用户名: 密码: 验证码:
分布式InSAR卫星系统空间状态的测量与估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式InSAR卫星系统在近距离编队飞行的小卫星上装载SAR天线,通过小卫星和SAR天线的协同工作,完成干涉SAR任务,是一种具有巨大潜力的新概念新体制雷达系统,其实现在基础理论和技术层面上面临许多挑战。编队空间状态的高精度确定是实现小卫星分布式雷达任务的关键技术之一,是小卫星分布式雷达功能实现的前提和重要保证,也是卫星编队飞行需要解决的共性问题。本文以分布式InSAR卫星系统为背景,阐述了系统与空间状态测量之间的关系,重点针对双频GPS和星间无线电两种不同的测量手段,开展了编队卫星空间状态高精度确定方法的研究。主要工作包括五部分:
     第一,对分布式InSAR目标三维定位的空间几何关系进行了分析,阐述了系统参数与空间状态测量之间的关系,明确了空间状态测量在分布式InSAR任务中的意义和要求。给出了目标三维定位的闭合形式解及灵敏度分析,给出了目标三维定位精度指标与系统参数精度指标之间关系的解析表达式。给出了干涉基线的定义,将干涉基线分解为空间域干涉基线和时间域干涉基线,其中时间域干涉基线可通过主星的绝对轨道测量获得,空间域干涉基线则通过高精度星间基线测量获得。由测量基线到空间域干涉基线的转换需要进行部位修正和时间对齐,给出了部位修正的精度分析。
     第二,研究了星载双频GPS观测数据预处理方法,给出了完整的数据预处理方案与流程。研究了一种新的抗差Vondrak滤波方法,在原始信号拟合函数形式未知且被粗差污染的情况下,有效的抑制粗差对信号拟合的影响,对观测数据进行合理的平滑。研究了星载双频GPS观测数据质量评估方法,完善了已有的评估方法。并采用CHAMP卫星在轨数据进行了预处理与质量评估,验证了算法的正确性与可靠性。
     第三,研究了星载双频GPS原始观测数据降采样处理方法,分析了多项式平滑伪距和载波相位平滑伪距方法的优缺点。研究了星载双频GPS非差运动学定轨方法,结合GPS观测数据质量分析结果,给出了一种合理的伪码和相位观测数据加权策略。研究并实现了星载双频GPS非差动力学定轨方法,将CHAMP卫星定轨结果与GFZ科学轨道进行比对,二者在轨道位置R、T、N分量上差值的均方根为4.8cm,8.2cm,7.5cm,三维误差的均方根为12.2cm,表明本文的非差动力学定轨精度已与GFZ科学轨道相当。研究了SLR检核精密定轨精度方法,提出了一种利用SLR数据校准GPS精密定轨系统误差的新方法,在卫星一次过境的短弧段内,用二阶多项式来参数化表示GPS定轨慢变系统误差,进而利用不同地面激光测站的分时观测数据,估计GPS定轨系统误差。
     第四,研究了基于双频GPS的高精度星间相对定位技术。建立了星载GPS电离层延迟的单层投影模型,利用单层投影模型仿真分析了差分电离层延迟对分布式SAR编队卫星CDGPS相对定位结果的影响。研究了基于轨道动力学模型的分布式SAR卫星编队CDGPS相对定位方法,在CDGPS技术的基础上,引入轨道动力学模型提供的先验约束信息,对长弧段的观测数据进行解算,有效的抑制测量中的随机误差,提高相对定位精度,并克服运动学逐点解算方法在观测几何较差或观测数据不足情况下无法应用的缺点。分析了星间测距信息对CDGPS相对定位精度的贡献。
     第五,研究了基于无线电测量的高精度星间相对状态确定方法。介绍星间无线电测量原理,比较分析了几种传统的相对状态估计方法的优缺点。研究了一种基于样条模型的星间相对定位与定姿的新方法。该方法将传统的直接估计状态参数转化为估计样条参数,减少了待估参数的个数,提高了距离变化对姿态参数的敏感性,估计精度更高,估计结构更加稳定。讨论了无线电测量用于分布式SAR星间基线确定存在的问题,包括星间无线电测量信号的覆盖与遮挡和编队构形设计对无线电测量几何的影响。
The distributed InSAR satellite system equips SAR antennas on close formation flight satellites, and completes SAR interferometry mission through the collaboration of small satellites and SAR antennas. It is a kind of new conceptual radar system with enormous potential, which faces many challenges in basic theory and technology. The high precision determination of the formation spatial states is one of the key technologies, and is the important guarantee for the success of the distributed InSAR mission. It is also a common problem to solve in other satellite formation flight missions. On the background of the distributed InSAR satellite system, this dissertation clarifies the relation between system and spatial state measurement, emphasizing on the two different measurements dual frequency GPS and inter-satellite wireless, and studies the high precision spatial state determination of satellite formation. The main work includes five parts:
     Firstly, the spatial geometrical relation of distributed InSAR geolocation is analyzed, the relation between system parameters and spatial states measurement is explained, and the significance of spatial states measurement is illustrated through requirement analysis of the distributed InSAR satellite system. Closed-form solution to the geolocation is provided and sensitivity of the solution is analyzed. The formulations of geolocation precision criterion and system parameters precision criterion are proposed. Interferometry baseline is defined. Interferometry baseline is involved with spatial baseline and time baseline. Time baseline is obtained by master satellite absolute orbit determination, and spatial baseline is obtained by high precision inter-satellite relative position determination. The transfer from measured baseline to spatial baseline needs body correction and time synchronization. The precision analysis of body correction is provided.
