费托合成含氧化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费-托合成是利用催化剂将H2和CO转化成以烃类混合物为主要产物的过程。由于石油资源的不断消耗以及原油价格的上涨,通过费-托合成技术,将煤、天然气转化为清洁的液体燃料及特殊化学品的工艺过程备受关注。对费-托合成过程的研究主要集中在催化剂的制备和工业反应器技术的开发。在费-托合成催化剂中,铁基催化剂由于操作灵活、价格低廉、具有较高的水煤气变换反应(WGS)活性,适用于低氢碳比的煤基合成气费-托合成。然而,由于费-托合成产物受ASF (Anderson-Schulz-Flory)分布规律的限制,难以高选择性的制备出某种特定的产物,这使得费-托合成技术的开发应用受到一定程度的限制。尤其对于目前应用较广泛的铁基催化剂来说,其反应体系比较复杂,副反应产生大量含氧化物。同时,影响催化剂活性和选择性的因素也多,如还原条件、助剂种类等。目前对于铁基催化剂上含氧化物的生成机理鲜少有研究。
     本文以铁基费-托合成催化剂为研究对象,考察了反应条件及助剂的改变引起的中间产物的变化,推测了费-托合成过程中含氧化物的生成机理,同时采用原位红外漫反射光谱(DRIFTS)、程序升温脱附-气质联用(TPD-GC-MSD)、化学捕获等手段验证了推测机理的有效性,研究了催化剂的表面中间产物与催化剂性能的内在联系。继而与现存的机理相比较,为费-托合成铁基催化剂的工业化应用提供基础支持。
     (1)Cu助剂的添加对含氧化物生成过程中表面物质及特性的影响
     利用共沉淀与浸渍法结合,制备了低温沉淀铁基催化剂,并在管式固定床中考评了催化剂的性能。同时采用程序升温脱附(TPD)、DRIFTS等技术对系列催化剂进行了表征,结果表明:适量铜的添加可以促进催化剂的还原。以浸渍法加入到沉淀铁催化剂中的铜,使得催化剂表面产生新的CO吸附位。当催化剂组成为100Fe/28Cu/5K/5La/17SiO2(原子比)时,催化剂表面高活性的桥式吸附最强。而过量Cu的添加会使得CO的吸附受到抑制,同时催化剂表面含氧中间产物的稳定性变弱,吸附分子的反应性能也减弱。DRIFTS结果显示,铁铜催化剂表面在费-托反应过程中存在亚甲二氧基醛、酰基、醛基、甲氧基等中间产物,认为是由一个一氧化碳分子插入金属-羟基基团并连续加氢生成的。而在未改性铁基催化剂上则并未检测到亚甲二氧基醛等中间产物。铜的添加为催化剂表面提供了更多的活性中心位。随着Cu助剂的添加,醇类选择性先减小后增加,而烃类选择性变化趋势刚好相反。催化剂反应性能考评和TPD-GC-MSD结果同时表明,总醇转化率与CH3CHO-TPD中低温脱附的丙酮存在量的关系。
     (2)反应条件对含氧化物生成过程中表面物质及特性的影响
     采用管式固定床反应器、DRIFTS等技术系统研究了反应条件(温度、压力)对低温沉淀铁基催化剂在费-托合成过程中的表面中间产物与催化剂性能的影响,并考察了两者之间的构效关系。DRIFTS结果表明,反应条件(温度、压力)对催化剂性能及表面特性有较大影响。温度升高,CO2、CH4含量增多,含氧化物选择性降低;压力增大,CO2、CH4含量减少,含氧化物选择性升高。这也表明含氧化物与碳氢化物间存在竞争吸附关系。同时,压力对表面卡宾的影响并不明显,卡宾在低压下就能迅速生成,因此并不是含氧化物生成的速控步骤。这一发现与管式固定床反应器的考评结果是相符的。温度升高含氧化物前驱体甲氧基易于生成。
     (3)低温沉淀铁基催化剂上费-托合成含氧化物生成机理的研究
     采用DRIFTS研究了沉淀铁基催化剂在费-托合成过程中中间产物的变化,并利用化学捕获反应考察了含氧化物的链增长方式。研究发现,铁基催化剂的表面中间产物具有以下几点反应共性:(ⅰ)醉可以和表面羟基结合生成表面烷氧基团;(ii)表面的吸附分子具有氧化性(ⅲ)甲醇、乙醛分子可以与一些基础化学物质,如品格氧等发生反应。Cu.Fe的相互作用影响了表面碳酸盐的加氢行为及表面中间产物的生成,同时增加了催化剂表面的活性中心,使得农面物质的稳定性增加。对CH30H+CO及CH3I+CO+H2两个反应的化学捕获实验农明,CO插入CH3-金属键或CH2-金属键形成酰基是C2+含氧化物生成的关键步骤。根据催化剂表面的中间产物种类及反应共性,提出了低温Fe/Cu/K/La/SiO2催化剂上含氧化物生成比较合理的过程。
     (4)高温沉淀铁基催化剂上费-托合成含氧化物生成机理的研究
     采用DRIFTS及化学捕获等技术对比研究了高温沉淀剂催化剂上费-托合成表面吸附物种的变化,探讨了含氧化物副产物的生成机理。结果显示,CO在高温沉淀铁基催化剂上有两种吸附态存在,分别是线式吸附和桥式吸附。且CO吸附在催化剂表面会生成大量含氧化物的的前驱体。费-托合成的原位实验捕获到一些较为关键的间产物,如甲氧基、表面乙酸盐、表面酰基等。同时发现高温沉淀铁基催化剂表面具有与低温铁基催化剂相似的反应共性。根据农面中间产物的种类和反应的特性,讨论了高温沉淀铁基催化剂上费-托合成生成含氧化物的比较合理的过程。
Fischer-Tropsch technology can be briefly defined as the means used to convert synthesis gas containing hydrogen and carbon monoxide to a mixture of hydrocarbon products. Interest in Fischer-Tropsch technology as a source of alternate fuels has been in spurts, driven by peaks in the price and availability of crude oil. The qualities of Fischer-Tropsch products are excellent and their environmental properties are being recognized as very valuable in the ongoing drive towards cleaner fuels and engines. The emphasis in this process is rather on the development of catalysts and industrial reactor. Iron-based catalysts are widely used because of their low cost, excellent flexibility and high activity for water-gas shift reaction in the production of liquid fuel from coal-based syngas with low H2/CO ratio. It is well known that the product spectrum of Fischer-Tropsch synthesis is determined by Anderson-Schulz-Flory (ASF) rule and it is difficult to produce a single product with high selectivity. Moreover, the products of Fischer-Tropsch synthesis with an iron catalyst consist of a complex multicomponent mixture of linear and branched hydrocarbons and oxygenates. A large number of oxygenates are produced with high selectivity from syngas. Many factors including additives and reaction conditions have effects on selectivity of the catalysts. However, the more recent studies on the formation of oxygenates did not focus on iron-based catalysts since the performances of iron-based catalysts were by far less interesting.
