用户名: 密码: 验证码:
分布式SAR卫星姿态和相对轨道确定及相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式SAR卫星是近年才发展起来的。与单基SAR相比,它有许多明显的优势:如生存能力大大提高,基线组合和工作模式灵活多样,对目标的分类和识别有显著改善等等。因此分布式SAR卫星已成为目前研究的热点。我们教研室也适时开展了“分布式卫星SAR系统总体技术研究”的863课题。
     为保证分布式SAR卫星的成像质量,系统对单星姿态和编队相对运动的测量提出了更高要求。SAR卫星处于高动态环境中,对测量的精度和实时性要求较高。本文围绕如何提高测量精度和实时性展开了研究。GPS载波相位技术高动态应用的难点主要在整周模糊度和周跳的快速解算,这是影响实时性的主要因素。为了提高测量精度,在CDMA体制的导航系统中采用超长码已成为趋势,故伪码的快速捕获也成为影响实时性的重要因素。就SAR卫星本身而言,空间摄动是影响姿态和编队相对运动的主要因素。本文主要研究如何利用GPS技术精密确定单星姿态和利用类GPS技术精密确定编队相对运动,以及整周模糊度和周跳的快速解算,GPS(类GPS)信号的快速捕获等关键技术问题。在前期研究的基础上,本文进一步探讨了主要摄动因素对卫星运动的影响,使研究更具实际应用价值。
     本文首先简要回顾了近年来GPS和类GPS测量技术的现状及发展。接着全面介绍了表达卫星姿态的几种方式和GPS载波相位技术测量卫星姿态的基本原理。然后介绍了GPS观测量及误差源。第三至七章是本文的重点,主要内容如下:
     1.第三章在考虑SAR卫星典型姿态控制方式和重力梯度力矩的影响下,构建了较准确的卫星受摄姿态动力学模型。然后采用极大似然估计卡尔曼滤波算法解算卫星姿态,最后进行了仿真,验证了算法的正确性。
     2.第四章深入分析了地球扁率J_2摄动项对卫星编队的影响,总结出了J_2项对编队卫星相对距离的影响规律。并指出,对于分布式SAR卫星这样对相对定位精度要求很高的应用而言,必须进行控制,使编队稳定地保持在要求的精度范围内。在类GPS技术确定卫星相对运动的研究中,采用了改进的采样卡尔曼(UKF)算法并结合平方根滤波解算其相对运动。最后进行了计算机仿真,与标准扩展卡尔曼(EKF)算法和基本UKF进行了比较,结果证明了该算法的优越性。
     3.快速解算整周模糊度是高动态下GPS测量的关键,第五章提出了三差法辅助快速求解整周模糊度的新算法。该算法利用三差辅助加快模糊度浮点解的解算,并提高了浮点解的精度,同时提出了全新的降维去相关算法,克服了整数高斯变换中可能的去相关失败,最后采用了高效的模糊度搜索策略。与著名的LAMBDA算法相比,结果表明该算法具有更高的可靠性和实时性。
     4.周跳的快速检测与修复是高动态下GPS测量的又一关键问题,到目前为止并没有一个普遍适合的算法。第六章提出了利用三差观测量和基线长度约束快速检测修复周跳的算法。理论分析和仿真结果表明,该算法能适用于高动态环境,可检测到1~2周的小周跳。
     5.GPS信号(或类GPS信号)的捕获是一切基于GPS(或类GPS)测量的前提。在测量中出现周跳又没有及时修复,则必须重新捕获信号进行新的观测。随着CDMA体制导航系统的发展,为提高精度而使用超长码成为一个趋势。在SAR卫星处于高动态环境下,因而伪码的快捕也成为影响实时性的重要因素。第七章主要研究了如何快速捕获伪码。本章提出了基于快速Walsh变换的相关新算法。该算法从伪随机编码理论出发,提出了复合码的子码同步移相算法,从而解决了复合码无法直接利用快速Walsh变换提高相关运算速度的难题。性能分析表明,该算法能显著缩短相关运算时间。本章还提出了改进自动控制多级门限的新算法。理论分析和仿真结果表明,该算法在判决捕获时,虚警概率很低而检测概率很大,这与用恒虚警算法相比是个显著的优势。该算法还允许预置较多门限,能精确调整门限,同时又不会明显增加捕获时间,因此也增强了伪码捕获的实时性。
     最后对全文进行了总结,并对下一步研究提出了建议。
Recently, the distributed SAR satellites develop rapidly. Compared with the single SAR satellite, the distributed SAR satellites have many advantages: The viability has been enhanced obviously; The combination of baselines and models of observation are flexible; The target identification ability is improved. So the distributed SAR satellites have already become a research focus. Our research lab also starts the 863 project of the "Research on the Overall Distributed Satellites SAR System Technique ".
