用户名: 密码: 验证码:
基于绿色表面活性剂的农药环境友好型制剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们环保意识的增强,对表面活性剂的开发和应用提出了更高的要求,绿色表面活性剂的制备和应用已成为研究的热点。与常规表面活性剂相比,绿色表面活性剂是指由天然或再生资源加工的,对人体刺激性小和易于生物降解的表面活性剂。在表面活性剂行业中,农用表面活性剂是一个重要的领域。本文以常见绿色表面活性剂脂肪酸甲酯磺酸盐(MES)、烷基糖苷(APG)、脂肪醇聚氧乙烯醚(AEO)、醇醚羧酸盐(AEC)、单烷基磷酸酯钾盐(MAPK)、α-烯基磺酸盐(AOS)等为材料研究在其制备常见农药制剂的可能性,结果表明,绿色表面活性剂单独使用或者与常规表面活性剂复配使用可以制备出质量技术指标符合要求的5%联苯菊酯水乳剂、5%联苯菊酯微乳剂、3%甲维盐微乳剂、5%甲维盐水分散粒剂、1OOOOIU/mg苏云金杆菌(BT)悬浮剂、10000IU/mg苏云金杆菌(BT)水分散粒剂。
     分别在成功筛选出制备5%联苯菊酯水乳剂的绿色表面活性剂和常规表面活性剂最佳复配比例和用量的基础上,比较了两类表面活性剂对制剂稳定性的影响,同时探讨水乳剂不稳定机理及水乳剂稳定性快速判断的方法,结果表明,1)通过筛选表面活性剂组合最佳复配比例和用量可以制备粒剂大小为纳米级的水乳剂,当绿色表面活性剂组合MAPK:AEO=6:4时,乳化剂用量10%时,制备的水乳剂最稳定,水乳剂的初始粒径为200.7nm;当常规表面活性剂组合NP-1OP:EL-60=5:5时,乳化剂用量10%时,制备的水乳剂最稳定,水乳剂的初始粒径为288.9nm;2)两种乳化剂复配体系可以制备出较稳定的水乳剂是因为在最佳比例时,两种表面活性剂间有一定的协同作用,当MAP:AEO=6:4时,水乳剂的粒径变化最小,试验发现在此比例时,表面活性剂复配后有最小的临界胶束浓度(cmc)、临界胶束浓度时的表面张力(γcmc)和表面吸附层被吸附分子的平均截面积(Acmc);3)水乳剂的粒径的立方随时间变化呈较好的线性关系,表明奥氏熟化是水乳剂不稳定的重要原因之一;4)可以用稳定性分析仪的短期描替代动态光散射技术的测试,来对水乳剂的粒径变化进行快速判断;5)绿色表面活性剂组合MAPK-AEO制备的水乳剂粒径增加速率小于常规表面活性剂NP-10P-EL-60组合,绿色表面活性剂制备的水乳剂更加稳定。
     分别在用拟三元相图法筛选出制备3%甲维盐微乳剂的绿色表面活性剂和常规表面活性剂最佳复配比例的基础上,比较了两类表面活性剂复配体系对甲维盐原药的增溶能力。结果表明,绿色表面活性剂组合MAPK:APG=2:1和常规表面活性剂组合NP-10P:OP-10=1:2时有利于甲维盐微乳剂的形成,在最佳复配比例下绿色表面活性剂复配体系对甲维盐的增溶能力低于常规表面活性剂复配体系。
     室内生物活性表明,分别用绿色表面活性剂和常规表面活性剂制备的5%联苯菊酯水乳剂对黏虫、3%甲维盐微乳剂对小菜蛾的生物活性没有显著差异。
     生物降解试验表明,绿色表面活性剂的生物降解性较常规表面活性剂好;斑马鱼安全性评价测试结果显示,除常规表面活性剂OP-10对斑马鱼为中毒外,其余表面活性剂对斑马鱼均为低毒,绿色与常规表面活性剂对斑马鱼LC50值大小存在差异;大型溞安全性评价测试结果显示,除常规表面活性剂OP-10、MOA9PK、T-2700、NNO对大型溞为中毒外,其余表面活性剂对大型溞均为低毒,绿色与常规表面活性剂对大型溞LC50值大小存在差异。
     在乳化剂总量10%情况下,通过调节阴、非离子乳化剂的复配比例来调节体系的HLB值,通过Turbuscan稳定性分析仪的短期扫描确定了制备5%联苯菊酯、高效氯氟氰菊酯和氯菊酯水乳剂的最佳HLB值分别为10.82、9.48、10.15,而且在相同表面活性剂用量、最佳比例制备的水乳剂质量技术指标均符合要求,MAPK和AEO-3可以复配作为制备菊酯类农药水乳剂的专用乳化剂。运用绿色表面活性剂MAPK和APG复配,运用拟三元相图分别筛选出制备3%阿维菌素、甲维盐和伊维菌素ME的最佳比例分别为2:1、2:1、1:1,在乳化剂总量10%含量下,分别制备了技术指标符合要求的微乳剂,MAPK和APG可以复配作为制备大环内酯类农药微乳剂的专用乳化剂。
In recent years, as people's consciousness of environmental protection get much stronger, the development and application of surfactants have been put forward higher request, the preparation and application of green surfactants have become the research focus. Compared with the traditional surfactant, green surfactant is refers to by natural or processing of renewable resources, to human body excitant small and easy to biodegradation of surfactants, green surfactant is produced by natural or renewable resources, mild to human body and easy to biodegradation. In surfactant industry, agricultural surfactant is an important field. The possibility of preparing the common