     This thesis conductes in situ diffuse reflectance infrared spectrometer (DRIFTS), temperature-programmed-desorption supplemented with GC-MSD and chemical trapping to investigate the effect of additives and reaction conditions on the nature of adsorbed species on the catalytic surface and the individual steps of oxygenates formation from syngas on iron-based catalysts during Fischer-Tropsch synthesis. The relationship between intermediates and reactivity of the catalyst is also discussed.
     (1) Effect of copper on the surface species and catalytic properties in the formation of oxygenates
     Low-temperature iron-based catalysts were prepared by a combination of coprecipitaion and impregnation techniques and evaluated in a tubular fixed bed reactor. The temperature-programmed desorption (TPD) and DRIFTS were used to study influence of copper loading on the surface species and catalytic properties of Fe/Cu/K/La/SiO2catalyst in the formation of oxygenates during Fischer-Tropsch synthesis. The results showed that addition of copper improved the reducibility of catalysts, however, the adsorption features of catalysts changed significantly. New CO adsorption sites were formed when copper was added by impregnation. Typically, bridged-form CO which was thought to be more active was enhanced with the composition of100Fe/28Cu/5K/5La/17SiO2(molar ratio, relative to iron). Extra copper would suppress CO adsorption as well as oxidation of adsorbed molecules. The stability of intermediates weakened simultaneously. Intemediates such as dioxymethylene, formyl, formaldehyde and methoxy species were found on catalyst surface during Fischer-Tropsch synthesis. They were thought to be formed by CO insertion into hydroxy-metal bond and continuous hydrogenation. Such intermediates were not found on unmodified iron-based catalysts. Addition of copper provided more active sites on surface. The selectivity towards oxygenates first decreased with copper loading, then increased rapidly after reached a minimum,The trend for hydrocarbons was opposite. Moreover, the quantitative estimates of the concentration of the surface species by TPD-GC-MSD allowed the illustration of copper effect on the catalytic properties.
     (2) Effect of reaction conditions on the surface species and catalytic properties in the formation of oxygenates
     Effect of reaction conditions including temperature and pressure on the surface species and catalytic properties on oxygenates formation during Fischer-Tropsch synthesis over a low-temperature precipitated iron-based catalyst was investigated by tubular fixed bed reactor and DRIFTS. It showed that the amount of CO2and CH4on surface increased with temperature and the selectivity of oxygenates decreased with temperature. The effect of pressure was opposite. A competition between the formation of hydrocarbons and alcohols was observed. It was found that carbene could reach a saturated extent of adsorption even at low pressure. This indicated that carbene was not the rate-controlling step in oxygenates synthesis which was confirmed by the results of reactivity measurements. It also showed that alkyl as well as methoxy species, which were thought to be C1product precursor, were greatly favored at high temperature.
     (3) Studies on oxygenates formation over low-temperature iron-based catalyst in Fischer-Tropsch synthesis
     In-situ DRIFTS technique and chemical trapping were employed to investigate the adsorbed species over the surface of low-temperature iron-based catalysts and mechanism of oxygenates formation in Fischer-Tropsch synthesis. The similarities of surface properties were observed:(i) reactivity of alcohols with free surface hydroxyls to give alkoxy species;(ii) reactivity of oxidizing on adsorbed molecules;(iii) reactivity of basic sites such as lattice oxygen with e.g., CH3OH or CH3CHO molecules. The interaction between iron and copper made the process of the hydrogenation of carbonaceous species different on the surface. Active sites and the stability of surface species were also enhanced. Acetyl as a key intermediate for oxygenates was observed by investigation of CH3OH+CO and CH3I+CO+H2. CO insertion into CH3-metal bond or CH2-metal bond to form an acetyl was the key step. The mechanism of oxygenates formation on Fe/Cu/K/La/SiO2catalyst was discussed based on the structure and properties of surface species.
     (4) Studies on oxygenates formation over high-temperature iron-based catalyst in Fischer-Tropsch synthesis
     The adsorbed species over the surface of high-temperature iron-based catalysts and mechanism of oxygenates formation in Fischer-Tropsch synthesis were also investigated by DRIFTS and chemical trapping. The results showed that both linear and bridged CO were observed on the surface. Numerous oxygenated precursors were also found by CO adsorption. In-situ DRIFTS observed the presence of some crucial intermediates, such as surface acetate, acetyl and methoxide. The similarities of surface properties were also observed with low-temperature iron-based catalyst. The mechanism of oxygenates formation was discussed based on the results.
引文
[1]Oelderik J M, Sie S T, Bode D. Progress in the catalysis of the upgrading of petroleum residue:A review of 25 years of R&D on Shell's residue hydroconversion technology [J]. Appl. Catal. A:General,1989,47(1):1-24
    [2]Geerlings J J C, Goes M F, Huisman H M. Catalyst and process for peparation of hydrocarbons [P]. Shell International Research,1998, USP 5981608
    [3]Dry M E. Present and future applications of the Fischer-Tropsch process [J]. Appl. Catal.A:General,2004,276(1-2):1-3
    [4]Jager B, Van Berge P, Steynberg A P. Developments in Fischer-Tropsch technology and its application [J]. Stud. Surf. Sci. Catal.,2001,136:63-68
    [5]Van Wechem V M H, Senden M M G. Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process [J]. Stud. Surf. Sci. Catal.,1994,81: 43-71