     In order to ensure the image quality of SAR, higher precision of the attitude and the formation movement of SAR satellites are required. All measurement must be performed in high dynamic environment, so the real-time of the measurement must be improved. Our research is developed around these difficulties. The emphases of GPS phase measurement include integer ambiguity resolution and cycle slip, which are the primary effect factors of precision and real-time. In order to improve precision, a long PN code has been uesd. So the capture of long PN code will effect the real-time. To SAR satellites themselves, the disturbing force is the primary factor which effects the attitude and the formation movement. Our research includes: how to precisely measure the attitude and the relative movement of SAR satellites. Integer ambiguity, cycle slip, capture of GPS signal (GPS-like signal) are also researched. On the basis of the prophase work, disturbing force is researched, so the paper has more engineering sense.
     The development of GPS (GPS-like) measurement technique in recent years is reviewed in this paper firstly. Then the measurement principle and the several describing manners of satellite attitude are discussed completely. The observables and the error sources in GPS measurement are introduced. The primary content is in the third chapter to the seventh chapter. The primary contents are as follows:
     1. In chapter 3, the typical attitude control mode and the gravity grads moment of SAR satellite are researched, and the disturbed attitude dynamics mode is established. The Maximum-likehood Kalman filtering is proposed to resolve the attitude. The simulation shows the advantage of the proposed algorithm.
     2. In chapter 4, J_2 disturbing force which effects the SAR satellites formation is researched. The relative range change rules are summed up, and the magnitudes of the change are worked out. The rules show that the appropriate correction must be adopted to ensure the SAR satellites formation to be in the need precision bound steadily. Then the improved UKF square root filtering is adopted to resolve the relative movement of SAR satellites formation. Finally, the simulation is made. The result shows the advantages of the proposed algorithm compared with EKF and UKF.
     3. Integer ambiguity resolution is very important to GPS measurement under the high dynamic condition. In chapter 5, a new ambiguity resolution algorithm aided with the triple difference observables is proposed. This algorithm can work out the ambiguity floating resolution faster, and improves the precision. A new decorrelation method is proposed to avoid possible sick factorization in Gauss transformation. Finally, an efficient search strategy is used. Compared with the famous LAMBDA (Least-Squares Ambiguity Decorrelation Adjustment) algorithm, the proposed algorithm has higher real-time and reliability.
     4. Cycle slip is another important problem to GPS dynamic measurement. There is not a common adaptive algorithm. In chapter 6, an algorithm is proposed which utilizes the triple difference observables to detect the cycle slip and corrects cycle slip by baseline length constraint. The simulation shows the effectiveness of this algorithm.
     5. The capture of GPS(GPS-like) signal is the precondition of GPS measurements. Along with the development of CDMA navigation system, the using of long PN code is a current. SAR satellites are under high dynamic, which the capture of long PN code will effect the real-time seriously. In chapter 7, a new fast correlation algorithm based FWT is proposed. The synchronization method of sub-code of multiple code is proposed to overcome the difficulty which blocks the use of FWT. Performance analysis shows that this algorithm can reduce correlation time greatly. In addition, a new improved algorithm, which is Auto Decision Threshold Level Control algorithm, is also proposed. Theoretics analysis and simulation show that this algorithm makes false alarm lower and the detection probability higher, and the acquisition time is reduced greatly.
     At last, the summarizer is made. The advice of the farther research is put forward.
引文
[1]朱振才,杨根庆,余金培.微小卫星组网与编队技术的发展.上海航天,2004,(6):46-49.
    [2]M.C.VanDyke.Decentralized Coordinated Attitude Control of A Formation of Spacecraft,[Master's Thesis].Virginia Polytechnic Institute and State University,2004.
    [3]J.C.Adams,A.Robertson,K.Zimmerman,et al.Technologies for Spacecraft Formation Flying.Proceedings of the ION GPS-96 Conference,1996: 1321-1330.
    [4]Ollie Luba,Larry Boyd,Art Gower.GPS Ⅲ System Operations Concepts.IEEE A&E SYSTEMS MAGAZINE,2005,20(1): 10-18.
    [5]B.W.Parkison,S.W.Gilbert.Navstar: Global Positioning System-Ten Years later.Proceeding of the IEEE,1983,71(10): 1177-1186.