pesticides formulation using the green surfactant, such as MES, APG, AEO, AEC, MAPK, AOS was studied. The results showed that using green surfactants alone or mixed system with traditional surfactants, bifenthrin50EW, bifenthrin50ME, emamectin benzoate30ME, emamectin benzoate50WDG,10000IU/mg Bacillus thuringiensis SC and10000IU/mg Bacillus thuringiensis WDG were prepared and their quality and technical indexes meet the requirements.
     Based on choosing the best mixing ratio and dosage of green surfactant and traditional surfactant respectively to prepare the bifenthrin50EW, comparison of the effect of the two types of surfactant on the effect on the stability was made and also, the emulsion instability mechanism and fast judgment method of stability of the emulsion were discussion, the results showed that,1) the stable nano-emulsions could be prepared by choosing the best mixing ratio and dosage of the two surfactants, when the mixing ratio of MAPK and AEO was6:4and the dosage was10%, the emulsion prepared with green surfactants was more stable and the original droplet size was200.7nm, while the mixing ratio of NP-10P and EL-60was5:5and the dosage was10%, the emulsion prepared with traditional surfactants was more stable and the original droplet size was288.9nm.2) The reason of why the emulsion showed the most stable was the mixed system of MAPK and AEO has the smallest cmc, ycmc, Acmc when the mixing ratio was6:4and the two emulsifiers have a synergistic effect.3) A good correlation of r3and time was obtained with good regression coefficient for all emulsions, indicating that Ostwald ripening was the driving force for instability.4) The dynamic light scattering technique can be replaced by short-term scan of stability analyzer to judge the stability of the emulsion.5) The increasement rate of droplet size of emulsion prepared with MAPK-AEO was smaller than that of NP-10P-EL-60, the emulsion prepared with green surfactant showed more stable.
     Based on choosing the best mixing ratio of green surfactants mixture and traditional surfactants mixture respectively using pseudo-ternary phase diagram to prepare the emamectin benzoate30ME, comparison of solubilising power on emamectin benzoate with two kinds of surfactants was made. The results showed that the micro-emulsion of emamectin benzoate was much easier to form when the MAPK: APG=2:1and NP-10P:OP-10=1:2, the solubilising power on emamectin benzoate of green surfactants mixture was low than that of traditional surfactants mixture.