     Secondly, the pre-processing method of onboard dual frequency GPS observations is studied, and data pre-processing scheme and algorithm is proposed. A novel robust Vondrak filter is presented, which can ensure that the gross errors are not too influential on the curve fit, and makes the original model robust, when fitting function of the original signals is unknown and they are contaminated by gross errors. The quality evaluation of onboard dual frequency kinematic GPS observations is studied. Computational experiment is carried on to test the correct and validity of the algorithm by pre-processing and evaluating the onboard observations of CHAMP satellite.
     Thirdly, Desampling method of onboard dual frequency GPS observations is studied. The advantage and disadvantage between polynomial smoothing pseudo-range method and carrier phase smoothing pseudo-range method are analyzed. Zero-differential kinematic orbit determination of onboard dual frequency GPS is studied. Based on quality analysis of GPS observations, a reasonable weighed method of code and phase is presented. Zero-differential dynamic orbit determination of onboard dual frequency GPS is studied. Observations on CHAMP satellite for one week are tested. Zero-differential dynamic orbit determination results are compared with GFZ science orbit. The RMS (root of mean square) in R, T and N component are 4.8cm, 8.2cm and 7.5cm, and the RMS in three-dimension is 12.2cm. Precise orbit evaluation with satellite laser ranging (SLR) data is studied, based on which a new method to calibrate orbit system error is proposed. The new method gets SLR data from several stations in one pass arch, makes orbit error projection at different time, and estimates orbit system error.
     Fourthly, High precision determination of relative position based on CDGPS is studied. Projection model of single-layer ionosphere path delay for onboard GPS is constructed. Simulation based on the model analyzes how the differential ionosphere delay affects the relative position determination of distributed InSAR satellite formation. A CDGPS relative position method of distributed InSAR satellite formation based on dynamic orbit model is presented. Based on CDGPS measurement and the prior restricted information provided by dynamic orbit model, the observation of long arch is computed, which controls the random errors in the measurement efficiently, improves the relative position determination precision, and comes over the disadvantage that kinematic single point position determination can not be used when observation geometry is bad or observations are not enough. The contribution of inter-satellite distance measurement to CDGPS relative orbit determination precision is analyzed.
     Finally, High precision relative states determination based on inter-satellite wireless measurement is studied. The principle of inter-satellite wireless measurement is introduced. The advantage and disadvantage of several different traditional relative state estimation methods are compared. A new inter-satellite relative state determination method based on spline model is proposed. The method transfers the direct estimation of state parameters in traditional method into spline parameters, reduces the number of parameters to estimate, improves the sensitivity of distance change to the state parameters, and makes the estimation structure more stable. The signal coverage and shelter of inter-satellite measurement and the geometric effect of formation design to wireless measurement is discussed.
引文
[1] Rodriguez E, Martin J M. Theory and design of interferometric synthetic aperture radars[A]. IEE PROCEEDING-F[C].1992, 139(2):147-159.
