用户名: 密码: 验证码:
肝癌干细胞新型培养体系的建立以及治疗靶点筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤干细胞的存在已经被越来越多的人所认同,但由于分离到的CSCs细胞数量太少,难以支持后续实验的开展。如何在体外有效的分离,培养,扩增肿瘤干细胞,并以此为研究对象是我们思考的方向。国外学者在长期研究中发现,加入EGF和bFGF的无血清培养液有利于正常成体干细胞的体外扩增,并维持干细胞多向分化潜能。目前已经在乳腺癌、恶性神经系统肿瘤、结肠癌等恶性肿瘤中分离培养得到了类似肿瘤干细胞的一群细胞,他们是用含有EGF和bFGF的无血清培养体系维持增殖、分化潜能。我们将以此为基础进行肝癌干细胞的培养。由于现阶段分离肝癌干细胞还缺乏广谱的公认的标志物,且绝大多数分离工作均局限于肝癌细胞系,直接从人癌组织分离并培养肝癌干细胞尚无报道,严重阻碍了对肝癌干细胞的深入研究。
     本实验采用直接无血清培养的方法,从肝癌细胞株以及人原代肝癌组织中分离出肝癌干细胞样细胞并连续传代并尝试建立一种可有效富集肝癌干细胞样细胞的体外无血清悬浮培养技术,以期建立一种从人肝癌组织中分离培养获得肿瘤干细胞样细胞的新方法。并对培养出的球状细胞进行体外侵袭性,细胞周期的变化,细胞耐药性,克隆细胞的体外分化能力以及成瘤能力等方面验证我们获得的细胞具有肿瘤干细胞特性;进一步进行RNA深度测序和生物信息学分析,检测肝癌干细胞与肝癌细胞之间的差异。
     1、人肝癌干细胞样细胞的新型培养基的筛选及肿瘤细胞系的建立
     为更好的培养扩增肝癌干细胞,我们对培养体系进行优化,经过实验室长期的实验探索,筛选出7种有效的培养体系。培养成分包括DMEM-F12,非必需氨基酸,血清替代物,N2,B27,B27-minus VA,BSA,EGF,bFGF以及我们自己筛选的2个细胞因子IGF-1和FGF-10。通过长期的筛选实验证实C3号培养配方是我们的最佳培养体系。这个配方包含了B27-minus VA,EGF和我们筛选的IGF-1和FGF-10。
     利用无血清C3培养基对肝癌细胞系、原代细胞系及异种移植技术得到的肿瘤组织等多种来源的细胞进行培养,并获得了球状细胞。从肝癌细胞系Hep3B和Huh7中培养出来的球状细胞Hep3B-C、Huh7-C克隆形态越来越明显,并且能够稳定传代培养。从高侵袭性的细胞株HCCLM3和MHCC97-H及低侵袭能力的细胞株MHCC97-L分别培养得到了HCCLM3-C、MHCC97-H-C和MHCC97-L-C。在肝癌细胞系中成功得到球状生长的细胞之后,我们取病人的肿瘤组织直接进行消化培养,同样获得了球状细胞EHBH-HCSC-1和EHBH-HCSC-2细胞。同时,采用了异种移植技术,将病人的肿瘤组织直接包埋于小鼠皮下,一段时间后取小鼠的皮下肿瘤组织消化培养,分别利用常规的DMEM-F12+10%FBS和C3无血清培养体系进行培养,得到了一株呈上皮状生长的肿瘤细胞系EHBH-3和球状细胞EHBH-HCSC-3。
     2、球状细胞生物学特性分析
     经C3无血清培养体系获得了球状细胞后,进一步对这些细胞进行了生物学特性的分析:
     1)利用实时荧光定量PCR检测Wnt-1,CD90,Ep-CAM,NOTCH1,NOTCH2,NOTCH3在Hep3B、Huh7、MHCC97-L、HCCLM3、Hep3B-C、Huh7-C、MHCC97-L-C、HCCLM3-C中的表达情况。结果表明CD90在球状细胞中表达量都高于其相对应的贴壁肝癌细胞株。其中,Huh7-C中CD90的表达量是Huh7中表达量的10倍。球状细胞与相对应的细胞株相比NOTCH的mRNA表达均下降,而在Wnt-1和Ep-CAM的mRNA表达水平上出现了不一致的现象。
     2)对球状细胞进行糖原染色以及ICG的摄取实验,证实了这些细胞确实是肝癌细胞来源的细胞,而不是其他细胞污染。
     3)利用体外Matrigel侵袭实验直接比较Huh7细胞与Huh7-C细胞的侵袭能力。结果发现球状细胞Huh7-C与对应的Huh7细胞都具有较强的侵袭特性。定量分析结果表明,球状细胞Huh7-C的侵袭程度比Huh7高接近3倍。
     4)通过细胞周期的分析发现球状细胞Hep3B-C和Huh7-C主要处于G0-G1期,所占的百分比分别为74.09%和59.20%,与肝癌细胞株Hep3B和Huh7具有显著差异。
     5)流式细胞仪和RT-PCR检测发现在球状细胞中CD90的表达量均有不同程度的提高,两次实验结果趋势一致。在Hep3B-C细胞中,其提高倍数达10倍以上,这与之前的研究者所获得的肝癌干细胞的表型一致。同时检测了细胞的表面抗原Ep-CAM的表达情况,结果发现两种球状细胞的表达量都是下降的,这与以前的研究是相悖的。
     6)在Hep3B-C和Huh7-C细胞对阿霉素的摄取检测实验中发现,与相对应的Hep3B和Huh7相比较,在相同时间里面,球状细胞摄入的阿霉素的量少于普通的贴壁肝癌细胞,这是细胞产生耐药性的一个重要的条件。进一步检测细胞在不同的药物浓度下的存活率实验中证实,球状细胞Huh7-C相对于贴壁的肝癌细胞Huh7具有良好的耐药性。球状细胞对临床证实的第一个针对肝癌靶向性的药物索拉非尼的耐药性实验中也证实了这一点:应用无血清培养基培养出来的球状细胞在40umol/L的sorafinib的浓度下48小时依然有46%的细胞存活,而与此相对照的贴壁肝癌细胞Huh7基本没有细胞存活。耐药性实验证明,通过无血清条件培养获得的球状细胞与贴壁细胞相比具有良好的耐药性。
     7) ELISA定量检测结果说明无论是贴壁的肝癌干细胞还是球状的肝癌细胞均可以大量表达VEGF,而不同的细胞所形成的球状的细胞中其表达趋势并不是一致的,这可能与很多因素有关。