    [6]Steynberg A P. Introduction to Fischer-Tropsch technology [J]. Stud. Surf. Sci. Catal., 2004,152:1-63
    [7]Barrault J, Renard C. Selective hydrocondensation of carbon monoxide into light olefins with iron-manganese catalysts [J]. Appl. Catal. A:General,1985,14:133-143
    [8]Jiang M, Koizumi N, Yamada M. Adsorption Properties of Iron and Iron-Manganese Catalysts Investigated by in-situ Diffuse Reflectance FTIR Spectroscopy [J]. J. Phys. Chem.,2000,104:7636-7643
    [9]Yang Y, Xiang H, Xu Y, Bai L, Li Y. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis [J]. Appl. Catal. A:General, 2000,266(2):181-194
    [10]Butt J B. Carbide phases on iron-based Fischer-Tropsch synthesis catalysts part Ⅱ: Some reaction studies [J]. Catal. Lett.,1990,7(1-4):83-105
    [11]Jager B R, Espinoza R. Advances in low temperature Fischer-Tropsch synthesis [J]. Catal. Today,1995,23:17-28
    [12| Van Steen E. Schulz H. Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts [J]. Appl. Catal. A:General,1999, 186(1-2):309-320
    [13]Wender I. Reactions of synthesis gas [J]. Fuel Process Technol.,1996,48(3): 189-297
    [14]韩维屏.催化化学导论[M].北京:科学出版社,2003
    [15]吴宝山,田磊,张志新等.沉淀铁基催化剂在F-T合成中的研究与应用进展[J].化 学进展,2004,16(2):256-265
    [16]陈建刚,相宏伟,李永旺等.费-托法合成液体燃料关键技术研究进展[J].化工学报,2003,54(4):516-523
    [17]Schulz H. Short history and present trends of Fischer-Tropsch synthesis [J]. Appl. Catal.A:General,1999,186(1-2):3-12
    [18]Barbier A, Pereira E B, Martin G A. The role of bulk H and C species in the chain lengthening of Fischer-Tropsch synthesis over nickel [J]. Catal. Lett.,1997,45(3-4): 221-226
    [19]Van der Laan G P, Beenackers A A C M. Kinetics and selectivity of the Fischer-Tropsch synthesis:a literature review[J]. Catalyst Reviews,1999,41(3-4): 255-318
    [20]Kolbel H, Ralek M. Selective Fischer-Tropsch synthesis of short-chain olefin [J]. Chemistry & Industry,1979,31:700-702
    [21]Sie S T. Process development and scale up:IV case history of development of a Fischer-Tropsch synthesis process [J]. Rev. Chem. Eng.,1998,14(2):109-157
    [22]Ma W P, Ding Y J, Lin L W. Fischer-Tropsch synthesis over activated-carbon-supported cobalt catalysis:Effect of Co loading and promoters on catalyst performance [J]. Ind. Eng. Chem. Res.,2004,43:2391-2398
    [23]Rohr F, Lindvag O A, Holmen A, et al. Fischer-Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumia [J]. Catalysis Today,2000,58:247-254
    [24]Hoogengdonr J C, Salomon J M. Sasol:world's largest oil-from-coal plant [J]. Birt. Chem. Eng.,1957,308:238
    [25]Bukur D B, Lang X. Highly active and stable iron Fischer-Tropsch catalyst for synthesis gas conversion to liquid fuels [J]. Ind. Eng. Chem. Res.,1999,38: 3270-3275
    [26]Steynberg A P, Dry M E. Studies in Surface Science and Catalysis:Fischer-Tropsch Technology [M]. Elsevier Science & Technology Books,2004
    [27]凯姆主编.C1化学中的催化[M].北京:化学工业出版社,1989
    [28]Steynberg A P, Espinoza R L, Jager B, Vosloo A C. High temperature Fischer-Tropsch synthesis in commercial practice [J]. Appl. Catal. A:General,1999,186(1-2):41-54
    [29]杨霞珍,刘化章,唐浩东等.Fe、Co基费-托合成催化剂助剂研究进展[J].化工进展,2006,25(8):867-870
    [30]Gary J, Patricia M P, Yongqing Z, et al. Fischer-Tropsch synthesis:deactivation of noble metal-promoted Co/Al2O3 catalysts[J]. Appl. Catal. A:General,2002,233: 215-226
    [31]代小平,余产春,李然家.费-托合成CeO2助Co/SiO2催化剂的失活[J].催化学 报,2007,28(12):1047-1052
    [32]王秀芝,黄止而,张志新.TPSR法研究F-T合成铁基催化剂碳物种的形成和反应性[J].燃料化学学报,1990,12(2):143-148
    [33]徐振刚,罗伟,王乃继等.费-托合成催化剂载体的研究进展[J].煤炭转化,2008,31(3):92-95
    [34]Khodakov A Y, Constant A G. Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas [J]. J. Catal.,2002,206(2):230-241
    [35]李剑锋,侯学锋,代小平等.不同载体和前驱体对钴基催化剂浆相费-托合成性能的影响[J].石头大学学报,2004,28(5):94-98
    [36]Iglesia E. Design,synthesis and use of cobalt-based Fischer-Tropsch synthesis catalysis [J]. Appl. Catal. A:General,1997,161(1):59-78
    [37]贾丽涛,房克功,陈建刚等.还原气氛对钻锆共沉淀催化剂结构和费-托合成反应性能的影响[J].催化学报,2007,28(7):596-600
    [38]Shroff M D, Kalakkad D S. Activation of Precipitated Iron Fischer-Tropsch Synthesis Catalysts [J]. J. Catal.,1995,156:185-207
    [39]Blanchard F, Reymond J P. On the mechanism of the Fischer-Tropsch synthesis involving unreduced iron catalyst[J].J. Mol. Catal.,1982,17:171-181
    [40]Yuguo W, Burtron H D. Fischer-Tropsch synthesis:Conversion of alcohols over iron oxide and iron carbide catalysts [J]. Appl. Catal. A:General,1999,180:277-285
    [41]Bukur D B, Okabe K. Activation studies with a precipitated iron catalyst for fischer-tropsch synthesis:1. Characterization studies [J]. J. Catal.,1995,155:353-365
    [42]Watanabe M, Wissmann P. States of surface hydrogen under reaction conditions of the Fischer-Tropsch synthesis [J]. Catal. Lett.,1990,7:15-23
    [43]Wedler G. The adsorption states of nitrogen on polycrystalline iron films [J]. Surf. Sci., 1975,47(2):592-604
    [44]Schulz K H, Cox D F. Surface hydride formation on a metal oxide surface:the interaction of atomic hydrogen with Cu2O(100) [J]. Surface Science,1992,278(1-2): 9-18
    [45]Roland U, Braunschweig U T, Roessner F. On the nature of spilt-over hydrogen [J]. J. Mol. Catal. A,1997,127(1-3):61-84
    [46]Blyholder G. Molecular orbital view of chemisorbed carbon monoxide [J]. J. Phys. Chem.,1964.68(10):2772-2777
    [47]Hoffmann R. A chemical and theoretical way to look at bonding on surfaces [J]. Rev. Mod. Phys.,1988.60(3):601-628
    [48]Van Daelen M A. Li Y S. Newsam J M. Van Santen R A. Transition states for NO and CO dissociation on Cu(100) and Cu(111) surfaces[J]. Chem. Phys. Lett.,1994. 226(1-2):100-105
    [49]Hammer B, Morikawa Y, Norskov J K. CO chemisorption at metal surfaces and overlayers [J]. Phys. Rev. Lett.,1996,76(12):2141-2144
    [50]Eischens R, Pliskin A. The infrared spectra of adsorbed molecules [J]. Adv. Catal., 1958,10:1-56
    [51]Lahtinen J, Vaari J, Kauraala K, Soares E A, Van Hove M A. LEED investigations on Co(0001):the (3x3)R30°-CO overlayer [J]. Surface Science,2000,448(2-3):269-278