    [2] Rosen P, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry[A]. IEEE Proceeding[C]. 2000, 88(3): 333 - 382.
    [3]周萌清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展[J].电子学报, 2003, 31(12A): 1939-1944.
    [4] Massonnet D. Capabilities and limitations of the interferometric cartwheel [J]. IEEE Trans Geoscience and Remote Sensing, 2001, 39(3): 506-520.
    [5]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].博士学位论文.西安:西安电子科技大学, 2006
    [6]梁甸农,朱炬波,董臻.小卫星分布式雷达[J].中国基础科学, 2004, 6(6): 7-10.
    [7]王彤,保铮,廖桂生,天基分布式雷达GMTI方法[J].电子学报, 2006,34(3): 399-403.
    [8]王彤,保铮,廖桂生,分布式小卫星干涉高程测量[J].系统工程与电子技术, 2004,26(7): 859-862.
    [9] Zebker H A, Werner C L, Rosen P A, et al. Accuracy of topographic maps derived from ERS-1 interferometric radar [J]. IEEE Trans Geoscience and Remote Sensing, 1994, 32(4): 823-836.
    [10] Eineder M, Krieger G. Interferometric digital elevation model reconstruction - experiences from SRTM and multi channel approaches for future missions [C]. Proc. of IGARSS 2005, 2664-2667.
    [11] Xiao ling Zhang, Shun Ji Huang, Jian Guo Wang. Approaches to estimating terrain herght and baseline for interferpmetric SAR[J], Electronics Letters,1998,34(25):2428-2429.
    [12] Bertiger S W, et al. GRACE: millimeters and microns in orbit [C]. Proc. of ION GPS 2002, Poland, 2002: 24-27.
    [13] GRACE Payload [EB/OL]. . html, 2004.
    [14] Kang Z, Tapley B, Bettadpur S, et al. Precise orbit determination for the GRACE mission using only GPS data [J]. Journal of Geodesy, 2006, 80: 322-331.
    [15] Gotsmann M, Steckling M, Gill E. Miniflex satellite concept for precursor and commercial missions [C]. Proc. of the 3rd IAA Symposium on Small Satellites for Earth Observation. IAA-B3-1501, Germany: Berlin, 2001: 423-427.
    [16] Gill E, Steckling M, Butz P. Gemini: A milestone towards autonomous formation flying [C]. ESA Workshop on On-Board Autonomy, Noordwijk: ESTEC, 2001: 415-419.
    [17]刘洋.编队卫星的星间基线确定方法研究[D].博士学位论文.长沙:国防科技大学, 2007.
    [18] Martin M, Klupar P, Kilberg S, et al. TechSat 21 and revolutionizing space missions using microsatellites. AIAA.
    [19] Martin M, Stallard M J. Distributed satellite missions and technologies - The Techsat21 Program [C]. Proc. of the AIAA Defense and Civil Space Programs Conference and Exhibit. USA: A9942052, 1999: 28-30.
    [20] AFRL Space Vehicles Directorate, TechSat-21 Program Overview [EB/OL]. , 1998.
    [21] Steyskal H, Schindler J K, Franchi P, et al. Pattern synthesis for TechSat21 - a distributed space-based radar system [J]. IEEE Antennas and Propagation Magazine. 2003, 45(4): 19-25.
    [22] Ray Zenick, et al. GPS Micro Navigation and Communication System for Clusters of Micro and Nanosatellites[C]. 2001 IEEE Aerospace Conference, Big Sky, 2001: 2515-2522.
    [23] C-W Park, J P How, L Capots. Sensing Technologies for formation flying spacecraft in LEO using CDGPS and an Inter-Spacecraft communications System[C]. In Proc. ION GPS-2000 Conf. UT: Salk Lake City, 2000: 1595-1607.
    [24] Purcell G, Kuang D, Lichten S, et al. Autonomous Formation Flyer (AFF) Sensor Technology Development [C]. TMO Progress Report 42-134, August 15, 1998.
    [25] Kenneth L, Stephen L, Lawrence Y, et al. An Innovative Deep Space Application of GPS Technology for Formation Flying Spacecraft[C], AIAA GN&C Conference, 1996: 1-9.