     The bioassay in the room showed that the bioactivity on Mythimna seperata of bifenthrin50EW prepared with green surfactants had no marked difference with the emamectin benzoate30ME prepared with traditional surfactants. The bioactivity on Plutella xylostella of emamectin benzoate30'ME has the same result.
     The biodegradation experiment showed that the green surfactants have better bio degradation rate than traditional surfactants. Safety estimation of the two kinds of surfactants on zebra fish showed that the surfactants for test were all low toxic to zebra fish except the OP-10was moderate toxic and there was a difference of LC50value on zebra fish between green and traditional surfactants. Safety estimation of the two kinds of surfactants on Daphnia magna showed that the surfactants for test were all low toxic to Daphnia magna except the OP-10, MOA9PK, T-2700, NNO were moderate toxic and there was a difference of LC50value on Daphnia magna between green and traditional surfactants.
     Make certain the optimal HLB value to prepare bifenthrin50EW, lambda-cyhalothrin50EW and permethrin50EW by adjusting the mixing ratios of anion-nonionic surfactants with a constant total concentration (10%) using short-term scan of turbiscan lab stability analyzer. The optimal HLB value to prepare bifenthrin50EW, lambda-cyhalothrin50EW and permethrin50EW was10.82、9.48、10.15respectively. The quality and technical indexes all the formulation prepare with the best mixing ratio and the same surfactant concentration meet the requirements. The mixture of MAPK and AEO-3could be used for prepare pyrethroid pesticide emulsions. The best mixing ratio of MAPK and APG mixture to prepare avermectins30ME, emamectin benzoate30ME and ivermectin30ME was2:1,2:1,1:1using pseudo-ternary phase diagram to study. The quality and technical indexes all the formulation prepare with the best mixing ratio and the same surfactant concentration meet the requirements. The mixture of MAPK and APG could be used for prepare macrolides antibiotics pesticide micro emulsions.
引文
[1]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003:5-14.
    [2]刘步林.农药剂型加工技术[M].2版.北京:化学工业出版社,1998,698-713.
    [3]王学川,邱白玉.表面活性剂的毒性问题[J].日用化学品科学.2005,28(6):22-26.
    [4]禾治字,冯彩英.阴离子主表面活性剂的生态学及毒性评估[J].日用化学工业.2000,(4):22-24.
    [5]魏福祥,郝莉莉,王金梅.表面活性剂对环境的污染及检测研究进展[J].河北工业科技.2006,23(1):57-60.
    [6]郭睿,来肖,赵艳艳,等.表面活性剂生物降解性研究现状与展望[J].湖北造纸.2010,(3):25-28.
    [7]陈荣圻.表面活性剂的生态安全性[J].上海染料.2009,37(2):15-25.
    [8]王雁,安秋凤.表面活性剂的安全牲问题[J].上海染料.2008,31(1):28-31.
    [9]吴声敢,吴长兴,陈丽萍,等.4种有机硅表面活性剂对斑马鱼的急性毒性与安全评价[J].上海染料.2009,21(4):395-398.
    [10]孙翰昌,黄丽英,丁诗华,等.表面活性剂SDS对草鱼急性毒性效应的研究[J].水产渔业科学.2005,21(11):406-408.
    [11]施钢,陈刚,张健东,等.表面活性剂对蓝点笛鲷幼鱼急性毒性研究[J].安徽农业科学.2011,39(12):7238-7240.
    [12]周晓见.表面活性剂对海洋微藻的生理生化影响[D].大连:大连海事大学,2000.
    [13]郭睿,胡应燕,彭丽.表面活性剂生物降解性能的研究进展[J].日用化学品科学.2009,32(8):20-24.
    [14]光晓元,杨小红.环境激素探微[J].池州师专学报.2002,16(3):128-129.
    [15]周云,戴婕,李富生,等.内分泌干扰物质烷基酚(AP)的测定[J].中国给水排水.2003,19(3):95-96.