    [6]Bradford W.Parkinson,Global Positioning System: Theory and Applications.Inc.370 L'Enfant Pomenade SW Washington DC,American Institute of Aeronautics and Astronautics,2002: 58-66.
    [7]Gang Lu,Development of a GPS Muff-Antenna System for Attitude Determination,[Ph.D Thesis].Alberta,The University of Calagry,1995.
    [8]M.D.Shuster and S.D.Oh,Three-axis attitude determination from vector observations.Journal of Guidance,Control and Dynamics,1981,4(1): 70-77.
    [9]M.D.Shuster,Survey of attitude representations,Journal of the Astronautical Sciences,1993,41(4): 439-517.
    [10]Remondi.B.W,Performing centimeter-level surveys in seconds with GPS carrier phase: Initial results.In Proceedings of the Fourth International Geodetic Symposium on Satellite Positioning,Austin,TX,1986: 1226-1249.
    [11]Frei.E and G.Beutleer,Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach: The Alternative to Kinematic Positioning.Proceedings of 2~(nd) International Symposium on Precise Positioning with GPS,Ottawa,Canada,1990,(15): 325-356.
    [12]PJ.G.Teunissen,Size and Shape of L_1/L_2 Ambiguity Search Space,Proceedings of IEEE Symposium on Position,Location and Navigation,1995:275-279.
    [13]廖向前,黄顺吉,张晓玲.GPS基线载体姿态测量研究.航空学报,1998,19(5):531-535.
    [14]E.Glenn Lightsey,Jhon LCrassidis,ELandis Markley,殷书平译,GPS姿态确定的整周模糊度快速算法.控制工程,2000,(7):58-65.
    [15]B.Hofman,H.Lichtenegger,J.Collins.Global Positioning System Theory and Practice.New York: Spinger Verlag Wien,1992: 56-72.
    [16]Gunter Seeber,Satellite Geodesy Foundations: Method and Application.New York :Walter de Gruyter Berlin,1993: 85-92.
    [17]刘大杰,施一民,过静珺,全球定位系统(GPS)的原理与数据处理.上海:同济大学出版社,1996:132-146.
    [18]Hasanuddin Z.Abidin,On the Construction of the Ambiguity Searching Space for On-The-Fly Ambiguity Resolution,Navigation,1993,40(3): 321-337.
    [19]PJ.GTeunissen,Christian Tiberius,A New Method for Fast Carrier Phase Ambiguity Estimation,Proceedings of IEEE Symposium on Position Location and Navigation,New York,1994: 562-573.
    [20]PJ.G.Teunissen,Dennis Odijk,Ambiguity Dilution of Precision Definition,Properties and Application,Proceedings of ION GPS-97,Kansas City,1997: 891-899.
    [21]PJ.G.Teunissen,Precision volume and eigenspectra for GPS ambiguity estimation based on the time-averaged satellite geometry,Journal of Geodesy,1997,71(4): 290-301.
    [22]Herbert Landau,Hans-Jurgen Euler,On-The-Fly Ambiguity Resolution for Precise Differential Position,Processing of ION GPS-92,1992: 607-613.
    [23]Yang Gao,James EMcLellan,Jhon B.Schleppe,An Optimized GPS Carrier Phase Ambiguity Search Method Focusing on Speed and Reliability,IEEE AES Systems Magazine,1996,(5): 22-26.
    [24]Yang Gao,James EMcLellan,Jhon B.Schleppe,An Optimized Fast Ambiguity Search Method for Ambiguity Resolution On-The-Fly,Proceedings of IEEE Symposium on Position,Location and Navigation,1996:246-253.
    [25]Chansik Park,Ilsum Kim,Jang Gyu Lee.Efficient Ambiguity Resolution Using Constraint Equation,Proceedings of IEEE Symposium on Position,Location and Navigation,1996: 277-284.
    [26]Chansik Park,Ilsum Kim,Integer Ambiguity Resolution for GPS Based Attitude Determination System,SICE'98,Chiba,1998: 1115-1120.
    [27]Bisnath.S.B,D.kim and R.B.Langley,A new approach to an old problem: carrier phase cycle slips[J].GPS World,2001,12(5): 46-51.
    [28]Bisnath.S.B,Efficient,automated cycle-slip correction of dual-frequency kinematic GPS data[A],Proceedings of ION GPS 2000[C],Salt Lake City,Utath,2000: 145-154.
