用户名: 密码: 验证码:
大型煤制甲醇工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以煤为原料生产甲醇的工艺过程包括空气分离、煤气化、一氧化碳变换、合成气净化、甲醇合成、甲醇精馏等工艺单元。本文以年产180万吨煤制甲醇装置为背景,主要围绕水煤浆制甲醇工艺过程中的CO变换、合成气净化和甲醇合成三个工序,建立数学模型,通过模拟计算,研究分析了流程配置、热回收方案、工艺参数和主要设备大小,并进行了优化分析。
     通过热力学和动力学模拟,研究了变换工序的流程设置、工艺参数、催化剂装填量和催化剂在初、中、末期时调节CO总变换量的手段,认为煤制甲醇装置可以通过改变变换气气量有效调节CO总变换量,变换反应器的催化剂装填量可相对较少。利用流程模拟和夹点技术对水煤浆制甲醇装置变换工序的余热利用进行了模拟计算与分析,结果显示,在高温位区域传热温差较大,在低温位区域传热温差较小;提高变换反应器入口气体温度,使出变换反应器内的反应温度达到485℃左右,可副产11.OMPaG等级的高压蒸汽和0.5MPaG等级的低压蒸汽,此时高温区域的传热温差变小,但仍远远大于全网络的最小传热温差;反应器内的热点温度在几种主要耐硫变换催化剂的最高使用温度之下;副产高压蒸汽时增加的主要投资是变换炉的造价增加以及后续余热回收的换热设备投资增加,可在1.5年内回收。
     低温甲醇洗和NHD(Selexol)脱硫脱碳两种技术都可用于煤制甲醇装置,低温甲醇洗脱硫、脱碳的投资高于NHD法,但水、电、汽等公用工程消耗低于NHD法。Linde公司的低温甲醇洗技术比Lurgi公司的低温甲醇洗技术投资略高一些,但冷量、低压氮气、电等公用工程的消耗减小。低温甲醇洗系统含高压气体和强极性物质,由于缺少适合该体系的热力学方法,通用的流程模拟软件无法模拟该工艺过程,本文采用Soave-Redlich-Kwong (SRKH)立方型状态方程,结合Huron-Vidal昆合规则和非随机双流体Non-Random-Two-Liquid活度系数模型建立热力学模型,从已有的气体溶解度和气液平衡数据拟合获得了45对活度系数模型参数,可用于低温甲醇洗脱碳工艺的过程模拟,低压和高压系统的模拟结果和实际工业数据符合很好。应用该热力学模型对低温甲醇洗洗涤系统进行了模拟计算,结果表明可以通过改变贫液和半贫液的量来调节净化气中的CO2浓度,使甲醇合成反应在最佳条件下进行。
     以甲醇和CO2为关键组分,以CO和CO2加氢生产甲醇的2个反应为平行的独立反应,建立了气冷一水冷串联式甲醇合成反应器的一维拟均相数学模型;对气冷—水冷串联式甲醇反应器进行了模拟计算,得到了各反应器内的温度分布和浓度分布,考察了温度,操作压力以及入塔气中CO2浓度对串联式反应器中甲醇合成反应的影响。结果表明,水冷式反应器入口气体温度以及饱和沸腾水温度对甲醇产量影响很小,水冷式反应器入口气体温度对各反应器中的温度分布影响较大;随着操作压力的升高,水冷式反应器中甲醇产量增加,气冷式反应器中甲醇产量降低,串联式反应器中总甲醇产量增加;随着入塔气中CO2浓度的增加,气冷式反应器出口温度及水冷式反应器入口温度均增加,甲醇产量降低,新鲜气中CO2浓度不宜太高。对不同负荷(50%~110%)下年产180万吨甲醇的气冷—水冷串联式反应器进行了模拟计算,结果表明气冷—水冷串联式反应器对不同生产负荷都具有较好的适应性。
The process for producing methanol taking coal as feedstock is composed of such units as air separation, coal gasification, CO-shift, syn-gas purification, methanol synthesis and methanol rectification. This article, by taking a coal-to-methanol plant in the capacity of1,800,000t/a as a background, has set up a mathematical model centering on CO-shift, syn-gas purification and methanol synthesis units included in methanol production process taking coal-slurry as feedstock and with the simulation calculations the process configuration, scheme for heat recovery, process parameters and the size of main equipment have been studied and optimized analysis conducted.