    [16]刘俊莉,马建中,鲍艳,等.绿色表面活性剂的研究进展[J].日用化学品科学.2009,32(10):22-26.
    [17]李富兰,颜杰.生物表面活性剂的特性及其在环境污染治理中的应用[J].安 徽农业科学.2011,39(11),6651-6652.
    [18]尹凯,郭晓锋,陶彭均,等.生物表面活性剂的合成及应用研究[J].精细与专用化学品.2011,19(2),43-46.
    [19]谢颖玮,李翌,王世慧,等.生物表面活性剂鼠李糖脂制备微乳状液[J].华东理工大学学报(自然科学版).2006,32(1),72-75.
    [20]陈静,张云瑞,宋欣.槐糖脂的生产及其应用研究进展[J].食品科学.2007,28(8),525-529.
    [21]刘青芝,郭学平,朱希强.槐糖脂的微生物合成及其应用研究进展[J].食品与药品.2009,11(11),51-55.
    [22]李媛,陆晓滨,董贝磊,等.脂肽类生物表面活性剂生产的研究[J].食品工业科技.2008,(11),296-302.
    [23]李蔚,刘如林,刘春林,等.一种脂肽类生物表面活性剂的产生及特性研究[J].日用化学工业.2004,34(6),350-352.
    [24]吕应年,杨世忠,牟伯中.脂肽类生物表面活性剂的研究进展[J].生物技术通报.2004,6,11-16.
    [25]Eliora Z Ron, Eugene Rosenberg. Biosurfactants and oil bio re mediation [J]. Environmental biotechnology.2002,13(3),249-252.
    [26]罗强,蒲万芬,滕小兰,等.高分子生物表面活性剂Emulsan的研究进展[J].日用化学工业.1995,273:565-571.
    [27]E.-M. Kutschmann, G.H. Findenegg, D. Nickel, et al. W. von Rybinski. Interfacial tension oalkylglucosides [J]. Colloid Polym Sci.1995,273:565-571.
    [28]廖永,张韬,范宏娅.烷基多糖苷表面活性剂的研究进展.[J].广东化工.2004,5:30-33.
    [29]D. Nickel, C. Nitsch, P. Kurzend6rfer, et al. Interfacial properties of surfactant mixtures with alkyl polyglycosides [J]. Progress in Colloid & Polymer Science. 1992,89:249-252.
    [30]H. Messinger, W. Aulmann, M. Kleber, et al. Investigations on the effects of alkyl polyglucosides on development and fertility [J]. Food and Chemical Toxicology.2007,45:1375-1382.
    [31]黄洪周.中国表面活性剂工业可实施的绿色表面活性剂新产品.[J].精细化工原料及中间体.2007,10:11-16.
    [32]陆光崇.符合可循环、节能和环保原则的绿色表面活性剂--α-磺基脂肪酸甲酯盐[J].日用化学品科学,2006,29(3):10-13.
    [33]李乾.脂肪酸甲酯磺酸盐的发展现状[J].日用化学品科学.2006,29(3):10-13.
    [34]李伟年.脂肪酸甲酯磺酸盐工业的原料及其经济性[J].日用化学品科学.2007,30(4):22-25.
    [35]张广煜.脂肪酸甲酯磺酸盐绿色表面活性剂的性能及其应用的进展[J].石油化工.2007,34:704-706.
    [36]唐楷,颜杰,黄新,等.单十二烷基磷酸酯钾溶液的抗冻性研究[J].化工中间体,2008,(8):39-41.
    [37]唐楷,颜杰.单烷基磷酸酯的提纯工艺研究[J].日用化学工业,2007,37(6):410-412.
    [38]张广煜,刘振杰.α-磺基脂肪酸甲酯盐的性能及应用[J].炼化世界.2005,3:20-21.