    [29]Gao,Y.and Z,Li,Cycle slip deteciion and ambiguity resolution algorithms for dual-frequency GPS data processing[J].Marine Geodesy,1999,22(4): 169-181.
    [30]Deininger W.D,Bladt J,Carpenter B,Formation Flying Activities at Ball Aerospace[C],IEEE,2003,6(3): 2599-2614.
    [31]Tien J.Y,Sriniva JM,Young J.E,Formation Acquisition Sensor for the Terrestrial Planet Finder(TPF) Mission[C],2004 IEEE Aerospace Conference Proceedings,2004,Vol.6:2680-2690.
    [32]A.Das,R.Cobb,TechSat21-Space Missions Using Collaborating Constellations of Satellites.Proceedings of the 12th Annual AIAA/USU Conference on Small Satellites,Logan,UT,1998:125-129.
    [33]Sien C.W,Kuang D,Positioning with Autonomous Formation Flyer(AFF) on Space-Technology 3.ION GPS Conference 99,California,1999:14-20.
    [34]Purcell G,Kuang D,Lichten C,Autonomous Formation Flyer Sensor Technology Development.21~(st) Annual AAS Guidance And Control Conference,Breckenridge,AAS 98--062,1998: 1-21.
    [35]T.A.Clarke,J.E Fryer,X.Wang.The Principal Point and CCD Cameras.Photogrammetric Record.1998,16(92): 293-312.
    [36]陈世平.空间相机设计与实验.北京:宇航出版社.2003:121-125.
    [37]N.G.Creamer,G.C.Gilbreath,et al.Optical Communication and Navigation Using Modulating Retroreflectors.Journal of Guidance,Control,and Dynamics.2004,27(1): 100-106.
    [38]Zenick R,Kohihepp K,GPS Micro Navigation and Communication System for Clusters of Micro satellites[C],2001 IEEE Aerospace Conference,BigSky,2001: 2515-2522.
    [39]胡利民,王威,GPS和类GPS测距技术在双星编队星座状态确定中的联合应用[J].空间科学学报,2006,26(3):197-202.
    [40]章仁为,卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998:137-145.
    [41]雷穆禄,郁永熙,卫星转动动力学.上海:上海交通大学出版社,1996:190-195.
    [42]Sechwarzschild M,Attitude Acquisition System for Communication Spacecraft.Journal of Guidance and Control,1991,14(3): 543-547.
    [43]Wie B,Quaternion Feedback Regulator For Spacecraft Eigenaxis Retations.Journal of Guidance and Control,1984,12(3): 375-380.
    [44]Marfin G D,Bryson A E,Attitude Control of a Flexible Spacecraft.Journal of Guidance and Control,1980,(1): 68-72.
    [45]Hughes P C,Spacecraft Attitude Dynamics.Wiley Press,New York,1986: 66-72.
    [46]董绪荣,张守信,华仲春.GPS/INS组合导航定位及其应用.长沙:国防科技大学出版社,1998:48-59.
    [47]Bar-Itzhack I Y,REQUEST: A Recursive QUEST Algorithm for Sequential Attitude estimation.Journal of Guidance,Control and Dynamics,1996,19(5): 1034-1038.
    [48]Van Grass F,Braasch M,GPS Interferometric Attitude and Heading Determination: Initial Flight Test Results[J].Navigation,1991,38(4): 297-316.
    [49]Brown A.K, Interferometric Attitude Determination Using GPS[C],Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning,Las Cruces,N-M,1982,Vol.2: 1289-1304.
    [50]Penina Axelard,D.E.Highsmith,Post-Processed Attitude and Baseline Estimation for the GPS Attitude and Navigation Experiment(GANE),Proceedings of ION GPS-97,1997: 353-363.
    [51]Cohen C.E,Attitude Determination Using GPS,[Ph.D Thesis].Stanford University,1992.
    [52]Jorge I.G,Triveni N.U,Thomas Doyle,Bin Wu,Paul Zetocha,A Reconfigurable GPS Receiver for Spacecraft Attitude Determination.Proceedings of IEEE Symposium on Position,Location and Navigation,1995: 469-481.
    [53]S.Di Gennaro,S,Monaco and D.Normand-Cyrot,Nonlinear Digital Scheme for Attitude Tracking.Journal of Guidance,Control and Dynamics,1999,22(3): 467-477.
    [54]R.Kruczynski,EC.Li,A.G.Evans,and B.R.Hermann,Using GPS to Determine Vehicle Attitude: U.S.S.Yorktown Test Results.Proceedings of International Technic Meeting,ION,Colorado Springs,CO,1989: 163-171.