     With both the thermo-dynamic and dynamic simulations the process configuration, process parameters, catalyst charges and the means for regulating the total shifted CO respectively at initial, intermediate and last phase in the shift-conversion unit have been studied and it takes that a coal-to-methanol plant can effectively regulate the total shifted CO by changing the volume of shifted gas and the quantity of loaded catalyst into the shift-conversion reactor may comparatively be less. Also calculations and analysis for the surplus-heat utilization of the CO-shift unit in the methanol plant from coal-slurry are carried out by taking process simulations and pinch technology:there is a bigger heat-transfer temperature difference in high-temperature region whereas a smaller difference in low-temperature region, by increasing the gas temperature in the shifted reactor the temperature of the reactor may reach around485℃and this may by-produce HP-steam of11.0MPaG and LP-steam of0.5MPaG; the heat-transfer temperature difference becomes smaller, but still far bigger than the minimum heat-transfer temperature difference over the full network:the hot-point temperature inside the reactor is still below the maximum service temperature for several typical S-resistant shift-conversion catalysts and the increased major investment for the by-produced HP-steam is the addition of reformer cost of manufacture and the investment increase of heat-exchanging equipment for follow-up surplus-heat recovery, the increased investment can be recovered in1.3years.
     Both the Rectisol and NHD(Selexol) de-sulfuration and de-carbonization technologies may be applied to coal-to-methanol plant with higher investment of the former than tie latter and lower utility consumptions of water, power and steam:the investment for Rectisol technology of Linde is a little bit higher than that of Lurgi but the consumptions of refrigeration. LP-steam and electricity lower. Since the Rectisol system involves HP-gas and material of strong polarity and there is short of thermo-dynamic method suitable for the system, the process can not be simulated with universal software for process simulation, this article has employed a cubic state equation of Soave-Redlich-Kwong and a thermo-dynamic model set up by combining with Huron-Vida mixed rule and Non-Random-Two-Liquid activity coefficient model has obtained45pairs of parameters of activity coefficient model through a data fit from the existing gas solubility and gas-liquid balance data that can be used in the simulation of Rectisol de-carbonization process and there is a good coincidence between the simulation results of both high and low pressure systems and actual industrial data. Also simulation calculations taking this thermo-dynamic model has been conducted for Rectisol scrubbing system and the results show that the CO2concentration in the purified gas can be regulated by changing the volume of barren and semi-barren liquor to make the methanol synthesis reaction proceed under best condition.
     A mathematical model of one-dimensional plan homogenous phase to implement a simulation calculation of methanol synthesis reactor of serial air cool-water cool type has been set up by taking methanol and CO2as key component and the hydrogenation reaction of CO and CO2as independent reaction; both the temperature and concentration distribution in each reactor have been obtained from such simulation calculation and the effect on the methanol synthesis in reactors of such type by temperature, pressure and CO2concentration in the introduced gas has been investigated. The results show that the inlet gas temperature at water-cooled reactor and the temperature of saturated boiling water have a little effect on the methanol yield, but the inlet gas temperature has a bigger effect on the temperature distribution in each reactor; with the rise of operating pressure the methanol output in water-cooled reactor increases whereas the output of methanol in air-cooled reactor reduces with the increase of total methanol output in serial reactors; with the increase of CO2concentration in the introduced gas both the outlet temperature at air-cooled reactor and the inlet temperature at water-cooled reactor increase and methanol output reduces. CO2concentration in virgin gas should not be too high. A simulation calculation is also carried out for reactors of a serial air cool-water cool type in a1,800.000t/a methanol plant at different load (50%~110%)and the results show that the reactor of such type has a better adaptability at different production load.