    [39]赵春森,宋文玲,冯凤萍,等.a-烯基磺酸盐表面活性剂的合成及性能[J].大庆石油地质与开发.2005,24(1):90-92.
    [40]王文灿.α-烯基磺酸盐[J].四川化工,1995,3:49-50.
    [41]李文安.绿色表面活性剂的应用及研究进展[J].安徽农业科学,2007,35(19):5691-5692.
    [42]高楠,张春华,张宗俭.绿色表面活性剂在农药加工中的应用[J].中国工程科学,2009,11(4):36-38.
    [43]陈健华,黄霞,李舒渊,等.膜-生物反应器和传统活性污泥法去除两种内分泌干扰物的对比研究[J].环境科学学报,2008,28(3):433-439.
    [44]吴伟,吴滟,陈家长,等.壬基酚聚氧乙烯醚及壬基酚对鱼肝EROD酶的体外诱导[J].中国环境科学,2005,25(Suppl.):125-128.
    [45]SOTO A M, JUSTICIA H, WRAY. J W, et al.p-Nonyl-Phenol:An Estrogenic Xenobiotic Released from "Modified" Polystyrene[J]. Environmental Health Perspectives,1991,99:167-173.
    [46]黄树华,陈铭录.我国农药表面活性剂发展探讨[J].农药研究与应用,2008,12(6):5-7.
    [47]农药助剂工业开发新型助剂当为发展主流[J].农药快讯,2002,12:27.
    [48]陈铭录,黄树华,王家保.我国农药用非离子型表面活性剂现状和发展探讨[J].现代农药,20082,7(1):6-12.
    [49]凌世海.农药助剂工业现状和发展趋势[J].安徽化工,2007,33(1):2-7.
    [50]张宗俭.夜药助剂的应用与研究进展[J].农药科学与管理,2009,30(1):42-47.
    [51]黄啟良,李干佐,张文吉,等.高效氯氰菊酯微乳化复合表面活性剂体系的相行为及增溶[J].中国农业科学,2006,39(6):1173-1178.
    [52]陈福良.农药微乳剂稳定性机理研究[D].北京:中国农业大学,2006.
    [53]张大侠,徐加利,张源,等.已唑醇微乳剂的低温稳定性研究[J].农药学学报,2010,12(1):85-89.
    [54]赵丰,夏红英,贺纪陵.农药微乳剂配方设计的方法研究[J].安徽农业科学,2008,36(28):12336-12337.
    [55]Hua Yin, Jing Qiang, Yan Jia, Jinshao Ye, et al. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater [J].Process Biochemistry,2009,44:302-308.
    [56]L'igia Rodrigues, Ana Moldes, Jos'e Teixeira, et.al. Kinetic study of fermentative biosurfactant production by Lactobacillus strains [J]. Biochemical Engineering Journal 2006,28:109-116.
    [57]Hisashi Saeki, MasaruSasaki, Koei Komatsu, et al. Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058 [J]. Bioresource Technology 2009,100:572-577.
    [58]P. Saravanakumari, K. Mani. Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. [J]. Bioresource Technology 2010,101: 8851-8854.
    [59]S.N.R.L. Silvaa, C.B.B. Fariasb, R.D. Rufinob, et al. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992 [J]. Colloids and Surfaces B:Bio interfaces,2010,79:174-83.
    [60]Rengathavasi Thavasi, Singaram Jayalakshmi, Ibrahim M. Banat. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil [J]. Bioresource Technology,2011,1029:3366-3372.
    [61]Mahmoud Shavandia, Ghasemali Mohebalia, Azam Haddadib, et al. Emulsification potential of a newly isolated bio surfactant-producing bacterium, Rhodococcus sp. strain TA6 [J]. Colloids and Surfaces B:Bio interfaces,2011,82: 477-482.
    [62]G. Seghal Kirana, T.A. Hemaa, R. Gandhimathia, et al. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3 [J]. Colloids and Surfaces B:Biointerfaces,2009,73: 250-256.