    [55]樊功瑜.误差理论与测量平差,上海:同济大学出版社,1998:65-78.
    [56]黄廷祝,钟守铭,李正良,矩阵理论.北京:高等教育出版社,2003:37-45.
    [57]Yong Li,Masaaki Murata,Baoxian Sun,New Approach to Attitude Determination Using Global Positioning System Carrier Phase Measurement,Journal of Guidance,Control and Dynamics,2002,25(1): 130-136.
    [58]C.E.Cohen,B.W.Parkinson,Aircraft Applications of GPS-Based Attitude Determination,Proceedings of ION GPS-93,1993: 775-782.
    [59]王广运,陈增强,GPS精密测地系统原理.北京:测绘出版社,1988:78-84.
    [60]张守信,GPS卫星测量定位理论与应用.长沙:国防科技大学出版社,1996:76-168
    [61]Hermann B.R,A Simulation of the Navigation and Orientation Potential of the TI-AGR.Marine Geodesy,1985,9(2): 133-143.
    [62]Lu G.,M.E.Cannon,G.Lachapelle and P.Kielland,Attitude Determination in a Survey Launch Using Multi-antenna GPS Technologies.Proceeding of National Technical Meeting of The Institute of Navigation,San Francisco,1991:251-260.
    [63]许其凤,GPS卫星导航与精密定位.北京:解放军出版社,1989:102-113.
    [64]Axelrad E,CJ.Comp and P.E MacDoran.SNR Based Multipath Error Correction for GPS Differential Phase.IEEE Transaction on Aerospace & Electronic Systems,1996,32(2): 650-660.
    [65]Braasch M.S.GPS Multipath Model Validation.Proceedings of IEEE PLANS-96,Atlanta,1996: 672-678.
    [66]Varner C.C.and M.E.Cannon.The Application of Multiple Reference Stations to the Determination of Multipath and Spacially Decorrelating Errors.Proceedings of the National Technical Meeting,Santa Monica,1997: 323-333.
    [67]Comp CJ.and P.Axelrad.Adaptive SNR-Based Carrier Phase Multipath Mitigation Technique.IEEE Transactions on Aerospace and Electronic Systems,1998,34(1): 264-276.
    [68]Brown R,Instantaneous GPS Attitude Determination.Proceedings of IEEE Position,Location and Navigation Symposium(PLANS'92),Monterey,CA.March,1992,7(6): 3-8.
    [69]R.Lucas,S.Gomez,LMarradi,J.Rodden,GPS Attitude Determination From Double From Double Difference Phase Measurements.ION GPS-96,Kansas City,1996: 1073-1080.
    [70]John B.Schleppe,Development of a Real-Time Attitude System Using a Quaternion Parameteri-zation and Non-Dedicated GPS Receivers,[Master's Thesis].University of Calgary,1996.
    [71]S.Vathsal,Derivation of the Relative Quaternion Differential Equation.Journal of Guidance,Control and Dynamics,1991 14(5): 1061-1064.
    [72]Wertz R.Edited,Spacecraft Attitude Determination and Control.D.Reidel Holland,1978:16-30.
    [73]Sdim J,Spacecraft Dynamics and Control[M].Cambridge: Cambridge University Press,1997: 20-42.
    [74]Zulch P,Davis M,Adzima L,The Earth Rotation Effect on a LEO L-band GMIT SBR and Mitigation Strategies[A].Radar Conference 2004[C],Proc.of IEEE: 27-32.
    [75]Pillai S.U,Himed B and Ke Y.L,Effect of Earth's Rotation and Range Foldover on Space Based Radar Performance[A].Radar Conference 2005[C],Proc.of IEEE: 137-142.
    [76]Barker L,Price X and Rodden J,Three axis authority momentum spacecraft attitude control[A].AIAA Guidance,Navigation and Control Conference and Exhibit[C].Monterey,California,2002.
    [77]Tsiotras P,Shen H.J,Satellite attitude control and power tracking with energy/momentum wheels[J].Journal of Guidance,Control and Dynamics,2001,24(1): 23-24.
    [78]Costic B.T,Queriroz M.S,Dawson D.M,Energy management and attitude strategies using flywheels[C].Conference Decision and Control,Florida,2001,Vol.4: 3435-3440.
    [79]Jia Ying-hong,Xu Shi-jie and Tang Liang,Bias momentum attitude control system using energy /momentum[J].Chinese: Journal of Aeronautics,2004,17(4): 193-199.