    [26] Deininger W D, Noecker M, Weimer D, et al. Space Technology Three: Mission overview and spacecraft concept description [J]. Acta Astronautica, 2003, 52: 455-465.
    [27] Krieger G, Moreira A, Fiedler H, et al. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry[J], IEEE Trans on Geosci Remote Sensing, 2007, 45(11): 3317-3341.
    [28] Krieger G, Fiedler H, Hajnsek I, et al. The TanDEM-X Mission Concept and Performance Analysis [C]. Proc. of IGARSS 2005.
    [29] Krieger G, Moreira A, Hajnsek I, et al. A Tandem TerraSAR-X Configuration for Single-Pass SAR Interferometry [C]. Proc. of RADAR2004.
    [30] Moreira A, Krieger G, Hajnsek I, et al. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry. Proc. of IGARSS 2004: 1000-1003.
    [31] Krieger G, Moreira A. Tandem-X: mission concept, product definition and performance prediction [C]. EUSAR 2006, May 2006, Dresden Germany.
    [32] Krieger G, Moreira A, Hajnsek I, et al. The TanDEM-X mission proposal [C]. ISPRS Hannover Workshop 2005.
    [33] Kroes R. Precise Relative Positioning of Formation Flying Spacecraft using GPS [D]. Ph.D. dissertation, Netherlands: Delft University of Technology, 2006.
    [34]王家松.海洋高度计卫星精密轨道确定技术研究[D].博士后出站报告,长沙:国防科学技术大学, 2007.
    [35]郑作亚. GPS数据预处理和星载GPS运动学定轨研究及其软件实现[D].博士学位论文,上海:中国科学院上海天文台, 2004.
    [36] W I Brtiger, Y E Barsever, et al. GPS precise tracking of Topex/Poseidon: Results and implications[J]. Journal of Geophysical Research, 1994, 99(12): 24449-24464.
    [37]徐天河,杨元喜.利用CHAMP卫星几何法轨道恢复地球重力场模型[J].地球物理学报, 2005, 48(2): 288-293.
    [38]王小亚,朱文耀. GPS监测电离层活动的方法和最新进展[J].天文学进展, 2003, 21(1): 33-40.
    [39] Yunck T P, Wu S C, Wu J T, Thornton C L. Precise tracking of remote sensing satellites with the Global Positioning System[J], IEEE Transactions onGeoscience and Remote Sensing, 2002, 28(1): 108–116.
    [40]马宏.基于扩频技术的相对距离自主测量方法研究[J],宇航学报, 2005, 26(1):31-33.
    [41] Aung M, Purcell G H, etc. Autonomous Formation Flying Sensor for the StarLight Mission 2003, The Interplanetary Network Progress Report, IPN PR 42-152, October-December 2002: 1-15.
    [42]杜小平,赵继广,崔占忠,等.基于计算机视觉的航天器间相对状态测量系统[J].光学技术, 2003, 29(6): 664-666.
    [43] Shengyuan Zhu, Reigber Ch, Massmann F H. Simultaneous Use of GPS Data From Ground Stations and Leos For Gravity Field Recovery [C]. Proceeding of IUGG General Assembly (C03/04P/C24-006), Sapporo, Japan, 2003.
    [44]赵齐乐,刘经南,葛茂荣,施闯. CHAMP卫星cm级精密定轨[J].武汉大学学报信息科学版, 2006, 31(10): 879-882.
    [45] Svehla D, Rothacher M. Kinematic and reduced-dynamic precise orbit determination of low earth orbiters[J]. Advances in Geosciences, 2003, 1: 47-56.
    [46] Thomas P, Yunck, Willian G. Melbourne et al, Precise tracking of remote sensing satellites with the Global Positioning System[J]. IEEE Transactions on Geoscience and Remote sensing, 1999, 28(1):108-115.
    [47] Montenbruck O, Van H T, Kroes R, et al. Reduced dynamic orbit determination using GPS code and carrier measurements [J]. Aerospace Science and Technology, 2005, 9: 261-271.
    [48]韩保民,许厚泽.重力场恢复中的基于星载GPS的低轨卫星简化动力学定轨方法研究[J],地球物理学进展, 2007, 22(1): 73-79.
    [49] ESA. IGS LEO CHAMP Orbit Comparisons[Z]. , 2003.