    [63]王大威,刘永建,杨振宇.脂肽生物表面活性剂在微生物采油中的应用[J].石油学报2008,29(1):111-115.
    [64]Q.F. Wei, R.R. Mather, A.F. Fotheringham. Oil removal from used sorbents using a biosurfactant Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3 [J]. Bioresource Technology,2005,96:331-334.
    [65]Palashpriya Das, Soumen Mukherjee, Ramkrishna Sen. Biosurfactant of marine origin exhibiting heavy metal remediation properties [J]. Bioresource Technology, 2009,100:4887-4890.
    [66]Guiyun Bai, Mark L. Brusseau, Raina M. Miller. Biosurfactant-enhanced removal of residual Journal of Contaminant Hydrology [J]. Journal of Contaminant Hydrology,1997,25:157-170.
    [67]Suiling Wang, Catherine N. Mulligan. Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings [J]. Process Biochemistry,2009,44:296-301.
    [68]X.Z. Yuan, Y.T. Meng, G.M. Zeng, et al. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,317:256-261
    [69]Kyung-Jin Hong, Shuzo Tokunaga, Toshio Kajiuchi. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals fromcontaminated soils [J]. Chemosphere,2002,49:379-387.
    [70]韩双艳,任昌琼,林影.生物表面活性剂的生产与应用[J].中国工程科学,2009,9:26-30.
    [71]Yingwei Xie, Ruqiang Ye, Honglai Liu. Microstructure studies on bio surfactant-rhamnolipid/n-butanol/water/n-heptane microemulsion system [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,292:189-195.
    [72]Yingwei Xie, Ruqiang Ye, Honglai Liu. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2006,279:175-178.
    [73]张高勇,王军.表面活性剂的绿色化学进展[J].日用化学品科学,2000,23(1):200-202.
    [74]高楠,张春华,张宗俭.绿色表面活性剂在农药加工中的应用[J].中国工程科学,2009,11(4):36-38.
    [75]J. Araujo, E. Vega, C. Lopes, M.A. Egea, et al. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres, Colloids and Surfaces B:Biointerfaces 2009,72:48-56.
    [76]M. J. Rosen, in:P.M. Holland, D.N. Rubingh (Eds.), Mixed Surfactant Systems, American Chemical Society, Washington, DC,1992.
    [77]J.M. Gutierrez, C. Gonzalez, A. Maestro, et al. Nano-emulsions:new applications and optimization of their preparation, Curr. Opin. Colloid Interface Sci.2008,13:245-251.
    [78]H. Nakajima, in:C. Solans, H. Kunieda (Eds.), Industrial Applications of Microemulsions, Marcel Dekker, New York,1997,175-197.
    [79]M.S. El-Aasser, E.D. Sudol, Mini-emulsions:overview of research and applications, JCT Res.2004,1:21-31.
    [80]C. Solans, P. Izquierdo, J. Nolla, et al. Nano-emulsions, Curr. Opin. Colloid Interface Sci.2005,10:102-110.
    [81]J.M. Gutierrez, C. Gonzalez, A. Maestro, I. Sole, C.M. Pey, J. Nolla, Nano-emulsions:New applications and optimization of their preparation, Curr. Opin. Colloid Interface Sci.13 (2008) 245-251.
    [82]I. Capek, Degradation of kinetically-stable o/w emulsions, Adv. Colloids Interface Sci.107 (2004) 125-155.
    [83]PENG L C, LIU C H, KWAN C C, HUANG K F. Optimization of water in oil nanoemulsions by mixed surfactants [J]. Colloids Surf. A:Physicochem. Eng. Aspects,2010,370:136-142.
    [84]Z. Fu, M. Liu, J. Xu, Q. Wang, Z. Fan. Stabilization of water-in-octane nano-emulsion. Part I:Stabilized by mixed surfactant systems, Fuel 89 (2010) 2838-2843.
    [85]张强,陈颖,付文静,孙双月,光谱学与光谱分析,2008,(28)4,843.