    [80]杨大明,空间飞行器姿态控制系统[M].哈尔滨:哈尔滨工业大学出版社,2000:42-50
    [81]Parimal K Pal,Stephen M.Fox,The Effect of Moment Bias on a Gravity Gradient Spacecraft with Active Magnetic Control[R].Sixth Annual AIAA/Utach State University Conference on Small Satellites,1993.
    [82]Sorenson H.W,Kalman Filtering: Theory and Applications.IEEE Press,New York,1985: 88-98.
    [83]Brown R.G,Hwang P.Y.C,Introduction to random signals and applied Kalman filtering.Wiley,1997: 120-132.
    [84]Lisa Marie Ward,Spacecraft Attitude Estimation Using GPS Methodology and Resultts.[Ph.D Thesis],University of Colorado,1993.
    [85]付梦印,邓志红,张继伟,Kalmnn滤波理论及其在导航中的应用.北京:科学出版社2003:74-76.
    [86]Fu Minyue,Carlos E.D and Luo Zhiquan,Finite Horizon Robust Kalman Filter Design IEEE Transactions on Signal Processing,2001,49(9): 2103-2112.
    [87]杨福生,随机信号分析.北京:清华大学出版社,1990:5-12.
    [88]Garry A.E,Langford B.W.Robust Extended Kalman Filtering,IEEE Transaction.Signal Processings1999,47(9): 2596-2599
    [89]陈公宁,矩阵理论及应用.北京,高等教育出版社1991:52-63.
    [90]陆大钤,随机过程.北京:清华大学出版社,1987:101-112.
    [91]Campana R,Marradi L,Bonfanti S,GPS Attitude Dtermination by Adaptive Kalman Filtering.Proceedings of ION GPS,Nashville,TN,1999:1979-1988
    [92]Gerhard Dob Linger,An Adaptive Kalman Filter for the Enhancement of Noisy Autoregressive Signals.Proceedings of IEEE,International Symposium on Circuits and Systems,Monterey,California,1998: 1-4.
    [93]Salychev O.S,Inertial Systems in Navigation and Geophysics.Moscow State Technical University,Bauman MSTU Press,Moscow.1986: 65-82.
    [94]Mohamed A.H,Robust and Reliable Kalman Filtering of GPS Data.ION 9~(th) International Technical Meeting.Kansas City,MO,1996: 17-19.
    [95]许刚,陆凯,田蔚风,惯导与GPS组合系统中实时自适应卡尔曼滤波技术研究,中国惯性技术学报,1996,4(3):1-5.
    [96]Yuan Jianping,Luo Jianjun and Fang Qun.Relative Navigation for Multi-Spacecraft System with GPS[J].IEEE AES System Magazine,1998,13(12):25-28.
    [97]郑庆晖,张育林,编队相对位置姿态测量算法及实验.国防科技大学学报,2003,25(2):19-24.
    [98]肖业伦,张晓敏,编队飞行卫星群的轨道动力学特性与构型设计,宇航学报,2001 22(4):7-12.
    [99]刘林,航天器轨道理论,北京:国防工业出版社,2006:45-60.
    [100]Hill GW,Researches in the Lunar Theory.American Journal of Mathematics,1978,1(1): 5-26.
    [101]Yeh H.H,Sparks A,Geometry and Control of Satellite Formations[C].Chicago,IL: American Control Conference,2000,1(6): 384-388.
    [102]Richard H.V,Richard B.Sherwood,Formation Keeping for a Pair of Satellite in a Circular Orbit.Journal of Guidance,Control and Dynamics,1985,8(2): 235-242.
    [103]Prussing J.E,Conway B.A,Orbital mechanics[M].New York: Oxford University Press,Inc.1993: 78-90.
    [104]肖峰,球面天文学与天体力学基础.长沙:国防科技大学出版社,1989:62-86.
    [105]孟鑫,李俊峰,高云峰,一种便于摄动分析的编队飞行卫星相对运动的描述.应用数学和力学,2005,26(11):1328-1336.
    [106]Vadali S,An Intelligent Control Concept for Formation Flying Satellite Constellations.International Journal of Robust and Nonlinear Control,2000,12(2): 97-115.
    [107]张洪华,张国锋,林来兴,考虑J2项摄动的星座相对运动控制,宇航学报,2003,24(5):478-483.
    [108]刘海颖,土汇南,基 ANFIS自调整EKF的微卫星姿态确定研究,宇航学报,2006,27(6):1238-1242.