     8)对获得的球状细胞的进一步进行体外诱导分化。分别选取肝癌细胞的标记CK8、CK18;胆管细胞的标记CK19;血管细胞的标记Tie2。Huh7表达CK8和CK18,但不表达CK19和Tie2,而Huh7-C细胞对这4个标记表达很弱或不表达。将Huh7-C诱导后细胞均表达这4个标记因子。这个结果提示我们可能球状细胞具有多向分化的潜能,可以形成各种不同类型的细胞,这需要我们找到诱导的最佳条件,从而真正能够了解这些悬浮、球状生长的细胞。
     9)本课题通过给NOD/SCID鼠背部皮下注射不同细胞数量的肝癌贴壁细胞与球状生长的细胞,比较球状细胞与贴壁细胞的成瘤能力。异种移植成瘤试验的结果显示:接种100个MHCC97-L-C细胞到NOD/SCID小鼠中可以100%形成肿瘤;1000个HCCLM3-C细胞接种成瘤率高达100%;而对应的贴壁细胞成瘤率却很低。在MHCC97-H-C细胞株成瘤实验中发现100个细胞就可以在NOD/SCID鼠皮下成瘤,10000个MHCC97-H-C细胞在小鼠中成瘤率可达到100%,而相同数量的贴壁细胞MHCC97-H却不能形成肿瘤。小鼠皮下注射105个Huh7细胞都不能形成肿瘤,但是105个球状细胞Huh7-C能100%形成肿瘤。
     通过以上实验结果证实经C3无血清培养体系获得的球状细胞具有肿瘤干细胞的特性,可以作为肝癌干细胞研究的对象。
     3、肝癌干细胞样细胞的深度测序以及生物信息学分析
     采用Illumina HiSeq2000测序技术分别对3株肝癌干细胞株样品Huh7-C,Hep3B-C,MHCC97-H-C以及对应的3株肝癌细胞株样品Huh7,Hep3B,MHCC97-H进行RNA深度测序,采用RPKM算法对原始RNA测序数据进行预处理,消除系统误差;采用倍数法(FoldChange)筛选差异表达基因,通过文本挖掘进一步筛选到44个肝癌干细胞相关的关键基因,采用Onto-Express软件将筛选到的基因映射到Gene Ontology数据库中,进行功能富集性分析。并进一步在通路水平上进行的富集性分析,将筛选后得到的基因分别映射到GeneGO数据库和KEGG数据库中,基于KEGG数据库的分析结果仅筛选到了1条关键通路,满足统计学检测指标p-value<0.05,基于GeneGO数据的分析中则筛选到了17肝癌干细胞相关的通路(p-value<0.05),其中补体通路被2个数据库同时筛选到,可能在肝癌干细胞的分子过程中起着关键的作用。
     另外,本文分别对2株肝癌细胞系Hep3B,Huh7和2株肝癌干细胞系Hep3B-C,Huh7-C进行了sRNA深度测序,采用SOAP软件将sRNA定位到基因组上,分析sRNA在基因组上的表达和分布情况;将4个样品中的小RNA片段和已知的miRNA、重复序列、Genbank、Rfam、外显子和内含子、piRNA信息进行比对和注释;采用倍数法筛选在肝癌干细胞系与肝癌细胞系中表达发生变化的sRNA,利用泊松分布计算p-value值,并用Benjamini多重假设检验校正p-value值;共筛选到4个repeat片段在Hep3B和Hep3B-C、Huh7和Huh7-C中均差异表达,37个高表达、9个低表达的piRNA以及18个在Hep3B-C/Hep3B,Huh7-C/Huh7中表达同增同减的miRNA,其中高表达的miRNA有9个,低表达的有9个,具有统计学意义(p-value<0.01,q-value<0.01)。
     通过生物信息学分析我们得到了很多差异表达的基因,接下来的任务任重而道远。我们需要通过进一步的实验进行验证这些基因在肝癌干细胞与肝癌细胞之间的功能差异,明确肝癌干细胞其独特的标记以及特性,从而最终找到能够特异性靶向肝癌干细胞的制剂,为最终能够彻底治愈肝癌提供基础。
It is commonly suggested tumors exist cancer stem cells, leading to its formation,persistence, recurrence and metastasis. But still, the isolated CSCs are too rare to supportthe subsequent experiment, emphasizing the culture and expansion CSCs in vitro isimportant. Using culture conditions that support the growth of undifferentiated CSCsmay help to devise novel diagnostic and therapeutic procedures. Recent studies havedocumented that serum-free medium with EGF and b FGF can expansion adult stem cellsand maintain pluripotency. This reminds us to find new culture medium for liver cancerstem cells. As far as we know, it is already available to separate and cultureCSC-like-cells from breast cancer, glioma, colon cancer and other malignancies. And it ispossible to maintain the potential of proliferation and differentiation in the serum-freeculture medium with EGF and b FGF. What we are striving for is optimal culturemedium for liver cancer stem cells.