    [86]C. Lesaint, W.R. Glomm, L.E. Lundgaard, et al. Dehydration efficiency of AC electrical fields on water-in-model-oil emulsions, Colloids Surf. A:Physicochem. Eng. Aspects 352 (2009) 63-69.
    [87]E.H. Lee, M.K. Lee, C.K. Rhee. Preparation of stable dispersions of Ni nanoparticles using a polymeric dispersant in water, Materials Science and Engineering A 449-451 (2007) 765-768.
    [88]TADROS T, IZQUIERDO P, ESQUENA J, et al. Formation and stability of nano-emulsions [J]. Adv. Colloids Interface Sci,2004,108-109:303-318.
    [89]CALDERO G, CARCIA-CELMA M J, SOLANS C. Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation [J]. J. Colloids Interface Sci,2011,353:406-411.
    [90]SADURNI N, SOLANS C, AZEMAR N, et al. Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications [J]. Eur. J. Pharm. Sci,2005,26:438-445.
    [91]SONNEVLLE-AUBRUN O, SIMONNETI-T, L'ALLORETF. Nanoemulsions: a new vehicle for skincare products [J]. Adv. Colloids Interface Sci,2004,108: 145-149.
    [92]SONG S L, LIU X L, JIANG J H, et al. Stability of triazophos in self-nanoemulsifying pesticide delivery system [J]. Colloids Surf. A:Physicochem. Eng. Aspects,2009,350:57-62.
    [93]WANG L J, LI X F, ZHANG G Y, et al. Oil-in-water nanoemulsions for pesticide formulations [J]. J. Colloids Interface Sci,2007,314:230-235.
    [94]Ying Liu, Fanglin Wei, Yangyang Wang, et al. Studies on the formation of bifenthrin oil-in-water nano-emulsions preparedwith mixed surfactants [J].Colloids Surf A:Physicochem Eng Aspects,389(2011):90-96.
    [96]J. Araujo, E. Vega, C. Lopes, M.A. Egea, M.L. Garcia, E.B. Souto, Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres, Colloids Surf. B:Biointerfaces 72 (2009) 48-56.
    [97]P.C. Hiemenz, in:J.J. Lagowski (Ed.), Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, Basel,1977.
    [98]黄啟良.农药微乳剂形成与稳定的机理及其性能表征[D].北京:中国农业大学,2006.
    [99]夏茹,吴彬,张岭.三氟氯氰菊酯微乳剂的相图研究[J].农药,2005,44(2):56-58.
    [100]吴亚芊,赵丰,徐景坤,等.三唑磷微乳剂配方设计方法的研究[J].农药,2010,9(5):26-28.
    [101]吕长和,温家钧,戴权,等.应用拟三元体系相图法制备烟嘧磺隆微乳剂[J].安徽化工,2010,36(2):6-8.
    [102]李丽芳,王开运,宋东升,等.毒死蜱微乳液拟三元相图影响因素研究[J].农药学学报,2007,9(2):172-177.
    [103]唐启义.DPS数据处理系统(第二版)[M].Beijing(北京):科学出版社2010:364-369.
    [104]孔祥洁,李丽芳,王莉,等.n-CnH2n+i OH对毒死蜱微乳剂透明温度范围的影响[J].农药,2008,47(11):807-809.
    [105]陈福良,王仪,郑斐能.农药微乳剂及其浊点问题的探讨和初步研究.[J].农药,1999,38(3):9-10.
    [106]魏方林,吴慧明,程敬丽,等.多因素试验设计方法在农药微乳剂配方研制中的应用研究农药学学报,2009,11(3):373-380.
    [107]冷阳,仲苏林,吴建兰,等.高浓度农药水悬浮体系中分子长大现象的抑制和多层静电屏蔽系统的研究开发及应用.[J]世界农药,2005,(27)5,32.