引文
[1]廖华,魏一鸣.“十二五”中国能源和碳排放预测与展望[J].战略与决策研究,2011,26(2):150-153.
    [2]周传雷.我国煤制烯烃产业现状及发展前景[J].化学工程师,2011,(8):42-45.
    [3]龚华俊.“十二五”期间我国煤制烯烃产业发展的几点建议[J].化学工业,2010,28(3):1-3.
    [4]王辅臣,于广锁,龚欣,等.大型煤气化技术的研究与发展[J].化工进展,2009,28(2):181-188.
    [5]亢万忠,张骏驰等.适合中国石化特点的煤气化技术选择[R].中国石化集团宁波技术研究院,2009.
    [6]于遵宏,王辅臣等.煤炭气化技术[M].北京:化学工业出版社,2010.
    [7]Smith R V, David B M. Vimalchand P, Liu G, Longanbach J. Operation of the PDSF transport gasifier[C]. Gasification Conference. San Francisco,2002.
    [8]Rick S. KBR's Transport Gasifier (TRIGTM)-Advanced gasification technology for fuels production from low rank coals[C]. Sinopec-KBR Technology Conference. Beijing 2009.
    [9]Patel J G, Wheeler G F. The roles of pilot plants in the development of U-gas commercial reactor design[C]. AIChE Annual Meeting. San Fransisco,1984:25-30.
    [10]汪家铭.SES煤气化技术及其在国内的应用[J].化肥设计,2010,48(5):13-17.
    [11]埃新斯新气体有限公司.SES气化系统褐煤工业气化技术介绍[J].氮肥技术,2011,32(1):21-24.
    [12]于海龙,刘建忠,张桂芳,等.水煤浆气化炉的形式和新型气化炉的开发[J].煤炭转化,2007,30(1):21-25.
    [13]邵群颖,董宏海,江涌,Jimmy Wu全球第一套德士古气化技术建设的联合循环发电装置—Tampa电力公司Polk电站的运行情况[J].化肥工业,2000,27(5):21-25.
    [14]王辅臣,于广锁,龚欣,等.大型煤气化技术的研究与发展[J].化工进展,2009,28(2):173-180.
    [15]姚强,等.洁净煤技术[M].北京:化学工业出版社,2006.
    [16]郭树才.煤化工工艺学[M].北京:化学工业出版社,2006.
    [17]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2004.
    [18]唐宏青.碳一化工新技术概论[M].成都:氮肥与甲醇编辑部,2006.
    [19]汪家铭Shell煤气化技术及其在国内的应用实践[J].泸天化科技,2011,(1):5-12.
    [20]唐宏青大型现代煤气化工艺简评[J].化工设计通讯,2011,37(2):7-12.
    [21]刘伟.航天炉粉煤加压气化技术浅析[J].化肥工业,2010,37(1):55-57.
    [22]吴胜军.HT-L与Shell及Texaco粉煤气化技术的比较[J].化肥工业,2011,38(3):10-12.
    [23]朱玉芹,耿胜楚,李彦,谷政权.气流床煤气化技术分析[J].化工技术与开发,40(10):79-82.
    [24]GE Energy,华东理工大学,等.某煤制甲醇项目报价资料[R].宁波:中国石化集团宁波工程有限公司,2007.
    [25]曾纪龙.大型煤制甲醇的气化和合成工艺选择[J].煤化工,2005,(5):1-5.
    [26]冯亮杰,郑明峰,等.煤制甲醇项目的煤气化技术选择[J].洁净煤技术,2011,17(2):34-38.
    [27]龚华俊,陈希章,曲风臣.2011年煤制烯烃行业现状及2012年发展关注[J].化学工业,2011,增刊(化学工业年度行业分析报告):109-1126.