    [50] Tae Suk Bae. Near Real-Time Precise Orbit Determination pf Low Earth Orbit Satellites Using an Optimal GPS Triple-Differencing Technique[D]. Ph.D. dissertation, America: the Ohio State University, 2006.
    [51]郭金运,黄金维,曾子榜,等.基于星载GPS非差数据的COSMIC卫星几何定轨研究[J].自然科学进展,2008, 18(1): 75-79.
    [52]郑作亚,蔡五三,黄珹,等.星载GPS相位观测值非差运动学定轨探讨[J].天文学进展, 2005,23(1): 80-92.
    [53]吴江飞,杜鹏,王磊,等.星载GPS低轨卫星运动学定轨及研究进展[J].天文学进展, 2006,24(2): 113-128.
    [54]吴江飞,黄珹.抗差估计在星载GPS卫星非差运动学定轨中的应用[J].天文学报, 2006,47(3): 320-327.
    [55]郑作亚,卢秀山,彭军还. LP估计在星载GPS运动学定轨中的应用及精度分析[J],天文学报, 2007,48(2): 210-219.
    [56]陈俊平,王解先.基于历元间差分的低轨卫星运动学精密定轨[J].大地测量与地球动力学, 2007,27(4): 57-61.
    [57]彭冬菊,吴斌.非差和单差LEO星载GPS精密定轨探讨[J].科学通报, 2007,52(6): 715-719.
    [58] Chang X W, Christopher C P. An Algorithm for Combined Code and Carrier Phase Based GPS Positioning[J], BIT Numerical Mathematics, 2003, 43: 915-927.
    [59] C.W.Park. Precise Relative Navigation Using Augmented CDGPS[D]. USA:Stanford University, 2001.
    [60] C.W.Park, Philip Ferguson, Nick Pohlman, Jonathan P How. Decentralized Relative Navigation for Formation Flying Spacecraft using Augmented CDGPS[C]. ION GPS 2001, UT: Salt Lake City, 2001: 2304-2315.
    [61] Kroes R, O Montenbruck. Spacecraft Formation Flying: Relative Positioning Using Dual-Frequency Carrier Phase[J], GPS World, 2004, 15(7): 37-42.
    [62] M Elizabeth Cannon, et al. DGPS Kinematic Carrier Phase Signal Simulation Analysis for Precise Velocity and Position Determination[J], Navigation(Summer), 1997, 44(2): 231-244.
    [63] Tobe C, et al. Experimental Demonstration of GPS as a Relative Sensor for Formation Flying Spacecraft[J], Navigation(Fall), 1998, 45(3): 195-206.
    [64] Eric A O, et al. 3D Formation Flight Using Differential Carrier-Phase GPS Sensors[J], Navigation(Spring), 1999, 46(1): 35-48.
    [65] Kroes R, Montenbruck O, Bertiger W, et al. Precise GRACE baseline determination using GPS [J]. GPS Solutions, 2005, 8(9): 21-31.
    [66]范国清,王威,郗晓宁.联合CDGPS技术和星间相对测量进行编队星座状态确定[J].空间科学学报, 2005, 5(3): 218-223.
    [67]胡利民,王威,郗晓宁. GPS和类GPS测距技术在双星编队星座状态确定中的联合应用[J].空间科学学报, 2006, 26(3): 197-202.
    [68]杏建军,郗晓宁,王威,高玉东.星间相对测量在三星编队中的应用[J].空间科学学报, 2003, 23(4): 286-292.
    [69]杏建军,郗晓宁,王威,韩龙.双星编队星座相对状态自主确定[J].宇航学报, 2003, 24(5): 254-258.
    [70]谷德峰,易东云,聂鹏程,饶彬.基于样条模型的高精度星间相对定位与定姿[J].宇航学报, 2006, 27(3): 442-447.
    [71]闫野,郗晓宁,任萱.利用星间测距实现卫星网自主定位[J],空间科学学报, 2000, 20(1): 54-60.
    [72]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社, 2002.
    [73]袁孝康,星载合成孔径雷达导论[M],北京:国防工业出版社, 2003.
    [74]张澄波,综合孔径雷达[M],北京:科学出版社, 1989.
    [75]舒宁.雷达影像干涉测量原理[M],武汉:武汉大学出版社, 2003.