     1. Optimized the culture medium for CSCs and expansion of human liver cancerstem cell-like cells from different sources
     In order to successfully enrich liver CSCs, we optimized our culture system firstly.After long time exploration and screening,7effective culture systems were selected.These systems contain ingredients such as DMEM/F12, Neurobasal-A medium, KO-SR,N2, B27, B27without VA, BSA, EGF, bFGF and2cytokines as FGF-10and IGF-1. Weconfirmed C3culture formula as the ultimate culture system, which contains B27withoutVA, EGF and the cytokines FGF-10and IGF-1.
     By using C3culture formula, human liver cancer stem cell-like cells from differentsources were cultured and expansion.We first cultured hepatoma cell lines includingHep3B and Huh7in our optimized culture medium. The results showed that Hep3B-Cand Huh7-C displayed clone-like forms and maintained the same state after3months cellpassage. Next we cultured CSC-like cells derived from cells lines with different invasionability. HCCLM3and MHCC97-H were high-invasive cell lines and MHCC97-L waslow-invasive one. All of these cell lines were able to form clone and be stable for cellpassage. We called them as HCCLM3-C, MHCC97-H-C and MHCC97-L-C.
     We also got cells from tumor tissue in patients. After surgical resection, liver tumortissues were dissociated into single cells. EHBH-HCSC-1and EHBH-HCSC-2cells grewwell for more than2months in vitro as undifferentiated tumor spheres in serum-freemedium. Another way to gain cells was to engraft patient’s tumor tissues and gave rise to subcutaneous tumors in severe combined immuno-deficient mice. We took thesubcutaneous tumor for digestion and culture. These tumor cells were cultured in2different culture mediums—one was in DMEM with10%FBS and the other one was inour optimized culture system. EHBH-3display epithelial-like growth tumor cells whilethe EHBH-HCSC-3show clone-like growth.
     2. Biological characteristics assay
     We assayed biological characteristics of these cells when we got the CSC-like cells.
     (1) Fluorescent quantitative PCR was used to detect the expression of Wnt-1,Wnt-1,CD90,Ep-CAM, NOTCH1, NOTCH2, NOTCH3in hepatocellularcarcinoma cells, such as: Hep3B、Huh7、MHCC97-L、HCCLM3and CSC-likecells, such as Hep3B-C、Huh7-C、MHCC97-L-C、HCCLM3-C; CD90expressedhigher in clonal cells than the corresponding adherent hepatocellular carcinomacells. Among them, CD90expression in Huh7-C was10times higher than Huh7cells. NOTCH mRNA expression level were decreased in clonal cells comparedto corresponding cell lines, but Wnt-1and Ep-CAM mRNA expression levelappeared inconsistent phenomenon.
     (2) We evaluated the cell source of these CSC-like cells using glycogen staining andICG uptake experiments, the results showed that these cells are indeed fromhepatocellular carcinoma cells,but not due to other cell contamination.
     (3) Furthermore, we performed in vitro Matrigel invasion assay to detect invasionability of Huh7-C and corresponding Huh7cells, the results showed that both ofthem had the strong invasiveness. Through the quantitative analysis we can seethat Huh7-C like cells invasion extent were nearly3times higher than Huh7.
     (4) Through the cell cycle analysis, the CSC-like cells Hep3B-C and Huh7-C weremainly in phase G0-G1, with percentage at74.09%and59.20%respectively,which were significantly different from cancer cell lines Hep3B and Huh7.
     (5) Based on both the RT-PCR and FCM analysis, expression of CD90in CSC-likecells were upregulated in different degrees. Consistent with previous study onCSC phenotype, CD90expression level in Hep3B-C was10times higher thanHep3B. Simultaneously, we detected the expression of cell surface antigenEp-CAM, and inconsistent with previous research, both two CSC-like cellsweakened their expression.
     (6) After surveying uptake of doxorubicin, Hep3B-C and Huh7-C took in lessdoxorubicin compared with corresponding normal HCC cell lines, and this was thought to be a critical condition. Further detection of cell survival in differentdrug concentrations verified Huh7-C wass more drug resistant than Huh7cellline. CSC-like cells show resistant difference even to sorafenib, the firstclinically confirmed liver cancer targeted drug. We applied Huh7-C cellscultured in serum-free medium for in vitro drug resistant experiment, finding46%cell survival after incubation in40μmol/L sorafinib for48hours, while thisconcentration makes adherent Huh7cells no survival. Taken together, theCSC-like cells cultured in serum-free medium showed better drug resistancethan corresponding adherent HCC cell lines.
     (7) ELISA quantitative detection results in both the adherent HCC cells andCSC-like cells showed great expression of VEGF, and the expression level wasinconsistent in different CSC-like cells from different HCC cell lines, whichmay be related to many factors.
     (8) Next we detected the differentiation capacity of clone-like cells in vitro. Wechoose CK8, CK18keratins whose presence is essentially restricted to Liver,while CK19expressed in biliary ducts and vascular cell marker Tie2. We foundthat Huh7expressed CK8and CK18but no CK19and Tie2, while Huh7-Cshowed weak or no expression of these4markers. Interestingly, differentiatedcells express all of these4markers. The result reminded us the clone cell had thepluripotency. If we can find the optimal condition to induced, we can learn morefrom the clone cells.