    [28]蒋德军,唐宏青,郑明峰,房鼎业.水煤浆制甲醇装置工艺方案研究分析[J].煤化工,1998,(2):6-12.
    [29]余汉涛,陈依屏,等.耐硫变换催化剂有机硫水解和氢解功能的研究[J].齐鲁石油化工,2008,36(3):175-177.
    [30]王迎春.QCS-01耐硫变换催化剂的反应动力学与变换反应器的模拟.浙江大学硕士学位论文,2006.
    [31]李云锋,于元章,王龙江.一氧化碳变换催化剂的应用与发展[J].广东化工,2009,36(10):88-90.
    [32]李速延,周晓奇.CO变换催化剂的研究进展[J].煤化工,2007,(2):31-34.
    [33]陈延浩.国内外中高压耐硫变换催化剂综述[J].化学工业与工程技术,2010,(2):37-41.
    [34]纵秋云Shell粉煤气化—耐硫变换工艺及其催化剂[J].煤化工,2009,(2):35-38.
    [35]周红军,张文慧.采用轴径向技术有效解决固定床反应器阻力降的快速提高[J].化肥工业,2002,29(6):25-27.
    [36]程喆元.轴径向变换炉应用简介[J].大氮肥,1999,22(6):382-384.
    [37]王玉珍,王毓秀.轴径向变换反应器实现国产化[J].化肥设计,2001,39(1):38.
    [38]王东.轴径向变换炉的设计[J].甘肃科技,2004,20(6):22-24.
    [39]上海国际化建工程公司.变换反应器与下游换热设备的直连结构[P].中国专利:201664603,2010-12-08.
    [40]李琼玖.天然气制氨一次等温变换炉设计的优化[J].四川化工,1997,(1):54-56.
    [41]北京航天万源煤化工.工程技术有限公司.一种等温径向变换反应器[P].中国专利,102059078.2011-05-18.
    [42]焦文霞MDEA在气体净化领域的应用[J].河南化工,2003,(8):8-10.
    [43]李正西.塞勒克索尔(Selexol)气体净化工艺[J].化工厂设计,1981,(3):48-60.
    [44]朱世勇NHD气体净化技术的开发和应用[J].化肥工业:1994,(6):13-17.
    [45]林民鸿,周彬,樊玲.NHD净化技术的应用与开拓[J].化肥工业,2006,33(1):18-20.
    [46]林民鸿.NHD气体净化技术[J].化肥设计,1998,36(5):52-55.
    [47]秦旭东,李正西,宋洪强,吴锡章,钱明理.NHD气体净化技术在甲醇生产中的应用[J].化肥设计,2008,46(4):53-56.
    [48]Weiss H. Rectisol wash for purification of partial oxidation gases[J]. Gas. Sep. &Purification.1998,2:171-176.
    [49]The Rectisol(?)-Process Lurgi's leading technology for purification and conditioning of synthesis gas[R]. German:Lurgi.
    [50]刘尚享.煤制甲醇装置酸性气体脱除工艺技术的选择[J].天津化工,2011,25(1):44-45.
    [51]汪家铭.低温甲醇洗净化工艺技术进展及应用概况[J].江苏化工,2007,35(4):13-17.
    [52]蒋保林.煤制甲醇项目净化工艺分析[J].山西化工,2009,29(1):47-49.
    [53]俞裕国,张述伟,王长英.物理吸收回收酸性气的方法[P].CN 1113824,1994.
    [54]张述伟,曲平,杜亚明,等.一种节能型原料气净化甲醇洗方法[P].CN1377825,2001.
    [55]张述伟,俞裕国,王长英等.低压原料气适用的低温甲醇洗方法[P].CN 102078742,2010.
    [56]马斌.常温甲醇洗技术开发[J].煤化工,1994,(3):35-37.(11):29-32.