    [76]汤子跃,张守融.双站合成孔径雷达系统原理[M],北京:科学出版社, 2003.
    [77] Chen P H, Dowman I J. A Weighted Least Squares Solution for Space Intersection of Spaceborne Stereo SAR Data[J]. IEEE Trans on Geosci Remote Sensing, 2001, 39(2): 233-239.
    [78]黄海风,梁甸农,何峰.主星带辅星编队单基线InSAR定位、测高两种方法[J].电子学报, 2005, 33(6): 1084-1087.
    [79] Nico G. Exact Closed-Form Geolocation for SAR Interferometry[J]. IEEE Trans on Geosci Remote Sensing, 2002, 40(1): 220-228.
    [80] Sansosti E. A simple and exact solution for the interferometric and stereo SAR geolocation problem. IEEE Trans Geoscience and Remote Sensing, 2004, 42(8): 1625-1634.
    [81]屠善澄.卫星姿态动力学与控制[M].北京:宇航出版社, 2002. 336-339.
    [82]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究[J].中国科学(E辑), 2004, 34(6): 654-662.
    [83]秘金钟,李毓麟. RAIM算法研究[J],测绘通报, 2001, 3: 7-9.
    [84]黄继勋,周丽弦,范跃祖,时钟偏差辅助的GPS完整性监测算法[J],北京航空航天大学学报, 2001, 27(2): 161-163.
    [85]刘准,陈哲. GPS自主式完整性检测技术研究[J].北京航空航天大学学报, 2003, 29(8): 673-676.
    [86]王永超,黄智刚.时钟改进模型辅助RAIM算法研究[J].电子学报, 2007, 35(6): 1084-1088.
    [87] Montenbruck O, Kroes R. In-flight Performance Analysis of the CHAMP BlackJack GPS Receiver[J]. GPS Solutions, 2003, 7: 74-86.
    [88] Bisnath B. Efficient automated cycle-slip correction of dual- frequency kinematic GPS data [A]. In : Proceeding of the 4th annual conference of the Canadian aeronautics and space institute [C], 2000.
    [89]严豪健,符养,洪振杰,等.天基GPS气象学与反演技术[M].北京:中国科学技术出版社, 2007.
    [90]刘基余. GPS卫星导航定位原理与方法[M].北京:科学出版社, 2007.187-196.
    [91]王惠南. GPS导航原理与应用[M].北京,科学出版社, 2003.
    [92]丁月蓉.天文数据处理[M].南京:南京大学出版社, 1998: 247-258.
    [93] Zheng D W, Zhong P, Ding X L, et al. Filtering GPS Time-series Using a Vondrak Filter and Cross-validation[J]. Journal of Geodesy, 2005, 79: 363-369.
    [94] Cepek A, Vondrak J. Covariances of Smoothed Observational Data[J]. Acta Polytechnica - Czech Technical University in Prague, 2000, 40: 42-44.
    [95]聂士忠. Vondrak数据平滑方法及其在微机上的实现[J].石油大学学报(自然科学版), 1994, 18(4): 111-114.
    [96] Chang X W. Computation of Huber's M-estimates for a Block-angular Regression Problem[J]. Computational Statistics & Data Analysis, 2006, 50: 5-20.
    [97] Chen C W S. Detection of Additive Outliers in Bilinear Time Series[J]. Computational Statistics & Data Analysis, 1997, 24: 283-294.
    [98] Wisnowski J W, Montgomery D C, Simpson J R. A Comparative Analysis of Multiple Outlier Detection Procedures in the Linear Regression Model[J]. Computational Statistics & Data Analysis, 2001, 36: 351-382.
    [99]《数学手册》编写组,数学手册[M],北京:高等教育出版社, 1979. 160-161.
    [100] Lee T C M. Smoothing parameter selection for smoothing splines: a simulation study[J]. Computational Statistics & Data Analysis 2003, 42: 139-148.
    [101] "Preflight Validation of the IGOR GPS Receiver for TerraSAR-X", Space Flight Technology,German Space Operations Center, 2005. http://lightsey.ae.utexas.edu/publications/GTN-TST-0200.pdf.
    [102]李辉,李建文,高海荣.三级GPS大地控制网观测数据质量检测[J].测绘科学技术学报, 2007, 24(2): 139-141.