    [109]M.C.VanDyke.Decentralized Coordinated Attitude Control of A Formation of Spacecraft,[Master's Thesis].Virginia Polytechnic Institute and State University,2004.
    [110]Tien J Y,Srinivasan J M,Young J E,Formation Acquisition Sensor for the Terrestrial Planet Finder(TPF) Mission[C].2004 IEEE Aerospace Conference Proceedings,IEEE,2004,Vol.6: 2680-2690.
    [111]Leitner J,Formation Flying: The Future of Remote Sensing from Space[C].NASA Report,http://www.issfd.dlr.de/papers/P0001.pd f,2004.
    [112]Deininger W.D,Bladt J and Carpenter B,Formation Flying Activities and Capabilities at Ball Aerospace[C].IEEE,2003,Vol.6: 2599-2614.
    [113]Julier S,Uhlmann J,A New Approach for filtering Nonlinear Systems[J].Proceedings of the American Control Conference,Seattle,Washington,1995: 1628-1632.
    [114]Julier S,Uhlmann J,A General Method for Approximating Nonlinear Transformations of Probability Distributions[DB/OL].http://www.robots.ox.ac.uk/~siju,1994.
    [115]Julier S,Uhlmann J and Hugh F,Anew Method for the Nonlinear Transformation of Means and Covariance in Filters and Estimators[J].IEEE Transactions on Automatic Control,2000,45(3): 477-482.
    [116]杜栋,现代统计信息系统理论与实践.北京:清华大学出版社,2004:212-236.
    [117]Julier S,Uhlmann J,Reduced Sigma Point Filter for the Propagation of Means and Covariance through Nonlinear Transformation[A].Proceedings of the American Control Conference,Alaska,2002,Vol.2:887-892.
    [118]Rudolph V.M,Eric A.W,The Square-Root Unscented Kalman Filter for State and Parameter Estimation.IEEE Automatic Control Conference Proceedings,2001:3461-3464
    [119]Julier S,The Spherical Simplex Unscented Transformation[A].Proceedings of the American Control Conference,Denver,2003,Vol.3: 2430-2434.
    [120]E.A.Wan,R.van der Merwe,The Unscented Kalman Filter for Nonlinear Estimation.Proc.of IEEE Symposium 2000(AS-SPCC),Lake Louise,Alberta,Canada,2000: 153-158.
    [121]林来兴,卫星编队飞行动力学仿真及应用.中国空间科学技术,2004,4(2):26-33.
    [122]胡来红,许化龙,孙伟,模糊度函数法在GPS动态定位中的应用.GPS/GIS,2006,22(1-4):265-266.
    [123]Clara F,Armando P and Ricardo S,Integer Ambiguity Resolution in GPS for Spinning Spacecrafts.IEEE Transactions on Aerospace and Electronic System,1999,35(4): 1219-1229.
    [124]Ron Brown,Phil Ward.A GPS Reciever with Built-in Precision Pointing Capability,IEEE Symposium on Position,Location and Navigation,1990: 83-93.
    [125]A.Conway,P.Montgomery,S.Rock,R.Cannon,and B.Parkinson.A New Motion-Based Algorithm for GPS Attitude Integer Resolution,Navigation,1996,43(2): 179-190.
    [126]姚宜斌,平差测量讲义,武汉大学测绘学院卫星应用研究所.2002:24-30.
    [127]PJ.G.Teunissen,Christian Tiberius,Integer Ambiguity Estimation with the LAMBDA Method,Proceedings of IEEE Symposium on Position,Location and Navigation,1996: 280-284.
    [128]PJ.GTeunissen,Christian Tiberius,A New Method for Fast Carrier Phase Ambiguity Estimation,Proceedings of IEEE symposium on Position Location and Navigation,NewYok, 1994: 562-573.
    [129]PJ.GTeunissen,PJ.D.Jonge,Performance of the LAMBDA Method for Fast GPS Ambiguity Resolution.Navigation Journal of the Institute of Navigation,1997,44(3): 373-383.
    [130]PJ.G.Teunissen,GPS carrier phase ambiguity fixing concepts,Ghapter 8 in: GPS for Geodesy,Lecture Notes in Earth Sciences,Springer Verlag,1992,Vol.60: 263-335.
    [131]茆诗松,王静龙,濮晓龙,高等数理统计.北京,高等教育出版社,1998:285-292.
    [132]C.C.Counselman,S.A.Gourevith,Miniature Interferometer Terminals for Earth Surveying: Ambiguity and Multipath with Global Positioning System.IEEE Transactions on Geoscience and Remote Sensing,1996,Vol.GE-19(4): 244-252.