    [57]王莉.合成甲醇催化剂的研究进展[J].化肥设计,2007,45(3):55-58.
    [58]赵忠尧.合成甲醇催化剂的研究及合成反应优化操作[D].大庆石油学院,2006.
    [59]何刚.铜系甲醇合成催化剂研究开发现状及展望[J].石油与天然气化工,2010,39(1):22-27.
    [60]慈志敏.一氧化碳加氢合成甲醇用铜基催化剂的研究[D].成都:四川大学,2006.
    [61]刘家强.纳米级铜锌铝催化剂的合成、表征及评价[D].济南:山东师范大学,2009.
    [62]杜娜.合成甲醇催化剂的发展综述[J].石家庄职业技术学院学报,2003,15(2):6-8.
    [63]Mahajian D, Spienza R S, et al. Homogeneous catalyst formulations for rnethanol production[P]. US4935395,1990.
    [64]Palekar V M, Tiemey J W, Wender I. Alkali compounds and copper chromite as low-temperature slurry phase methanol catalysts[J].Appl Catal,1993,103:105-122.
    [65]Palekar V M, Jung H, Tierney J W, et al. Slurry phase synthesis of methanol with a potassium methoxide/copper chromite catalytic system[J]. Appl Catal.1993,102:13-34.
    [66]郝立庆,单邵纯,等CuCrAl和CuCrZr低温液相合成甲醇催化剂的研究[J].催化学报,2003.24(9):711-715.
    [67]王平尧.甲醇合成反应器的分析与选择[J].维纶通讯,2007,27(4):9-14.
    [68]Rodney J D. Possibilities for the development of large capacity methanol synthesis reactors for synfuel production[J]. Industrial and Engineering Chemistry Research,1988, 27(4):616-624.
    [69]Supp E. Improved methanol process[J]. Hydrocarbon Processing,1981,60(3):71-75.
    [70]Smith R E, Humphreys G C, Griffiths G W. Optimize large methanol plants[J]. Hydrocarbon Processing,1984,63(5):95-104.
    [71]唐宏青,相宏伟.煤化工工艺技术评价与展望[J].燃料化学学报,2001,29(3):193-200.
    [72]Dybkyaer D I. Topsφe Methanol Technology[J]. Chemical economy and engineering, 1981,13(6):17-25.
    [73]Hirotani K, Nakamura H, Shoji K. Optimum catalytic reactor design for methanol synthesis with TEC MRF-Z reactor[J]. Catalysis Surveys from Japan,1998,2:99-106.
    [74]应卫勇,房鼎业,等.管壳外冷—绝热复合式固定床催化反应器[P].CN03231767.0,2004.
    [75]何永昌,等.大甲醇技术及其应用[J].西部煤化工,2003,(16):8-73.
    [76]房鼎业,应卫勇,等.内冷管型甲醇合成反应器的热稳定性[J].石油化工,1987,16(8):577-583.
    [77]姚佩芳,房鼎业,等.在C301铜基催化剂上管壳型副产蒸汽甲醇合成反应器的数学模型[J].天然气化工,1990,(3):37-41.
    [78]应卫勇,房鼎业,朱炳辰.鲁奇甲醇生产装置数学模拟和工况分析[J].化学反应工程与工艺,1992,8(1):71-80.
    [79]应卫勇,洪学伦,房鼎业,等.鲁奇甲醇合成反应器催化床二维模型的正交配置解[J].华东化工学院学报,1992,18(5):566-573.
    [80]房鼎业,应卫勇,朱炳辰.球形催化床甲醇合成反应器的非均相数学模型[J].化工学报,1995,46(2):129-136.
    [81]房鼎业,应卫勇,朱炳辰.径向流动甲醇合成反应器的数学模型与优化设计[J].高校化学工程学报,1995,9(3):244-251.