    [52]Miehalik G, Moritz W, Pfniar H, Menzel D. A LEED determination of the structures of Ru(001) and of CORu(001)-√3 ×√3 R30° [J]. Surface Science,1983,129(1): 92-106
    [53]Kevan S D, Davis R F, Rosenblatt D H, Yobin J G, et al. Structural determination of molecular overlayer systems with normal photoelectron diffraction:c(2 X 2) CO-Ni(001) and (√3× √3)R30° CO-Ni(111) [J]. Phys. Rev. Lett.,1981,46(25): 1629-1632
    [54]Sung S, Hoffmann R. How carbon monoxide bonds to metal surfaces [J]. J. Am. Chem. Soc.,1985,107(3):578-584
    [55]Morikawa Y, Mortensen J J, Hammer B, Norskov J K. CO adsorption and dissociation on Pt(111) and Ni(111) surfaces [J]. Surface Science,1987,386(1-3):67-72
    [56]Ciobica I M, Van Santen R A. Carbon monoxide dissociation on planar and stepped ru(0001) surfaces [J]. J. Phys. Chem. B,2003,107(16):3808-3812
    [57]Blyholder G, Lawless M. Hydrogen-assisted dissociation of carbon monoxide on a catalyst surface [J]. Langmuir,1991,7(1):140-141
    [58]Anderson R B. Catalysis [M]. New York:Reinhold Publ.,1956
    [59]Reymond J, Meriandeau P, Teichner S. Changes in the surface structure and composition of an iron catalyst of reduced or unreduced Fe2O3 during the reaction of carbon monoxide and hydrogen [J]. J. Catal.,1982,75(1):39-48
    [60]Bonzel H P, Krebs H J. On the chemical nature of the carbonaceous deposits on iron after CO hydrogenation [J]. Surface Science,1980,91(2-3):499-513
    [61]Dwyer D J, Hardenbergh J H. The catalytic reduction of carbon monoxide over iron surfaces:A surface science investigation [J]. J. Catal.,1984,87(1):66-76
    [62]Kaminsky M. Winograd N, Geoffroy G, Vannice M A. Direct SIMS observation of methylidyne, methylene, and methyl intermediates on a nickel(111) methanation catalyst [J].J. Am. Chem. Soc.,1986,108(6):1315-1316
    [63]Yamasaki H, Kobori Y, Naito S. Onishi T. Tamaru K. Infrared study of the reaction of H2+ CO on a Ru/SiO2 catalyst [J]. J. Chem. Soc. Faraday Trans..1981.77(1): 2913-2925
    [64]Erley W, McBreen P, Ibach H. Evidence for CHx surface species after the hydrogenation of CO over an Fe(110) single crystal surface [J]. J. Catal.,1983,84(1): 229-234
    [65]Wang C J, Ekerdt J G. Evidence for alkyl intermediates during Fischer-Tropsch synthesis and their relation to hydrocarbon products [J]. J. Catal.,1984,86(2): 239-244
    [66]Zheng C, Apeloig Y, Hoffmann R. Bonding and coupling of C1 fragments on metal surfaces [J]. J. Am. Chem. Soc.,1988,110(3):749-774
    [67]Van Bameveld W, Ponec V. The role of chemisorption of Fischer-Tropsch synthesis [J]. Ind. Eng. Chem. Prod. Res. Dev.,1979,18(4):268-271
    [68]Van Bameveld W, Ponec V. Reactions of CHxCl4x with hydrogen:Relation to the Fischer-Tropsch synthesis of hydrocarbons [J]. J. Catal.,1984,88(2):382-387
    [69]Brady R, Pettit R. Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction [J]. J. Am. Chem. Soc., 1980,102(19):6181-6182
    [70]Somorjai G A, Van Hove M A, Bent B E. Organic monolayers on transition-metal surfaces:the catalytically important sites [J]. J. Phys. Chem.,1988,92(4):973-978
    [71]Anderson A B, Choe S J. Ethylene hydrogenation mechanism on the platinum(111) surface:Theoretical determination[J]. J. Phys. Chem. B,1989,93(16):6145-6149
    [72]Calvalcanti F, Blackmond D, Oukaci R, Sayari A, Erdem-Senatalar A, Wender I. In situ chemical trapping of COH2 surface species [J]. J. Catal.,1988,113(1):1-12
    [73]Schulz H, Gokcebay H. Catalysis of organic reactions [M]. New York:Marcel Dekker, 1984
    [74]Ugo R. The contribution of organometallic chemistry and homogeneous catalysis to the understanding of surface reactions [J]. Catal. Rev. Sci. Hng.,1975,11(1):225-297
    [75]Shroff M D, Kalakkad D S, Coulter K E, et al. Aativation of precitated iron Fischer-Tropsch synthesis catalysts [J]. J. Catal.,1995,156:185-207
    [76]Wesner D A, Coenen F P, Bonzel H P. Influence of potassium on carbon monoxide hydrogenation over iron:a surface analytical study [J]. Langmuir,1985,1(4):478-487
    [77]Johnston O, Joyner R. Structure-function relationships in heterogeneous catalysis:The embedded surface molecule approach and its applications[J]. Stud. Surf. Sci. Catal., 1993.75:165-180
    [78]Storch H H, Golumbic N. Anderson R B. The Fischer-Tropsch and Related Synthesis [M]. New York:John Wiley & Sons,1951
    [79]Chiazuan J W. Evidence for alkyl intermediates during Fischer-Tropsch synthesis and their relation to hydrocarbon products[J]. J. Catal.,1984.86:239-244
    [80]Brady R C, Pettit R. On the mechanism of the fischer-tropsch reaction-the chain propagation step [J]. J. Am. Chem. Soc.,1981,103:1287-1289
    [81]Barneveld W A A, Ponec V. Reactions of CHxC14-x with hydrogen:Relation to the Fischer-Tropsch synthesis of hydrocarbons [J]. J. Catal.,1984,88:382-387
    [82]Zheng C, Apeloig Y. Bonding and coupling of C1 fragments on metal surfaces [J]. J. Am. Chem. Soc.,1988,100:749-774
    [83]Koster A D, Van Santen R A. Molecular orbital studies of the adsorption of CH3,CH2 and CH on Rh(111) and Ni(111) surface [J].J. Catal.,1991,127(2):141-166
    [84]Ciobica I M, Kramer G J, Neurock Q Ge M, et al. Mechanisms for chain growth in Fischer-Tropsch syhthesis over Ru(0001) [J]. J. Catal.,2002,212(2):136-144
    [85]Maitlis P M, Quyoum R, Long H C, et al. Towards a chemical understanding of Fischer-Tropsch reaction:alkene formation [J]. Appl. Catal. A:General,1999,138: 363-374
    [86]吉媛媛,相宏伟,李永旺等.Fischer-Tropsch合成烃生成机理研究进展[J].燃料化学学报,2002,30(2):186-192
    [87]马文平,刘全生,赵玉龙等.费-托合成反应机理的研究进展[J].内蒙古工业大学学报,1999,18(2):121-127
    [88]Ederdt J G, Bell A T. Evidence for intermediates involved in Fischer-Tropsch synthesis over Ru [J]. J. Catal.,1980,62:19-25
    [89]Bart J C J, Sneeden R P A. Copper-zinc oxide-alumina methanol catalysts revisited [J]. Catalysis Today,1987,2(1):1-124
    [90]Kiennemann A, Hindermann J P. Use of Probe Molecules to Predict the Performances of Alcohols Synthesis Catalysts [M]. Amsterdam:Elsevier,1988
    [91]Takeuchi A, Katzer J R. Mechanism of methanol formation [J]. J. Phy. Chem.,1981, 85(8):937-939