     (9) Tumorigentic potential of liver CSC-like cells were evaluated in vivo. Theinjection of1,000Huh7-C cells generated visible tumors after4-5weeks fromthe transplant while100,000live cancer cells Huh7did not induce tumorformation; We injected100MHCC97-L-C cells into NOD/SCID mices,the ratioof tumor formation is100%; For HCCLM3-C cell line, we injected5NOD/SCID mices,1,000cells per mice,the tumor formation rate is100%,whilethe tumor formation rate of corresponding adherent cancer cells is very low. Wefound100MHCC97-H-C cells could generate tumors, and when we injected10,000cells per mice, all of them could generate tumors, while the samequantity adherent MHCC97-H cells could not induce tumor formation. All thedata indicating that the CSC-like cells showed significant higher tumorogenicitythan corresponding adherent cancer cell lines.From the results above we concluded that we got a subset of cells which have the ability of CSCs, we can use them to do more research about the liver cancer stem cells.
     3. Deep sequencing-based expression profiling analysis of liver CSC-like cells
     Deep sequencing were carried out an in-depth analysis of the expression of mRNAsin three hepatoma cells(Hep3B,Huh7and MHCC97-H) and three liver cancer stem celllines(Hep3B-C,Huh7-C and MHCC97-H-C).We identified1012differentially expressedgenes overlapped among Huh7-C vs Huh7, MHCC97-H-C vs MHCC97-H and Hep3B-Cvs Hep3B groups via foldchange method. The406of1012genes whose fold change>2were up or down regulated consistently among these samples.90genes wereup-regulated and316genes were down-regulated. In order to identify the functionalclassification of these406genes, we performed functional enrichment analysis inGeneOntology database. In addition, to identify differential genes enriched in which kindof biological pathways, pathway enrichment analysis was performed in GeneGOdatabase via MetaCore software. We showed top10significant pathways whosecorrected p value was less than0.05. We chose hypergeometric distribution to calculatethe significance values (p values) and the FDR method to correct the p value.
     In addition,we applied HiSeq deep sequencing to carry out an in-depth analysis ofthe expression of sRNAs in two hepatoma cells(Hep3B,Huh7) and two liver cancer stemcell lines(Hep3B-C,Huh7-C).We first mapped the small RNA tags to genome by SOAPto analyze their expression and distribution on the genome.The small RNA tags wasannotated with known miRNA, repeat, piRNA, exons, introns, rRNA, scRNA, snoRNA,snRNA and tRNA from Genbank, Rfam and miRBase. Then we used Foldchange methodto find out the differentially expressed sRNAs between hepatoma and hepatoma stemcells. Poisson distribution was used to calculate the p value, and Benjamini multiplehypothesis testing was used to correct the p value. Results revealed4repeats,37highexpressed and9low expressed piRNAs,9high expressed and9low expressed miRNAsthat are significantly diffenrentially expressed between hepatoma and liver cancer stemcells with p-value<0.01and q-value<0.01.
     Through bioinformatics analysis we get a lot of differences betweengene-expression. We need to verify the different function of these genes in liver cancerstem cells and tumor cells by further experiments. Also we need to find the uniquemarker and characteristic of liver cancer stem cells. In the end to find specific targetedliver cancer stem cells drugs and cured liver cancer completely.
引文
[1]Clarke MF, Dick JE, Dirks PB, Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL,Visvader J, Weissman IL, Wahl GM. Cancer stem cells--perspectives on current status and futuredirections:AACR workshop on cancer stem cells. Cancer Res,2006,66(19):9339-9344
    [2]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T,Cortes JC,Minden M, Paterson B, CaligiuriM, Dick J. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature,1994,367(6464):645-648
    [3]Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stemcell classes that differ in self-renewal capacity.Nature Immunology,2004,5(7):738-743
    [4]Hemmati HD, Nakano I, Lazareff JA, Smith MM, Geschwind D H,Fraser MB, Kornblum HI..Cancerous stem cells can arise from pediatric brain tumors. PNAS,2003,100(25):15178-15183
    [5]Singh SK, Clarke ID, Terasaki M. Identification of a Cancer Stem Cell in Human Brain Tumors.Cancer Research,2003,63(18):5821-5828
    [6]Al-Hajj M.,Wicha M,S.Benito-Hernandez A,Morrison SJ, Clarke MF. Prospective identification oftumorigenic breast cancer cells. PNAS,2003,100(7):3983-3988
    [7]Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT,Jacks T. Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer. Cell,2005,121(6):823-835
    [8]Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F. Cancer stem cell characteristics inretinoblastoma. Mol Vis,2005,11:729-737
    [9]Fiegel HC, Glüer S, Roth B, Rischewski J, von Schweinitz D, Ure B, Lambrecht W, Kluth D.Stem-like Cells in Human Hepatoblastoma. J Histochem Cytochem,2004,52(11):1495-1501
    [10]Perez-Losada J, Balmain A. Stem-cell Hierarchy in Skin Cancer. Nature Rev Cancer,2003,3:434-443
    [11]Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells inthe C6glioma cell line. PNAS,2004,101:781–786
    [12]Setoguchi T, Taga T, Kondo T. Cancer Stem Cells Persist in Many Cancer Cell Lines. Cell Cycle,2004,3(4):414-415
    [13]Bralet MP, Pichard V, FerryN. Demonstration of direct lineage between hepatocytes andhepatocellular carcinoma in diethylnitrosamine-treated rats. Hepatology,2002,36(3):623-630
    [14]Grozdanov PN, Yovchev MI, DabevaMD. The oncofetal protein glypican-3is a novel marker ofhepatic progenitor/oval cells. Lab Invest,2006,86(12):1272-1284
    [15]Durable ML, Croager EJ, Yeoh GC, Quail EA. Generation and characterization of p53nulltransformed hepatic progenitorcells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis,2002,23(3):435-445
    [16]OlivaJ, FrenchBA, QingX, French SW. The identification of stem cells in human liver diseasesand hepatocellular carcinoma. Exp Mol Pathol,2010,88(3):331-340
    [17]Lee JS, Heo J, Libbrecht L, Chu IS, Novak PK, Calvisi DF, Mikaelyan A, Roberts LR, DemetrisAJ, Sun Z, Nevens F, Roskams T&Thorgeirsson SS. A novel prognostic subtype of humanhepatocellular carcinoma derived from hepatic progenitor cells. Nat Med,2006,12(4):410-416