    [82]鲍清华,曹发海,应卫勇.螺旋冷管副产蒸汽型甲醇合成反应器的数学模拟[J].华东理工大学学报.1998,24(3):267-273.
    [83]应卫勇,房鼎业,朱炳辰,孙松良.大型甲醇合成反应器模拟设计[J].华东理工大学学报,2000,26(1):5-9.
    [84]石玉千.李涛,应卫勇,房鼎业.大型甲醇合成反应器工况的数值分析[J].高校化学工程学报,2006,20(3):489-493.
    [85]张存旺,李成岳Lurgi型甲醇合成反应器的模型化(Ⅰ)工况模拟与适宜操作条件[J].化工学报.1994,45(4):400-406.
    [86]李建伟,李成岳,蒋小川.管径变化对Lurgi型甲醇合成反应器性能的影响[J].北京化工大学学报,2000,27(4):1-5.
    [87]李建伟,李成岳.C302铜基甲醇合成催化剂颗粒设计(Ⅱ)颗粒结构对Lurgi型合成反 应器性能的影响[J].燃料化学学报,2002,30(6):545-550.
    [88]胡国静,张树增,王健红Lurgi型甲醇合成反应器的动态模拟[J].计算机与应用化学,2006,23(9):849-852.
    [89]张吉波,丁百全,房鼎业,朱炳辰.三相淤浆床甲醇合成反应器的数学模拟[J].华东理工大学学报.1999,25(2):109-113.
    [90]王存文,丁百全,朱炳辰,房鼎业.液相法甲醇合成过程中机械搅拌反应器的模拟[J].化学反应工程与工艺,2001,17(2):112-118.
    [91]赵亮富,赵玉龙,吕朝晖,张碧江.浆态床反应器中甲醇合成反应的数学模拟[J].燃料化学学报,2001,29(4):363-367.
    [92]Ozturk S S, Shah Y. Comparison of gas and liquid phase methanol synthesis process[J]. Chemical Engineeing Journal,1988,37(1):177-192.
    [93]Kodra D, Levec J. Liquid-phase methanol synthesis:Comparison between trickle-bed and bubble column slurry reactors[J]. Chemical Engineering Science,1991,46(9): 2339-2350.
    [94]Vijayarghavan P, Lee S. Mini-pilot plant design and operation of a liquid entrained reactor for liquid-phase methanol synthesis[J]. Fuel Science and Technology International,1993, 11(2):243-268.
    [95]Cybulski A. Liquid-phase methanol synthesis[J]. Catalysis Reviews-Science and Engineering,1994,36(4):557-615.
    [96]Rahimpour M R, Ghader S. Theoretical investigation of a Pd-membrane reactor for methanol synthesis[J]. Chemical Engineering and Technology,2003,26(8):902-907.
    [97]宋维端,肖任坚,房鼎业,等.甲醇工学[M].北京:化学工业出版社,1991.
    [98]Chorng H. Twu, David Bluck, John R. Cunningham and John E. Coon. A cubic equation of state with a new ALPHA function and a new mixing rule[J]. Fluid Phase Equilibrium, 1991,69(10):33-50.
    [99]谭永放,李欣,等.QCS-01耐硫变换催化剂的性能及工业应用[J].工业催化1997,5(4):41-45.
    [100]汤福山.QCS-1新型耐硫CO变换催化剂[J].齐鲁石油化工,1993,(1):12-18.
    [101]Pro/Ⅱ unit operation reference manual[M]. United States of America:Simsci-Esscor, May 2009.
    [102]陈依平,李欣,等.工艺条件对耐硫变换催化剂性能的影响[J].工业催化,2001,9(3):37-41.
    [103]中国石化集团宁波工程公司,内部设计资料.
    [104]李正西,秦旭东.等.低温四醇洗与NHD工艺技术技术经济指标对比[J].化肥设计,2007.45(2):14-20.
    [105]林鸿民.NHD气体净化技术理论与实战(上)[J].化肥工业,2000.27(4):17-22.