    [103]李军,王继业,熊熊,等.东北亚地区GPS观测数据质量检测和分析[J].武汉大学学报信息科学版, 2006, 31(3): 209-212.
    [104]李济生.人造卫星精密轨道确定[M].北京:解放军出版社, 1995.40.
    [105]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003.
    [106]刘林.航天器轨道理论[M],北京:国防工业出版社, 2000.
    [107]王威,于志坚.航天器轨道确定-模型与算法[M],北京:国防工业出版社, 2007.
    [108]李济生.航天器轨道确定[M],北京:国防工业出版社, 2003.
    [109]刘林,胡松杰,王歆.航天器动力学引论[M],南京:南京大学出版社, 2006.
    [110] McCarthy D D. IERS conventions(1996). IERS Technical Note 21, Paris: Observatoire de Paris, 1996, 20-39.
    [111]胡国荣,欧吉坤.星载GPS低轨卫星几何法精密定轨研究[J],空间科学学报, 2000, 20(1): 32-39.
    [112]赵春梅,欧吉坤,孙保琪.星载GPS非差精密定轨精度分析[J].山东科技大学学报(自然科学版), 2004, 23(4): 12-15.
    [113] Svehla D, M Rothacher. Kinematic positioning of LEO and GPS satellites and IGS stations on the ground[J], Advances in Space Research, 2005, 36(3): 376-381.
    [114]吴江飞,黄珹. GPS精密单点定位模型及其应用分析[J].大地测量与地球动力学, 2008,28(1): 96-100.
    [115] Sunil B B, Richard B L. High Precision, Kinematic Position with a Single Receiver[J], Navigation(Fall), 2002,49(3):161-169.
    [116]涂先勤.星载双频GPS精密定轨及精度评估方法研究[D],硕士学位论文,长沙:国防科学技术大学, 2006.
    [117]杨龙,董绪荣.利用GPS非差观测值的GRACE卫星精密定轨[J],宇航学报, 2006, 27(3): 373-378.
    [118]洪樱,欧吉坤,彭碧波. GPS卫星精密星历和钟差三种内插方法的比较[J].武汉大学学报信息科学版, 2006,31(6): 516-518.
    [119] Xu G. GPS - Theory, Algorithms and Applications[M]. Heidelberg: Springer Verlag, 2003: 78-81.
    [120]胡雷鸣,张兴福,沈云中. CHAMP姿态数据间断的处理方法与精度分析[J].大地测量与地球动力学, 2006,26(2): 83-86.
    [121]黄天衣,用一次和的Adams-Cowell方法[J],天文学报, 1992, 33(4): 413-419.
    [122]刘承志,赵有,范存波,等.长春卫星激光测距站的性能和观测概况[J].科学通报, 2002,47(6): 406-408.
    [123]杨福民,陈婉珍,张忠萍,等.上海天文台亚厘米级单次测距精度的卫星激光测距试验[J].中国科学, A辑, 2002,32(10): 935-939.
    [124]严奉轩,郭唐永,王培源,等. SLR应用展望-伽利略计划和非合作目标跟踪[J].大地测量与地球动力学, 2006,26(3): 118-121.
    [125]秦显平,焦文海,程芦颖,霍立业.利用SLR检核CHAMP卫星轨道[J].武汉大学学报,信息科学版, 2005,30(1): 38-41.
    [126]王正明,易东云,等.弹道跟踪数据的校准与评估[M].湖南长沙:国防科技大学出版社, 1999.328.
    [127]王正明,易东云.测量数据建模与参数估计[M].长沙:国防科技大学出版社, 1996: 15-17.
    [128] Teunissen P J G. An optimality property of the integer least squares estimator [J]. Journal of Geodesy, 1999, 73(11): 587-593.
    [129] Teunissen P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation [J]. Journal of Geodesy, 1995, 70(1):65-82.
    [130] Joosten P, Teunissen P J G, Jonkman N. GNSS three carrier phase ambiguity resolution using the LAMBDA-method [C]. GNSS'99, Genova, 1999, 367-372.
    [131] Teunissen P J G, Odijk D. Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution [J]. Journal of Geodesy. 2003, 76(9-10): 523-535.