    [92]Lavalley J C, Saussey J, Rais T. Infrared study of the interaction between CO and H2 on ZnO:Mechanism and sites of formation of formyl species [J]. J. Mol. Catal.,1982, 17(2-3):289-298
    [93]Vedage G A, Herman R G, Klier K. Chemical trapping of surface intermediates in methanol synthesis by amines [J]. J. Catal.,1985,95(2):423-434
    [94]Tambawala H, Weiss A H. Homogeneously catalyzed formaldehyde condensation to carbohydrates:Ⅱ. Instabilities and Cannizzaro effects [J]. J. Catal.,1972,26(3): 388-400
    [95]Edwards J F. Schrader G L. In Situ FT-IR Spectroscopy of the adsorption of CO on methanol catalysts [J]. Applied Spectroscopy.1981.35(6):559-563
    [96]Vedage G, Klier K. Relative hydrogenation rates of carbon monoxide, hydrocarbons. and oxygenates [J]. J. Catal.,1982,77(2):558-560
    [97]Chinchen G C, Denny P J, Parker M S, et al.. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts:use of 14C-labelled reactants [J]. Appl. Catal. A:General,1987,30(2):333-338
    [98]Ramaroson E, Kieffer R, Kiennemenn A. Reaction of CO-H2 and CO2-H2 on copper-zinc catalysts promoted by metal oxides of groups Ⅲ and Ⅳ [J]. Appl. Catal. A:General,1982,4(3):281-286
    [99]Idriss H, Hindermann J P, Kieffer R. Characterization of dioxymethylene species over Cu-Zn catalysts [J]. J. Mol. Catal.,1987,42(2):205-213
    [100]Cant N W, Tonner S P, Trimm D L, Wainwright M S. Isotopic labeling studies of the mechanism of dehydrogenation of methanol to methyl formate over copper-based catalysts [J]. J. Catal.,1985,91(2):197-207
    [101]Takeuchi A, Katzer J R. Hthanol formation mechanism from carbon monoxide+ molecular hydrogen [J]. J. Phy. Chem.,1982,86(13):2438-2441
    [102]Takeuchi A, Katzer J R, Crecely R W. Mechanism of ethanol formation:The role of methanol [J]. J. Catal.,1983,82(2):474-476
    [103]Ichikawa M, Fukushima T. Mechanism of syngas conversion into C2-oxygenates such as ethanol catalysed on a SiO2-supported Rh-Ti catalyst [J]. J. Chem. Soc., Chem. Commun.,1985,(1):321-323
    [104]Brady R C, Pettit R. Mechanism of the Fischer-Tropsch reaction. The chain propagation step [J]. J. Am. Chem. Soc.,1981,103(5):1287-1289
    [105]Robert C B, Pettit R. Reaction of diazomethane on transition-metal surfaces and their relationship to the mechanism of the ficher-tropsch reaction [J]. J. Am. Chem. Soc. 1980,102(19):6181-6182
    [106]Ichikawa M. Cluster-derived supported catalysts and their use[J]. Chemtech,1982,12: 674-680
    [107]Sachtler W M H, Ichikawa M. Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium [J]. J. Phys. Chem.,1986, 90(20):4752-4758
    [108]汪海有,刘金波,许金来等.铑催化合成气制乙醇反应中CO断键途径的研究[J].分子催化,1994,8:111-116
    [109]Mori T, Masuda H, Imai H,et al. Kinetics, isotope effects and mechanism for the hydrogenation of carbon monoxide on suppored nickel catalysts [J]. J. Phy. Chem., 1982.86(14):2753-2760
    [110]Bianchi D. Bennett C O. Influence of the presence of Ih during the CO dissociation reaction on iron catalyst[J]. J. Catal.,1984.2:433-436
    [111]汪海有,刘金波.钒促铑催化剂上合成气反应中的H2/D2同位素效应[J].高等学校化学学报,1993,14(8):1157-1165
    [112]汪海有,刘金波,蔡启瑞等.合成气转化为乙醇的反应机理[J].物理化学学报,1991,7:681-687
    [113]Fox J R, Pesa F A, Curatolo B S. Formation of higher alcohols from methanol in the presence of metal acetylides [J]. J. Catal.,1983,90(1):127-138
    [114]Mazanec T J. On the mechanism of higher alcohol formation over metal oxide catalysts:I.A rationale for branching in the synthesis of higher alcohols from syngas [J].J. Catal.,1986,98(1):115-125
    [115]Tonner S P, Trimm D L, Wainwright M S, et al. The base-catalysed carbonylation of higher alcohols [J]. J. Mol. Catal.,1983,18(2):215-222
    [116]Evans J W, Casey P S, Wainwright M S, et al. Hydrogenolysis of alkyl formats over a copper chromite catalyst [J]. Appl. Catal. A:General,1983,7(1):31-41
    [117]Cant N W, Tonner S P, Trimm D L, Wainwright M S. Isotopic labeling studies of the mechanism of dehydrogenation of methanol to methyl formate over copper-based catalysts [J]. J. Catal.,1985,91(2):197-207
    [118]Takahashi K, Takezawa N, Kobayashi H. Mechanism of formation of methyl formate from formaldehyde over copper catalysts [J]. Chemistry Letters,1983,12(7): 1061-1084
    [119]Mueller L L, Griffin G L. Formaldhyde conversion to methanol and methyl formate on copper/zinc oxide catalysts [J]. J. Catal.,1987,105(2):352-358
    [120]Nunan J G, Bogdan C E, Klier K, et al. Methanol and C2 oxygenate synthesis over cesium doped Cu/ZnO and Cu/ZnO/Al2O3 catalysts:A study of selectivity and 13C incorporation patterns [J]. J. Catal.,1988,113(2):410-433
    [121]陆世维译.C1化学-创造未来的化学[M].(日)催化学会编,北京:宇航出版社,1990
    [122]Nieuwenhuys B E. Adsorption and reactions of CO, NO, H2 and O2 on group Vlll metal surfaces [J]. Surf. Sci.,1983,126:307-336
    [123]Doyen G, Ertl G. Theory of carbon monoxide chemisorptions on transition metals [J], Surf. Sci.,1974,43:197-229
    [124]Vannice M A. Catalytic activation of carbon monoxide on metal surfaces in Catalysis-Science and Technology [M]. Berlin:Springer,1982
    [125]Ponec V, Sachtler W M H. The reactions between cyclopentane and deuterium on nickel and nickel-copper alloys [J]. J. Catal.,1972,24(2):250-261
    [126]Yeh E B. Iron nitride in FT reaction [JJ. Silica-supported iron nitride in Fischer-Tropsch reactions:Ⅱ. Comparison of the promotion effects of potassium and nitrogen on activity and selectivity [J]. J. Catal.,1985,91(2):241-253
    [127]Kiennemann A, Barama A. Higher alcohol synthesis on modified iron based catalysts: Copper & molybdenum addition [J]. Appl. Catal.A:General,1993,99:175-194
    [128]Laan G P, Beenackers A. Kinetics and selectivity of the Fischer-Tropsch synthesis:A literature review [J]. Cat. Rev. Sci. Eng.,1999,41(3-4):255-318
    [129]Gao J, Wu B, Zhou L, Yang Y, Hao X, Xu J, Xu Y, Li Y. Irregularities in product distribution of Fischer-Tropsch synthesis due to experimental artifact [J]. Ind. Eng. Chem. Res.2012,51(36):11618-11628