    [133]Ronald Hatch,Hans-Jurgen Euler,Comparison of Several AROF Kinematic Techniques.Proceedings of IEEE Symposium on Position,Location and Navigation,1994: 363-369.:
    [134]P.J.G.Teunissen,Least-squares Estimation of the integer GPS Ambiguities[A].Invited lecture,Section ⅣV theory and methodology,Iag general Meeting,Beijing,1993,(6): 16-17.
    [135]Chansik Park,Ilsun Kim,Jang Gyu Lee,and Gyu-In joe,Efficient Technic to fix GPS Carrier Phase Integer Ambiguity On-The-Fly,IEE Proc.Radar Sonar Navigation,1997,144(3): 148-155.
    [136]Park.C,I.Kim,J.GLee and GI.Jee,Efficient Ambiguity Resolution with Constrains Eqution.Proc.of IEEE PLANS 96,Atlanta,Geogria,1996: 277-284.
    [137]李征航,GPS测量与数据处理.武汉:武汉大学出版社,2005:135-156.
    [138]Gao,Y.and Z,Li,Cycle slip detection and ambiguity resolution algorithms for dual-frequency GPS data processing[J].Marine Geodesy,1999,22(4): 169-181.
    [139]B.W.Parkinson,J.J.Spilker,P.Axelrad,PEnge著,吴晓进,谢洪华等译,GPS理论与应用. 西安导航技术研究所,1999:108-122.
    [140]Xu G.G,GPS Theory,algorithms and Application.Berlin: Springer-Verlag Berlin Heidelbery,2003: 218-248.
    [141]郑作亚,程宗颐,黄铖,卢秀山.对Blewitt周跳探测与修复方法的改进.天文学报,2005, 46(2):216-224.
    [142]李博峰,沈云中,胡丛玮.基于三差的GPS周跳探测与修复,工程勘察2006(8):4446..
    [143]Han S,Quality-Control issues relating to instantaneous ambiguity resolution for real-time GPS Kinematic positioning.Journal of Geodesy,1997,71(6): 351-361.
    [144]Han S,Ambiguity recovery for GPS long range kinematic positioning.Proceedings of ION GPS-95,1995: 349-360.
    [145]张传定,吴晓平,郝金明,何海波,GPS多差相位观测量数学相关性的分析表示,测绘学报,2004,33(3):221-227.
    [146]Premal Harish Madhani,GPS Receiver Algorithms for Suppression of Narrow Band and Structured Wideband Interference,[Ph.D Thesis].University of.Colorado,2002.
    [147]S.Z.Budisin.Fast PN sequence correlation by using FWT.Proc.MELECON'89,Lisboa,1989: 513-515.
    [148]B.M.Popovic,Efficient Despreaders for Multi-Code CDMA System,Universal Personal Communications Record,IEEE 6th International Conference,1997,Vol.2: 516-520.
    [149]林可祥,汪一飞编著,伪随机码的原理与应用.北京:人民邮电出版社,1978:38-60.
    [150]G.S.Rawlins and M.A.Belkerdid.A Fast Acquisition Technique For Direct Sequence Spread Spectrum Communication System,SystemTheory,Proceedings of 23~(th) Southeastern Symposium,1991: 2-6.
    [151]宫剑,毕红军,贾怀义,Kasami扩频序列研究.北方交通大学学报,2001,25(3):103-106.
    [152]谷秋隆嗣编著,快速算法与并行信号处理.北京:科学出版社,2003:131-135.
    [153]Kwonhue Choi,Kyungwhoon Cheun and Taejin Jung,Adaptive PN Code Acquisition Using Instantaneous Power-Scaled Detection Threshold Under Rayleigh Fading and Pusled Gaussian Noise Jamming.IEEE Trans.Common,2002,50(8): 1232-1235.
    [154]S.GGlisic,Automatic Decision Threshold Level Control in Direct-Sequence Spread-Spectrum Systems Based on Matched Filtering.IEEE Trans.Commun.1988,36(4): 519-527.
    [155]S.G.Glisic,Automatic Decision Threshold Level Control in Direct-Sequence Spread-Spectrum Systems.IEEE Trans.Commun.1991,39(2): 187-192.
    [156]朱近康编著,扩展频谱通信及应用.合肥:中国科学技术大学出版社,1993:78-88.
    [157]段风增编著,信号检测理论,哈尔滨:哈尔滨工业大学出版社,2002:88-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700