    [106]王显炎,郑明峰,张骏驰Linde与Lurgi(?)温甲醇洗工艺流程分析.煤化工,2010,38(1):34-37.
    [107]张骏驰,郑明峰.低温甲醇洗工艺在中小化肥净化装置中的应用[J].中氮肥,2002,(5):13-16.
    [108]梅丽华.国内现运行低温甲醇洗装置生产问题分析[J].煤炭技术,2008,18(4):118-120.
    [109]陈健,于燕梅,唐宏青.含二甲醚二元体系相平衡计算及对分离流程的影响[J].天然气化工,2005,30(1):71-78.
    [110]Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state [J]. Chem. Eng. Sci.1972,27(6):1197-1203.
    [111]Chen Jian, Li Zongcheng. Study on the GE-type mixing rule for cubic equations of state[J]. Tsinghua Science and Technology.1996,1(4):410-415.
    [112]Huron M J, Vidal J. New mixing rules in simple equations of state for representing VLE of strongly non-ideal mixtures [J]. Fluid Phase Equilibria.1979,3(4):255-271.
    [113]Renon H, J. Prausnitz M. Local compositions in thermodynamic excess functions for liquid mixtures [J].AIChE J.1968,14(1):135-144.
    [114]Katayama T, Ohgaki K, Maekawa G. Goto Motojiro. Nagano Tamon. sothermal vapor-liquid equilibria of acetone-carbon dioxide and methanol-carbon dioxide systems at high pressure [J]. J Chem Eng Jap.1975,8(2):89-92.
    [115]Hong J H, Kobayashi R. Vapor-liquid equilibrium studies for the carbon dioxide-methanol system [J]. Fluid Phase Equilibria.1988,41(3):269-276.
    [116]Fischer K, Chen J, Petri M, Gmehling J. Solubility of H2S and CO2 in N-octyl-2-pyrrolidone and of H2S in methanol and benzene [J]. AIChE J.2002,48(4): 887-893.
    [117]Rupert D, Patrick J R., Teja A S. High pressure phase equilibria in the carbon dioxide-n-hexadecane and carbon dioxide-water systems [J]. Can J Chem Eng.1988, 66(2):319-23.
    [118]Tochigi Katsumi, Kojima Kazuo. Prediction of nonpolar gas solubilities in water, alcohols and aqueous alcohol solutions by the modified ASOG method [J]. Fluid Phase Equilibia.1982,8(3):221-232.
    [119]Henni A, Mather A E. Solubility of CO2, N2O, CH4 and C2H6 in polar solvents [J]. J Can Petrol Tech.1999,38(13):46-48.
    [120]Katayama T, Nitta T. Solubilities of hydrogen and nitrogen in alcohols and n-hexane [J]. J. Chem. Eng. Data.1976,21(2):194-196.
    [121]Hirata M. Ohe S, Nagahama K. Computer aided data book of vapor-liquid equilibria [M]. Tokyo:Kodansha,1975.
    [122]何奕工,陈邦和,等.合成甲醇反应中CO2和微量O2的作用以及反应机理的研究[J].燃料化学学报,1986,14(2):97-107.
    [123]房鼎业.固定床反应器的非均相模型和二维模型[J].化肥设计(氮肥设计),1982,30(2):53-63.
    [124]房鼎业,应卫勇,洪学伦,朱炳辰.甲醇合成反应器催化床二位模型及其求解[J].化肥设计(氮肥设计),1992,40(2):2-10.
    [125]谢克昌,房鼎业.甲醇工艺学[M].北京:化学工业出版社,2010.
    [126]陈海波,仇冬,等.NC309型甲醇合成催化剂的研究开发[J].化工催化剂与甲醇技术,2007,(5):5,22.
    [127]储政,候梦溪,等.新型催化剂上的甲醇合成反应本征动力学[J].化学反应工程与工艺,2009,25(3):233-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700