    [130]Grzybek T, Klinik J, Papp H, Baerns M. Characterization of Cu and K containing Fe/Mn oxide catalysts for fischer-tropsch synthesis [J]. Chem. Eng. Tech.,1990,13(1): 156-161
    [131]Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E. Promoted iron-based catalysts for the Fischer-Tropsch synthesis:design, synthesis, site densities, and catalytic properties [J]. J. Catal.,2002,206(2):202-217
    [132]Jin Y, Datye A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature-programmed reduction [J]. J. Catal.,2000,196(1):8-17
    [133]Zhang C H, Yang Y, Teng B T, et al. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper [J]. J. Catal.,2006,237(2):405-415
    [134]张熠华.费-托合成催化剂中各组分相互作用对催化剂性能影响的研究[D]·中南民族大学,2005
    [135]O'Brien R J, Xu L, Spicer R L, Bao S, Milburn D R, Davis B H, Wachs I E, Duyer D J, Iglesia E. Characterization of Fe, Fe-Cu, and Fe-Ag Fischer-tropsch catalysts [J]. Appl. Catal.A:General,1984,12(2):201-217
    [136]Brady R, Pettit R. Mechanism of the Fischer-Tropsch reaction. The chain propagation step[J]. J.Am. Chem. Soc.,1981,103(5):1287-1289
    [137]Anderson R B, Seligman B, Schultz J F, Kelly R, Elliott M A. Fischer-Tropsch synthesis. Some important variables of the synthesis on iron catalysts [J]. Ind. Eng. Chem.,1952,44(2):391-397
    [138]Xu R, Yang C, Wei W, Li W H, Sun Y H, Hu T D. Ee-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas [J]. J. Mol. Catal..2004,221(1-2):51-58
    [139]Kiennemann A, Boujana S. Diagne C, Courty Ph, Chaumette P. Natural gas conversion [M]. Amsterdam:Elsevier Inc.,1991
    [140]Webb P A, Orr C. Analytical Methods in Fine Particle Technology [M]. New York: Cornell University.1997
    [141]Bukur D B. Okabc K. Rosynek M P. et al. Activation sudies with a precipitated iron catalyst for Fischer-Tropsch synthesis [J]. J. Catal.,1995,155:353-365
    [142]Clausen B S, Tops(?)e H, Morup S. Preparation and properties of small silica-supported iron catalyst particles:influence of reduction procedure [J]. Appl. Catal.A:General, 1989,48(2):327-340
    [143]Kock A J H M, Fortuin H M, Geus J W. The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres [J]. J. Catal.,1985,96(1): 261-275
    [144]Munteanu G, Ilieva L, Andreeva D. Kinetic parameters obtained from TPR data for α-Fe2O3 and Au/a-Fe2O3 systems [J]. Thermochim Acta,1997,291:171-177
    [145]Lohitharn N, Goodwin J G Jr, Lotero E. Fe-based Fischer-Tropsch synthesis catalysts containing carbide-forming transition metal promoters [J]. J. Catal.,2008,255(1): 104-113
    [146]Wachs I E, Dwyer D J, Iglesia E. Characterization of Fe, Fe-Cu, And Fe-Ag Fischer-Tropsch catalysts [J]. Appl. Catal.A:General,1984,12(2):201-217
    [147]Takeuchi A, Katzer J R, Schuit G C A. Inactivity of surface carbon to hydrogenation on supported rhodium [J]. J. Catal.,1983,82(2):351-354
    [148]Chu W, Kieffer R, Kiennemann A, Hindermann J P. Conversion of syngas to C1-C6 alcohol mixtures on promoted CuLa2Zr2O7 catalysts [J]. Appl. Catal.A:General,1995, 121(1):95-111
    [149]Lavalley J C, Saussey J, Lamotte J. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts [J]. J. Phys. Chem.,1990,94(15): 5941-5947
    [150]Xu R, Ma Z Y, Yang C, Wei W, Li W H, Sun Y H. The effect of iron on the adsorption properties of CuMnZrO2 catalysts studied by temperature-programmed desorption and FTIR spectroscopy [J]. J. Mol. Catal.,2004,218(2):133-140
    [151]Sheppard N, Nguyen T T. Advances in Infrared and Roman spectroscopy [M]. New York:Wiley-Interscience,1978
    [152]Tsubaki N, Sun S L, Fujimoto K. Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis [J]. J. Catal.,2001,199(2):236-246
    [153]Hindermann J P, Hutchings G J, Kiennemann A. Mechanistic aspects of the formation of hydrocarbons and alcohols from co hydrogenation [J]. Cat. Rev. Sci. Eng.,1993, 35(1):1-127
    [154]Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts:a diffuse reflectance FTIR study:Part I. Identification of surface species and methanation reactions on palladium/zirconia catalysts [J]. J. Mol. Catal.,1990.63(2):223-242
    [155]Weigel J. Koeppel R A, Baiker A. Wokaun A. Surface species in CO and CO2 hydrogenation over copper/zirconia:On the methanol synthesis mechanism [J]. Langmuir,1996,12(22):5319-5329
    [156]Yin H M, Ding Y J, Luo H Y, Zhu H J, He D P, Xiong J M, Lin L W. Influence of iron promoter on catalytic properties of Rh-Mn-Li/SiO2 for CO hydrogenation [J]. Appl. Catal.A:General,2003,243(1):155-164
    [157]Davis J L, Barteau M A. Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111) [J]. Surf. Sci.,1990,235(2-3): 235-248
    [158]Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts:A diffuse reflectance FTIR study:Part Ⅱ. Surface species on copper/zirconia catalysts:implications for methanol synthesis selectivity [J]. J. Mol. Catal.,1990,63(2):243-254
    [159]Greenler R G. An infrared investigation of xanthate adsorption by lead sulfide [J]. J. Chem. Phys.,1962,66(5):879-883
    [160| Busca G, Lamotte J, Lavalley J C, Lorenzelli V. FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces [J]. J. Am. Chem. Soc.,1987, 109(17):5197-5202
    [1611 Sexton B A. Observation of formate species on a copper (100) surface by high resolution electron energy loss spectroscopy [J]. Surf. Sci.,1979,88(2-3):319-330
    [162]Zamboni V, Zerbi G. The technique of neutron scattering and its application to polymers [J]. J. Polym. Sci.,1964,7:153-184
    [163) Francisco M F, Castro E A. A new implementation of stationary perturbation theory for separable quantum-mechanical problems [J]. J. Chem. Phys.,1993,98:6392-6394
    [164]Anton A B, Avery N R, Toby B H, Weinberg W H. Adsorption of acetone both on the clean ruthenium(001) surface and on the ruthenium(001) surface modified chemically by the presence of an ordered oxygen adatom overlayer [J]. J. Am. Chem. Soc.,1986, 108(4):684-694
    [165]Bruce E B, David G F, Richard F F. X.alpha.-SW studies of metal-ligand back-bonding in metal carbonyls:2.pi. or not 2.pi. [J]. Inorg. Chem.,1980,19(6): 1810-1811