    [18]Aravalli RN, Steer CJ, Sahin MB, Cressman EN.K. Stem cell origins and animal models ofhepatocellular carcinoma. Dig Dis Sci,2010,55(5):1241-1250
    [19]Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E,Reid LM, Minato H, Honda M, Kaneko S, Tang ZY, Wang XW. EpCAM-positive hepatocellularcarcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology,2009,136(3):1012-1024
    [20]Lee TK, Castilho A, Ma S, Ng IO. Liver cancer stem cells: implications for a new therapeutictarget. Liver Int,2009,29(7):955-965
    [21]O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiatingtumour growth in immunodeficient mice. Nature,2007,445(7123):106-110
    [22]Singh SK, Hawkins C, Clarke ID, Squire JA, BayaniJ, Hide T, Henkelman R M, Cusimano MD,Dirks PB. Identifcation of human brain tumour initiating cells. Nature,2004,432(7015):396-401
    [23]Suetsugu A, Nagaki M, Aoki H.Motohashi T, Kunisada T, Moriwaki H. Characterization ofCDl33+hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys ResCommun,2006,351(4):820-824
    [24]Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H. Sidepopulation purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties.Hepatology,2006,44(1):240-251
    [25]Sasaki A, Kamiyama T, Yokoo H, Nakanishi K, Kubota K, Haga H, Matsushita M, Ozaki M,Matsuno Y, Todo S. Cytoplasmic expression of CD133is an important risk factor for overall survivalin hepatocellular carcinoma. Once1Rep,2010,24(2):537-546.
    [26]Kohga K, Tatsumi T, Takehara T,Tsunematsu H, Shimizu S, Yamamoto M, Sasakawa A, MiyagiT, Hayashi N. Expression of CD133confers malignant potential by regulating metalloproteinases inhuman hepatocellular carcinoma. J Hepatol,2010,52(6):872-879
    [27] Zhou ZH, Ping YF, YuSC,YiL, Yao XH, ChenJH,CuiYH, BianXW. A novel approach to theidentification and enrichment of cancer stem cells from a cultured human glioma cell line. CancerLetters,2009,281:92–99
    [28]Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, Li ML, Tam KH, Lam CT, Poon RT, Fan ST.Identification of local and circulating cancer stem cells in human liver cancer. Hepatology,2008,47(3):919-928
    [29]Clarke MF, Morrison SJ, Wicha MS, Al-hajj, M. Isolation and use of solid tumor stemcells.United States Patent Application,2002/0119565,2002.
    [30]Yang ZF, Ho DW,Ng M N Lau, CK Yu,WC, Ngai,P Chu,PW,Lam,CT, Poon,RT, Fan,ST.Significance of CD90+cancer stem cells in human liver cancer. Cancer Cell,2008,13(2):153-166
    [31]ZhuZ, HaoXF, Yan MX, Yao M, Ge C,Gu JR, Li JJ. Cancer stem/progenitor cells are highlyenriched in CD133(+) CD44(+) population in hepatocellular carcinoma. IntJ Cancer,2010,126(9):2067-2078
    [32]Terris B, Cavard C, Perret C. EpCAM, a new marker for cancer stemcells in hepatocellularcarcinoma. J Hepatol,2010,52(2):280-281
    [33]Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim H M, Akita H, Takiuchi D, HatanoH, Nagano Hiroaki, Barnard GF, Doki Y, Mori1M. CD13is a therapeutic target in Human livercancer stem cells. J Clin Invest,2010,120(9):3326-3339
    [34]Hong-mei P, Gui-an C. Serum-free medium cultivation to improve efficacy in establishment ofhuman embryonic stem cell lines. Human Reprod,2006,21(1):217–222
    [35]Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA,Daidone MG. Propagation of Tumorigenic Breast In vitro Isolation and Cancer Cells withStem/Progenitor Cell Properties. Cancer Res,2005,65(13):5506-5511
    [36]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of aCancer Stem Cell in Human Brain Tumors. Cancer Res,2003,63(18):5821-5828
    [37]Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria RIdentification and expansion of human colon-cancer-initiating cells. Nature,2007,445(7123):111-115
    [38]Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M,Kornblum HI. Cancerous stem cells can arise from pediatric brain tumors. PNAS,2003,100(25):15178-15183
    [39]Fujii H, Honoki K, Tsujiuchi T, Kido A, Yoshitani K, Takakura Y. Sphere-forming stem-like cellpopulations with drug resistance in human sarcoma cell lines. Int J Oncol,2009,34(5):1381-1386
    [40]赵璇,冉宇靓,遇珑,孙力超,胡海,李春,孙立新,杨治华.人肝癌组织中肿瘤干细胞样细胞的分离培养及鉴定.中国肿瘤生物治疗杂志,2009,16(5):436-441
    [41]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB Identification of aCancer Stem Cell in Human Brain Tumors. Cancer Res,2003,63(18):5821-5828
    [42]Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, Mori M.Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells,2006,24(3):506-513
    [43Bentivegna A, Conconi D, Panzeri E, Sala E, Bovo G, Viganò P, Brunelli S, Bossi M, Tredici G,Strada G, Dalprà L. Biological heterogeneity of putative bladder cancer stem-like cell populationsfrom human bladder transitional cell carcinoma samples. Cancer Sci,2010,101(2):416-424
    [44] Li HZ, Yi TB, Wu ZY. Suspension culture combined with chemotherapeutic agents for sorting ofbreast cancer stem cells. BMC Cancer,2008,8:135
    [45] Nijmeijer BA, Szuhai K, Goselink HM, van Schie ML, van der Burg M, de Jong D, Marijt EW,Ottmann OG, Willemze R, Falkenburg JH.Long-term culture of primary human lymphoblasticleukemia cells in the absence of serum or hematopoietic growth factors. Exp Hematol,2009,37(3):376-385
    [46] Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC,Ignatova TN, Steindler DA. Stem-like cells in bone sarcomas: implications for tumorigenesis.Neoplasia,2005,7(11):967-976
    [47] Wilson H, Huelsmeyer M, Chun R, Young KM, Friedrichs K, Argyle DJ. Isolation andcharacterisation of cancer stem cells from canine osteosarcoma. Vet J,2008,175(1):69-75
    [48] Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, Li J. Cancer stem/progenitor cells are highly enrichedin CD133+CD44+population in hepatocellular carcinoma. Int J Cancer,2010,126(9):2067-2078
    [49] Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C,De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. CellDeath Differ,2008,15(3):504-514
    [50] Yang YC, Wang SW, Hung HY, Chang CC, Wu IC, Huang YL, Lin TM, Tsai JL, Chen A, KuoFC, Wang WM, Wu DC. Isolation and characterization of human gastric cell lines with stem cellphenotypes. J Gastroenterol Hepatol,2007,22(9):1460-1468.
