applied Optimal Estimation, M.I.T. Press, 1974
    [4]Menke W. Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, Inc., New York, 1984
    [5]Friswell M I, and Mottershead J E. Finite Element Model Updating In Structural Dynamics, Kluwer Academic Publishers, 1995
    [6]Pilkey D F. Computation of a Damping Matrix for Finite Element Model Updating [Doctor dissertation]. Faculty of the Virginia Polytechnic Institute and State University, Virginia, 1998
    [7]Gladwell G M L. Inverse Problems in Vibration, Martinus Nijhoff, Dordrecht, Netherlands, 1986
    [8]Craig R J. Structural Dynamics: An Introduction to Computer Methods, John Wiley & Sons, Inc, 1981
    [9]Friswell M I, Inman D J and Pilkey D F. Direct Updating of Damping and stiffness Matrices. AIAA Journal, 1998, 36(3):491~493
    [10]Inman D J. Vibration with Control Measurement and Stability, Prentice Hall, 1989
    [1]Biswas M, Pandey A K and Samman M M. Diagnostic experimental pectral/modal analysis of a highway bridge. The International Journal of Analytical and Experimental Modal Analysis, 1990, 5(1): 33~42
    [2]Vandiver J K. Detection of structural failure on fixed platforms by measurements of dynamic response. In: Proceedings of the Seventh Annual Offshore Technology Conference, 1976. 243~252
    [3]Messina A, Williams J E and Contursi T. Structural damage detection by a sensitivity and statistical-based method. Journal of Sound and Vibration, 1996, 216(5): 791~808
    [4]Pandey A K, Biswas M and Samman M M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991, 145: 321~332
    [5]Pandey A K and Biswas M. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration, 1994, 169: 3~17
    [6]Friswell M I and Mottershead J E. Finite element model updating in structural dynamics. Kluwer Academic Publishers, 1995
    [7]Ewins D J. Modal Testing: Theory, Practice and Application, 2nd ed., Research Studies Press, 2000
    [8]Gelb A. Applied Optimal Estimation, M.I.T. Press, 1974
    [9]Menke W. Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, Inc., New York, 1984
    [10]Craig R J. Structural Dynamics: An Introduction to Computer Methods, John Wiley &Sons, Inc, 1981
    [11]Pilkey D F. Computation of a Damping Matrix for Finite Element Model Updating[Doctor dissertation]. Faculty of the Virginia Polytechnic Institute and State University, Virginia, 1998
    [12]Guyan R J. Reduction of stiffness and mass matrices. AIAA Journal, 1965, 3(2): 380
    [13]Shi Z Y, Law S S and Zhang L M. Structural damage localization from modal strain energy change. Journal of Sound and Vibration, 1998, 218(5):714~733
    [14]Stubbs N, Kim J T and Farrar C R. Field verification of a nondestructive damage localization and severity estimation algorithm. In: Procedings of IMAC, Connecticut, USA, Society of Experimental Mechanics, 1995. 210~218
    [1]Wolf J P. Soil-Structure-Interaction Analysis in Time Domain, Prentice-Hall, Englewood Cliffs, NJ, 1988
    [2]Stewart J P, Fenves G L and Seed R B. Seismic soil-structure interaction in buildings. I: analytical methods. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(1): 26~37.
    [3]Sanayei M, McClain J A, Wadia-Fascetti S et al. Parameter estimation incorporating modal data and boundary conditions. Journal of Structural Engineering, ASCE, 1999, 125(9): 1048~1055
    [4]Friswell M I, Inman D J and Pilkey D F. Direct Updating of Damping and Stiffness Matrices. AIAA Journal, 1998, 36(3):491~493
    [5]Inman D J. Vibration with Control Measurement and Stability, Prentice Hall, 1989
    [6]Craig R J. Structural Dynamics: An Introduction to Computer Methods, John Wiley &Sons, Inc, 1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700