    [166]Bukur D B, Lang X, Akgerman A, Feng Z. Effect of process conditions on olefin selectivity during conventional and supercritical Fischer-Tropsch synthesis [J]. Ind. Eng. Chem. Res.,1997.36(7):2580-2587
    [167]Liu Y. Teng B, Quo X. Li Y. Chang J. Tian L. Hao X. Wang Y, Xiang H, Xu Y, Li Y. Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischcr-Tropsch synthesis[J]. J. Mol. Catal. A.2007.272(1-2):182-190
    [168]Zhang X, Liu Y, Liu G, Tao K, Lin Q, Meng F, Wang D, Tsubaki N. Product distributions including hydrocarbon and oxygenates of Fischer-Tropsch synthesis over mesoporous MnO2-supported Fe catalyst [J]. Fuel,2012,92(1):122-129
    [169]Qian W, Zhang H, Ying W, Fang D. Product distributions of Fischer-Tropsch synthesis over Co/AC catalyst [J]. Journal of Natural Gas Chemistry,2011,20(4):389-396
    [170]Zhang C H, Wan H J, Yang Y, Xiang H W, Li Y W. Study on theiron-silica interaction of a co-precipitated Fe/SiO2 Fischer-Tropsch synthesis catalyst [J]. Catal. Comm., 2006,7(4):733-738
    [171]Monte F, Morales M P, Levy D, Fernandez A, Ocana M, Roig A, Molins E, O'Grady K. Formation of y-Fe2O3 isolated nanoparticles in a silica matrix [J]. C. J. Serna. Langmuir,1997,13:3627-3634
    [172]Schulz H, Claeys M. Reactions of a-olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor [J]. Appl. Catal.A: General,1999,186(1-2):71-90
    [173]Farias F E M, Sales F G, Fernandes F A N. Effect of operating conditions and potassium content on Fischer-Tropsch liquid products produced by potassium-promoted iron catalysts [J]. J. Nat. Gas Chem.,2008,17(2):175-178
    [174]Sarkar A, Keogh R A, Bao S, Davis B H. Fischer-Tropsch synthesis with promoted iron catalyst:Reaction pathways for acetic acid, glycol,2-ethoxyethanol and 1,2-diethoxyethane [J]. Appl. Catal.A:General,2008,341(1-2):146-153
    [175]Pour A N, Zamani Y, Tavasoli A, Shahri S M K, Taheri S A. Study on products distribution of iron and iron-zeolite catalysts in Fischer-Tropsch synthesis [J]. Fuel, 2008,87(10-11):2004-2012
    [176]Lin S D, Cheng H, Hsiao T C. In situ DRIFTS study on the methanol oxidation by lattice oxygen over Cu/ZnO catalyst [J]. J. Mol. Catal.,2011,342-343:35-40
    [177]Domok M, Toth M, Rasko J, Erdohelyi A. Adsorption and reactions of ethanol and ethanol-water mixture on alumina-supported Pt catalysts [J]. Appl. Catal. B: Enviromental,2007,69:262-272
    [178]Anton A B, Parmeter J E, Weinberg W H. Adsorption of formaldehyde on the Ru(001) and Ru(001)-p(2.times.2)O surfaces [J]. J. Am. Chem. Soc.,1986,108(8):1823-1833
    [179]Yang R, Fu Y, Zhang Y, Tsubaki N. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter [J]. J. Catal..2004.228(1):23-35
    [180]Sanchez-Escribano V. Larrubia Vargas M A. Finocchio E. Busca G. On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts:An IR study [J]. Appl. Catal.A:General.2007.316(1):68-74
    [181]Pichler H, Schulz H. Neuere erkenntnisse auf dem gebiet der synthese von kohlenwasserstoffen aus CO und H2 [J]. Chem. Ing. Tech.1970,42(18):1162-1174
    [182]Forster D. Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes [J]. Adv. Organomet. Chem.,1979,17:255-267
    [183]Fukushima T, Arakawa H, Ichikawa M. High-pressure i.r. spectroscopic evidence of acetyl and acetate species directly formed in CO-H2 conversion on SiO2-supported Rh and Rh-Mn catalysts [J]. J. Chem. Soc., Chem. Commun,1985,1(11):729-731
    [184]Tatsumi T, Muramatsu A, Yokota K, Tominaga H. Mechanistic study on the alcohol synthesis over molybdenum catalysts:Addition of probe molecules to CO-H2 [J]. J. Catal.,1989,115:388-398
    [185]Pijolat M, Perrichon V. Synthesis of alcohols from CO and H2 on a Fe/Al2O3 catalyst at 8-30 bars pressure [J]. Appl. Catal.A:General,1985,13:321-333
    [186]Takeuchi A, Katzer J R. Mechanism of methanol formation [J]. J. Phys. Chem.,1981, 85(8):937-939
    [187]Kiennemann A, Diagne C, Hindermann J P, Chaumctte P, Courty Ph. Higher alcohols synthesis from CO+2H2 on cobalt-copper catalyst:Use of probe molecules and chemical trapping in the study of the reaction mechanism [J]. Appl. Catal.A:General, 1989,53:197-216
    [188]Orita H, Naito S, Tamaru K. Mechanism of acetaldehye formation from the carbon monoxide-hydrogen reaction below atmospheric pressure over supported Rh catalysts [J]. J. Chem. Soc. Chem. Comm.,1984:150-151
    [189]Dry M E. The Fischer-Tropsch process-commercial aspects [J]. Catalysis Today, 1990,6(3):183-206
    [190]周朝辉,高景星.重氧水和合成气与卡宾簇合物的模型反映研究铑催化剂乙醇合成机理[J].分子催化,1990,4(3):256-257
    [191]Vargas M A L, Busca G, Costantino U, Marmottini F, Montanari T, Patrono P, Pinzari F, Ramis G. An IR study of methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts [J]. J. Mol. Catal.,2007,266(1-2):188-197
    [192]Couble J, Gravejat P, Gaillard F, Bianchi D. Quantitative analysis of infrared spectra of adsorbed species using transmission and diffuse reflectance modes:Case study: Heats of adsorption of CO on TiO2 and CuO/Al2O3 [J]. Appl. Catal.A:General,2009, 371(1-2):99-107
    [193]Hadjiivanov K, Tsoncheva T, Dimitrov M, Minchev C, KnoZinger H. Characterization of Cu/MCM-41 and Cu/MCM-48 mesoporous catalysts by FTIR spectroscopy of adsorbed CO[J]. Appl. Catal.A:General,2003.241 (1-2):331-340
    [194]Shimokawabe M. Asakawa H. Takezawa N. Characterization of copper/zirconia catalysts prepared by an impregnation method [J]. Appl. Catal.A:General,1990,59(3): 45-58
    [195]Zhou R, Yu T, Jiang X, Chen F, Zheng X. Temperature-programmed reduction and temperature-programmed desorption studies of CuO/ZrO2 catalysts [J]. Appl. Surf. Sci.,1990,148:263-270
    [196]Chafik T, Dulaurent O, Gass J T, Bianchi D. Heat of adsorption of carbon monoxide on a pt/rh/ceo2/al2O3 three-way catalyst using in-situ infrared spectroscopy at high temperatures [J]. J. Catal.,1998,179(2):503-514
    [197]Ma Z, Yang C, Wei W, Li W, Sun Y. Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation [J]. J. Mol. Catal.,2005,231(1-2):75-81.