    [51] Okamoto A, Chikamatsu K, Sakakura K, Hatsushika K, Takahashi G, Masuyama K.Expansionand characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. OralOncol,2009,45(7):633-639
    [52] Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T,Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, HarrisLN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K. Molecular Definitionof Breast Tumor eterogeneity. Cancer Cell,2007,11(3):259-273
    [53] Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rarecancer stem cells. Science,2007,317(5836):337
    [54] Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M,White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD,D'Angelica M, Kemeny N, Lyden D, Rafii S. CD133expression is not restricted to stem cells, andboth CD133+and CD133-metastatic colon cancer cells initiate tumors. J Clin Invest,2008,118(6):2111-2120
    [1]Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells.Science,1977,197(4302):461-3.
    [2]Rosenblum ML, Gerosa MA, Wilson CB, Barger GR, Pertuiset BF, de Tribolet N, Dougherty DV.Stem cell studies of human malignant brain tumors. Part1: Development of the stem cell assay and itspotential. J Neurosurg,58(2):170-6.
    [3]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature,2001,414(6859):105-11.
    [4]Bonnet D, Dick J E.Human acute myeloid leukemia is organized as a hierarchy that originates froma primitive hematopoietic cell.Nat Med,3(7):730-7.
    [5]Dick JE.Breast cancer stem cells revealed. Proc Natl Acad Sci USA,2003,100(7):3547–3549
    [6]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenicprostate cancer stem cells.Cancer Res,2005,65(23):10946-51.
    [7]Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stem cell—like sidepopulation cells in human nasopharyngeal carcinoma cell line.Cancer Res,2007,67(8):3716-24.
    [8] Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human corticalglial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia,2002,39(3):193-206.
    [9]Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F,Vescovi A. Isolation and characterization of tumorigenic,stem-1ike neural precursors from humang1ioblastoma. Cancer Res,2004,64(19):7011-21.
    [10]Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS. Isolationof cancer stem cells from adult g1ioblastoma multiforme.Oncogene,2004,23(58):9392-400.
    [11]Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M,Kornblum HI.Cancerous stem cells can arise from pediatric brain tumors.Proc Natl Acad Sci USA,2003,100(25):15178-83.
    [12]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD,Dirks PB.Identification of human brain tumors initiating cells.Nature,2004,432(7015):396-401.
    [13]Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells inthe C6glioma cell line.Proc Natl Acad Sci USA,2004,101(3):781-6.
    [14] Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB.Identification of acancer stem cell in human brain tumors. Cancer Res,2003,63(18):5821-8
    [15] Zucchi I, Sanzone S, Astigiano S, Pelucchi P, Scotti M, Valsecchi V, Barbieri O, Bertoli G,Albertini A, Reinbold RA, Dulbecco R.The properties of a mammary gland cancer stem cell. ProcNatl Acad Sci USA,2007,104(25):10476-81.
    [16]Oliver SE, Gunnell D, Donovan J, Peters TJ, Persad R, Gillatt D, Pearce A, Neal DE, Hamdy FC,Holly J. Screen-detected prostate cancer and the insulin-like growth factor axis: results of apopulation-based case-control study. Int J Cancer,2004,108(6):887-92.
    [17]Chioni AM, Grose R. Negative regulation of fibroblast growth factor10(FGF-10) by polyomaenhancer activator3(PEA3). Eur J Cell Biol,2009,88(7):371-84.
    [18]Nomura S, Yoshitomi H, Takano S, Shida T, Kobayashi S, Ohtsuka M, Kimura F, Shimizu H,Yoshidome H, Kato A, Miyazaki M.FGF10/FGFR2signal induces cell migration and invasion inpancreatic cancer. Br J Cancer,2008,99(2):305-13
    [19] Buccisano F, Rossi FM, Venditti A, Del Poeta G, Cox MC, Abbruzzese E, Rupolo M, Berretta M,Degan M, Russo S, Tamburini A, Maurillo L, Del Principe MI, Postorino M, Amadori S, Gattei V.CD90/Thy-1is preferentially expressed on blast cells of high risk acute myeloid leukaemias. Br JHaematol,2004,125(2):203-12.
    [20] Donnenberg VS, Donnenberg AD, Zimmerlin L, Landreneau RJ, Bhargava R, Wetzel RA, BasseP, Brufsky AM. Localization of CD44and CD90positive cells to the invasive front of breasttumors.Cytometry B Clin Cytom,2010,78(5):287-301.