    [108]陈丹,黄放良,吕和平,等.拟三元相图在农药水乳剂配方筛选中的应用研究.现代农药,2008,7(4):25-28.
    [109]郭勇飞,尹明明,陈福良.光散射技术在4.5%高效氯氰菊酯水乳剂物理稳定性研究中的应用[J].农药学学报,2010,12(1):79-84.
    [110]乔斯 卢斯 伯纳,华章熙.表面活性剂生物降解性和环境安全性[J].日用化学品科学,2002,25(4):12-14.
    [111]秦勇.表面活性剂好氧初级生物降解研究[D].太原:太原理工大学,2006.
    [112]秦勇,张高勇,康保安.表面活性剂生物降解的标准与法舰[J].日用化学品科学,2004,27(2):37-39.
    [113]刘在平,张松林.斑马鱼在环境保护中的应用[J].中国环境监测,2011,27(4):19-22.
    [114]聂湘平,王翔,史方.三种典型渔药对大型潘(Daphnia magna)的急性毒性及其关键环境影响因子分析[J].生态环境2006,15(3):529-533.
    [115]国家环境保护总局《化学品测试方法》编委会.化学品测试方法[M].北京:中国环境科学出版社,2003:330.
    [116]LIN L H, CHOU Y S. Surface activity and emulsification properties of hydrophobically modified dextrins[J]. Colloids Surf A:Physicochem Eng Aspects,2010,39(1-3):55-60.
    [117]YOSHIMURA T, ISHIHARA K, ESUMI K. Sugar-Based Gemini Surfactants with Peptide BondssSynthesis, Adsorption, Micellization, and Biodegradability [J]. Langmuir,2005,21(23):10409-10415.
    [118]RONG R, CHEN K M. Preparation and surface active properties of biodegradable dextrin derivative surfactants [J].Colloids Surf A:Physicochem Eng Aspects,2006,281(1-3):190-193.
    [119]RONG R, CHEN K M. Preparation and surface active properties of biodegradable dextrin derivative surfactants [J].Colloids Surf A:Physicochem Eng Aspects,2006,281(1-3):190-193.
    [120]OECD. OECD Guidelines for Testing of Chemicals,202 Daphnia sp. Acute Immobilization Test and Reproduction Test [M], Paris:OECD, Adopted, 1984-04-04.
    [121]白丽蓉,陈刚,张健东,等.表面活性剂SDS与DBS对褐点石斑鱼急性毒性研究[J].安徽农业科学,2008,36(21):9087-9090.
    [122]孙翰昌,黄丽英,丁诗华,等.表面活性剂SDS对草鱼急性毒性效应的研究[J].水产渔业科学,2005,21(11):406-408.
    [123]李安娜,张迎梅,李瑷伶,等.十二烷基硫酸钠对斑马鱼抗氧化能力的影响[J].四川动物,2008,27(6):993-996.
    [124]郑琰晶,陈琳,陈燕平,等.十二烷基硫酸钠对水生生物的急性毒性影响[J].农业环境科学学报,2006,25(增刊):496-498.
    [125]TOVELL P W A, HOWES D, NEWSONE C. absorption, metabolism, and excretion by goldfish of the anionic detergent sodium lauryl sulphate [J]. Toxicology,1975,4:17-29.
    [126]KIKUCHI M, WAKABAYASHI A, KOJIMAH, et al. Uptake, distribution, and elimination of sodium linear alkylbenzene sulfonate and sodium alkyl sulfonate in carpl [J]. Ecotoxicology and environmental safety,1978,2:115-127.
    [127]F. Xie, B.W. Brooks. Phase behaviour of a non-ionic surfactant-polymeric solution-water system during the phase inversion process, Colloids Surf. A:Physicochem. Eng. Aspects,2005,252:27-32.
    [128]F. Yang, G. Li, J. Qi, et al. Synthesis and surface activity properties of alkylphenol polyoxyethylene nonionic trimeric surfactants, Appl. Surf. Sci. 2010,257:312-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700