    [198]Zou H, Chen S, Liu Z, Lin W. DRIFTS study of Cu-Zr-Ce-O catalysts for selective CO oxidation [J]. Int. J. Hydrogen Energy,2009,34(23):9324-9333
    [199]Robinson W R A M, Mol J C. Temperature-programmed desorption study on supported copper-containing methanol synthesis catalysts [J]. Appl. Catal.A:General, 1993,98(1):81-97
    [200]Bianchi D, Chafik T, Khalfallah M, Teichner S J. Intermediate species on zirconia supported methanol aerogel catalysts:Ⅲ. Adsorption of carbon monoxide on copper containing solids [J]. Appl. Catal.A:General,1994,112(1):57-73
    [201]Sambeth J E, Centeno M A, Paul A, Briand L E, Thomas H J, Odriozola J A. In situ DRIFTS study of the adsorption-oxidation of CH3OH on V2O5 [J]. J. Mol. Catal., 2000,161(1-2):89-97
    [202]Koizumi N, Bian G, Murai K, Ozaki T, Yamada M. In situ DRIFT studies of sulfided K-Mo/γ-Al2O3 catalysts [J]. J. Mol. Catal.,2004,207(2):173-182
    [203]Silva A M, Souza K R, Jacobs G, Graham U M, Davis B H, Mattos L V, Noronha F B. Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst [J]. Appl. Catal. B: Enviromental,2011,102(1-2):94-109
    [204]Petkovic L M, Rashkeev S N, Ginosar D M. Ethanol oxidation on metal oxide-supported platinum catalysts [J]. Catalysis Today,2009,147(2):107-114
    [205]Evans J C, Bernstein H J. The vibrational spectra of acetaldehyde and acetaldehyde-d1 [J]. Can. J. Chem.,1956,34(8):1083-1092
    [206]Demri D, Hindermann J P, Diagne C, Kiennemann A. Formation of C2 oxygenates on rhodium-containing catalysts during CO+H2 reactions. FTIR study of acetaldehyde adsorption [J]. J. Chem. Soc. Faraday Trans.,1994.90(3):501-506
    [207]He Y, Ji H. In-situ DRIFTS study on catalytic oxidation of formaldehyde over pt/tio2 under mild conditions [J]. Chin. J. Catal.,2010,31(2):171-175
    [208]Ei-Sayed Y, Bandosz T J. A study of acetaldehyde adsorption on activated carbons [J]. J. Coll. Interf. Sci.,2001,242(1):44-51
    [209]Busca G, Lorenzelli V. Infrared study of methanol, formaldehyde, and formic acid adsorbed on hematite [J]. J. Catal.,1980,66(1):155-161
    [210]Lorenzelli V, Busca G, Sheppard N. Infrared study of the surface reactivity of hematite [J]. J. Catal.,1980,66(1):28-35
    [211]Miller G J, Rochester C H, Waugh K C. Infrared study of the adsorption of formic acid on silica-supported copper and oxidised copper catalysts [J]. J Chem Soc., Faraday Trans.,1991,87:1491-1496
    [212]Demri D, Chateau L, Hindermann J P, Kiennemann A, Bettahar M M. C1-oxygenated molecules adsorbed on rhodium containing catalysts. Identification of a formyl species [J]. J. Mol. Catal.,1996,104(3):237-249
    [213]Herzberg G. Infrared and Raman Spectra of Polyatomic Molecules [M]. New York: Nostrand,1949
    [214]Falk M, Whalley E. Infrared spectra of methanol and deuterated methanols in gas, liquid, and solid phases [J]. J. Chem. Phys.,1961,34(5):1554-1569
    [215]Chateau L, Hindermann J P, Kiennemann A, Tcmpesti E. On the mechanism of carbonylation in acetic acid and higher acid synthesis from methanol and syngas mixtures on supported rhodium catalysts [J]. J. Mol. Catal.,1996,107(1-3):367-378
    [216]孙启文,蒋凡凯,杨文书,刘晓莉.一种高温费-托托合成铁基催化剂及其制备方法[P].中国,专利公开号CN1695803A,2005
    [217]Clarke D B, Lee D K, Sandoval M J, Bell A T. Infrared studies of the mechanism of methanol decomposition on Cu/SiO2[J]. J. Catal..1994,150(1):81-93
    [218]Chudek J A, Mcquire M W, Mcquire G W, Rochester C H. In situ FTIR study of CO-H2 reactions over RH/TiO2 catalysts at high pressure and temperature [J]. J. Chem. Soc. Faraday Trans.,1994,90(24):3699-3709
    [219]Saussey J, Lavalley J C, Rais T, Chakor-Alami A, Hindermann J P, Kiennemann A. The formation of formyl species from CO+H2 on ZnO:evidence and comparative study using IR spectroscopy and chemical trapping [J]. J. Mol. Catal.,1984,26(1): 159-163
    [220]Mark A B, Steven S C, Scott A H. Dynamic and kinetic modeling of isotopic transient responses for CO insertion on Rh and Mn-Rh catalysts [J]. Catal. Today,1998, 44(1-4):151-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700