    [21]Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, Scharfmann R. Fgf10isessential for maintaining the proliferative capacity of epithelial progenitor cells during earlypancreatic organogenesis. Development,2001,128(24):5109-17.
    [22]Hart A, Papadopoulou S, Edlund H. Fgf10maintains notch activation, stimulates proliferation,and blocks differentiation of pancreatic epithelial cells. Dev Dyn,2003,228(2):185-93.
    [23] Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V,Iso T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD. Notch mediates TGFalpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell,2003,3(6):565-76.
    [24]Phatak P, Cookson JC, Dai F, Smith V, Gartenhaus RB, Stevens MF, Burger AM. Telomereuncapping by the G-quadruplex ligand RHPS4inhibits clonogenic tumour cell growth in vitro and invivo consistent with a cancer stem cell targeting mechanism. Br J Cancer,2007,96(8):1223-33.
    [25]Du X, Ho M, Pastan I. New immunotoxins targeting CD123, a stem cell antigen on acute myeloidleukemia cells. J Immunother,2007,30(6):607-13.
    [1] Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H.Sidepopulation purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties.Hepatology,2006,44(1):240-51.
    [2]周广军,时坤,查文章,穆向明.肝癌干细胞中差异表达miRNAs对肝癌干细胞增殖和转移的影响。吉林医学,2011,32(15):2949-2951.
    [3] Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E,Reid LM, Minato H, Honda M, Kaneko S, Tang ZY, Wang XW. EpCAM-positive hepatocellularcarcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology,2009,136(3):1012-24.
    [4] Yamashita T, Budhu A, Forgues M, Wang XW..Activation of hepatic stem cell marker EpCAMby Wnt-beta-catenin signaling in hepatocellular carcinoma.Cancer Res,2007,67(22):10831-9.
    [5] Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, Budhu A, Zanetti KA, Chen Y, Qin LX,Tang ZY, Wang XW. EpCAM and alpha-feto-protein expression defines novel prognostic subtypes ofhepatocellular carcinoma.Cancer Res,2008,68(5):1451-61.
    [6] Mikhail S, He AR. Liver Cancer Stem Cells International. Int J Hepatol,2011:1-5.
    [7] Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2: An improved ultrafast toolfor short read alignment. Bioinformatics,2009,25(15):1966-7.
    [8] Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nat Methods,2008,5(7):621-8.
    [9] Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA.Global functional profiling of geneexpression. Genomics,2003,81(2):98-104.
    [10] Ogata, H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M.KEGG: Kyoto Encyclopedia ofGenes and Genomes. Nucleic Acids Res,1999,27(1):29-34.
    [1]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification oftumorigenic breast cancer cells. Proc Natl Acad Sci U S A,2003,100(7):3983-3988.
    [2]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenicprostate cancer stem cells. Cancer Res,2005,65(23):10946-10951
    [3]Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT,Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell,2005,121(6):823-835
    [4]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of acancer stem cell in human brain tumors. Cancer Res,2003,63(18):5821-5828
    [5]Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM.Identification of pancreatic cancer stem cells. Cancer Res,2007,67(3):1030-1037
    [6]Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science,1977,197(4302):461-463
    [7]Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, WahlGM. Cancer stem cells--perspectives on current status and future directions: AACR Workshop oncancer stem cells. Cancer Res,2006,66(19):9339-9344
    [8]Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell,2011,144(5):646-674.
    [9]Cho RW, Clarke MF. Recent advances in cancer stem cells. Curr Opin Genet Dev,2008,18(1):48-53
    [10]Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in thewar on cancer. Oncogene,2010,29(34):4741-4751
    [11]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC,Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymaltransition generates cells with properties of stem cells. Cell,2008,133(4):704-715
    [12]Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancerstem cells through epithelial-mesenchymal transition. PLoS One,2008,3(8): e2888
    [13]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B,Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation intoSCID mice. Nature,1994,367(6464):645-648
    [14]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD,Dirks PB. Identification of human brain tumour initiating cells. Nature,2004,432(7015):396-401
    [15]Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization ofCD133+hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys ResCommun,2006,351(4):820-824
    [16]O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiatingtumour growth in immunodeficient mice. Nature,2007,445(7123):106-110
    [17]Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD133, one of the markers of cancer stem cells inHep-2cell line. Laryngoscope,2007,117(3):455-460
    [18]Bralet MP, Pichard V, Ferry N. Demonstration of direct lineage between hepatocytes andhepatocellular carcinoma in diethylnitrosamine-treated rats. Hepatology,2002,36(3):623-630
    [19]Grozdanov PN, Yovchev MI, Dabeva MD. The oncofetal protein glypican-3is a novel marker ofhepatic progenitor/oval cells. Lab Invest,2006,86(12):1272-1284
    [20]Dumble ML, Croager EJ, Yeoh GC, Quail EA. Generation and characterization of p53nulltransformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis,2002,23(3):435-445
    [21]Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, Li ML, Tam KH, Lam CT, Poon RT, Fan ST.Identification of local and circulating cancer stem cells in human liver cancer. Hepatology,2008,47(3):919-928
    [22]Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.Nature,2006,444(7120):756-760
    [23]Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R.Identification and expansion of human colon-cancer-initiating cells. Nature,2007,445(7123):111-115.
    [24]Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. Identification andcharacterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology,2007,132(7):2542-2556
    [25]Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+HCC cancer stem cells conferchemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene,2008,27(12):1749-1758
    [26]Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, Guan XY. Aldehyde dehydrogenasediscriminates the CD133liver cancer stem cell populations. Mol Cancer Res,2008,6(7):1146-1153.