    [132] Teunissen P J G. The GPS integer least-squares statistics [J]. Phys. Chem. Earth, 2000, 25(9-11): 613-617.
    [133]蔡艳辉,程鹏飞,李夕银.整周模糊度去相关的两种实现方法[J],测绘工程, 2003, 12(4): 36-38.
    [134]陈树新. GPS整周模糊度动态确定的算法及性能研究[D].博士学位论文.西安:西北工业大学, 2002.
    [135]范建军,王飞雪. GPS接收机天线相位中心变化对基线解的影响[J].宇航学报, 2007, 28(2): 298-304.
    [136] Nielsen R O. Relationship between dilution of precision for point positioning and for relative positioning with GPS [J]. IEEE Trans Aerospace and Electronics Systems, 1997, 33(1): 333-338.
    [137] Teunissen P J G. A proof of Nielsen's conjecture on the GPS dilution of precision [J]. IEEE Trans Aerospace and Electronics Systems, 1998, 34(2): 693-695.
    [138] Ming Y, Tand C H, Yu T T, Development and Assessment of a Medium-Range Real-Time Kinematics GPS Algorithm Using an Ionosphere Information Filter[J], Earth Planets Space, 2000, 52: 783-788.
    [139] Hernandez P M, et al. Application of Ionospheric Tomography to Real-time GPS Carrier-phase Ambiguities Resolution, at Scales of 400-1000 Km and with High Geomagnetic Activity[J], Geophysical Research Letters, 2000, 27(13): 2009-2012.
    [140] Montenbruck O, Gill E. Ionospheric Error Removal in the Positioning of LEO Satellites Based on Low Cost GPS Receivers. 16th International Symposium on Space Flight Dynamics[C]. Pasadena, America: NASA/JPL publisher, 2001: 1-8.
    [141]寇艳红, GPS原理与应用(第二版)[M],北京:电子工业出版社, 2007: 285-341.
    [142]袁运斌,霍星亮,欧吉坤.精确求定GPS信号的电离层延迟的模型与方法研究[J].自然科学进展, 2006, 16(1): 40-48.
    [143]蔡红涛,马淑英, K Schlegel.高纬电离层气候学特征研究-EISCAT雷达观测及与IRI模式的比较[J].地球物理学报, 2005, 48(3): 471-479.
    [144]王霄,史建魁,武顺智,等.海南地区电离层漂移对F10.7响应的分析研究[J].电波科学学报, 2007, 22(3): 370-374.
    [145]李真芳,王彤,保铮,廖桂生.同时地形高程测量和地面运动目标检测的分布式InSAR最优编队构形[J].宇航学报, 2004, 25(6): 642-648.
    [146]孟鑫,李俊峰,高云峰.卫星编队飞行相对轨道的摄动研究综述[J],宇航学报, 2004, 25(4): 473-478.
    [147]张玉锟,戴金海,王石,任萱.基于Hill方程的编队卫星群运动分析与轨道设计[J],国防科技大学学报, 2000, 22(6), 1-5.
    [148]刘洋,王正明,易东云.基于增强型单频GPS的高精度星间相对定位样条方法[J].空间科学学报, 2007, 27(2), 162-168.
    [149] Leung S, Montenbruck O. Real-Time Navigation of Formation-Flying Spacecraftusing Global Positioning System Measurements[J], Journal of Guidance, Control and Dynamics, 2005, 28(2): 226-235.
    [150]赵春梅,欧吉坤.星载GPS低轨卫星跟踪数据的建模与仿真[J].系统仿真学报, 2004, 16(6): 1132-1134, 1138.
    [151] TU Xianqin, YAO Jing, GU Defeng, YI Dongyun. Simulation of Satellite-to-Satellite Tracking Data of Interferometric SAR Based on GPS[A]. Proc. Of SPIE[C], Wuhan, 2006, 64810O-1-64810O-9.
    [152]闫野.提高卫星座定位自主性和精度的研究[D].博士学位论文.长沙:国防科技大学, 2000.
    [153]王威,郗晓宁. GPS用于编队星座的姿态与相对位置确定[J].空间科学学报. 2002, 22(2): 163-16.
    [154]易东云,朱炬波,王正明.三频带信号分离的样条方法[J].电子学报, 1999, 27(1): 54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700