    [27] Terris B, Cavard C, Perret C. EpCAM, a new marker for cancer stem cells in hepatocellularcarcinoma. J Hepatol,2010,52(2):280-281
    [28]Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H,Nagano H, Barnard GF, Doki Y, Mori M. CD13is a therapeutic target in human liver cancer stemcells. J Clin Invest,2010,120(9):3326-3339
    [29]Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, Mori M.Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells,2006,24(3):506-513
    [30]Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H. Sidepopulation purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties.Hepatology,2006,44(1):240-251
    [31]Shi GM, Xu Y, Fan J, Zhou J, Yang XR, Qiu SJ, Liao Y, Wu WZ, Ji Y, Ke AW, Ding ZB, He YZ,Wu B, Yang GH, Qin WZ, Zhang W, Zhu J, Min ZH, Wu ZQ. Identification of side population cells inhuman hepatocellular carcinoma cell lines with stepwise metastatic potentials. J Cancer Res ClinOncol,2008,134(11):1155-1163
    [32]Lichtenauer UD, Shapiro I, Geiger K, Quinkler M, Fassnacht M, Nitschke R, Rückauer KD,Beuschlein F. Side population does not define stem cell-like cancer cells in the adrenocorticalcarcinoma cell line NCI h295R. Endocrinology,2008,149(3):1314-1322
    [33]Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC,Osawa M, Nakauchi H, Sorrentino BP. The ABC transporter Bcrp1/ABCG2is expressed in a widevariety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med,2001,7(9):1028-1034
    [34]Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST.Significance of CD90+cancer stem cells in human liver cancer. Cancer Cell,2008,13(2):153-166
    [35]Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E,Reid LM, Minato H, Honda M, Kaneko S, Tang ZY, Wang XW. EpCAM-positive hepatocellularcarcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology,2009,136(3):1012-1024
    [36]Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsivemammalian embryonic CNS precursor is a stem cell. Dev Biol,1996,175(1):1-13
    [37]Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS. In vitropropagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev,2003,17(10):1253-1270
    [38]Toma JG, Akhavan M, Fernandes KJ, Barnabé-Heider F, Sadikot A, Kaplan DR, Miller FD.Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol,2001,3(9):778-784
    [39]Tsuchiya A, Heike T, Fujino H, Shiota M, Umeda K, Yoshimoto M, Matsuda Y, Ichida T, AoyagiY, Nakahata T. Long-term extensive expansion of mouse hepatic stem/progenitor cells in a novelserum-free culture system. Gastroenterology,2005,128(7):2089-2104
    [1] Udagawa T. Tumor dormancy of primary and secondary cancers. APMIS,2008,116(7-8):615-628.
    [2] Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S,Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N,Wang J, Uhr JW. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res,2004,10(24):8152-8162.
    [3] Allan AL, Vantyghem SA, Tuck AB, Chambers AF. Tumor dormancy and cancer stem cells:implications for the biology and treatment of breast cancer metastasis. Breast Dis,2006-2007,26:87-98.
    [4] Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong LC, Jin Y, KatoM, Prévost-Blondel A, Chow P, Yang H, Abastado JP. Tumor cells disseminate early, butimmunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest,2010,120(6):2030-2039.
    [5] Wang J, Kim SK. Global analysis of dauer gene expression in Caenorhabditis elegans.Development,2003,130(8):1621-1634.
    [6] Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin Plant Biol,2002,5(1):33-36.
    [7] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell,2011,144(5):646-674.
    [8] Favaro E, Amadori A, Indraccolo S. Cellular interactions in the vascular niche: implications in theregulation of tumor dormancy. APMIS,2008,116(7-8):648-659.
    [9] Kenific CM, Thorburn A, Debnath J. Autophagy and metastasis: another double-edged sword.Curr Opin Cell Biol,2010,22(2):241-245.
    [10] Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK. Green fluorescent protein tagging ofextracellular signal-regulated kinase and p38pathways reveals novel dynamics of pathway activationduring primary and metastatic growth. Cancer Res,2004,64(20):7336-7345.
    [11] Aguirre Ghiso JA, Kovalski K, Ossowski L. Tumor dormancy induced by downregulation ofurokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol,1999,147(1):89-104.
    [12] Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin-Boes G, Houghton J,Locker GY, Tobias JS; ATAC Trialists' Group. Results of the ATAC (Arimidex, Tamoxifen, Alone orin Combination) trial after completion of5years' adjuvant treatment for breast cancer. Lancet,2005,365(9453):60-62.
    [13] Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat RevCancer,2007,7(11):834-846.
    [14] Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A,Thompson CB. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model oflymphoma. J Clin Invest,2007,117(2):326-336.
    [15] Maclean KH, Dorsey FC, Cleveland JL, Kastan MB. Targeting lysosomal degradation inducesp53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest,2008,118(1):79-88.
    [16] Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS,Bast RC Jr. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in humanovarian cancer cells. J Clin Invest,2008,118(12):3917-3929.
    [17] Rosen DG, Wang L, Jain AN, Lu KH, Luo RZ, Yu Y, Liu J, Bast RC Jr. Expression of the tumorsuppressor gene ARHI in epithelial ovarian cancer is associated with increased expression ofp21WAF1/CIP1and prolonged progression-free survival. Clin Cancer Res,2004,10(19):6559-6566.
    [18] Felsher DW. Tumor dormancy: death and resurrection of cancer as seen through transgenicmouse models. Cell Cycle,2006,5(16):1808-1811.
    [19] Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, Castiglione M, Tu D, ShepherdLE, Pritchard KI, Livingston RB, Davidson NE, Norton L, Perez EA, Abrams JS, Cameron DA,Palmer MJ, Pater JL. Randomized trial of letrozole following tamoxifen as extended adjuvant therapyin receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst,2005,97(17):1262-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700