用户名: 密码: 验证码:
西藏革吉县尕尔穷矽卡岩型铜金矿成矿岩浆岩特征及其含矿性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尕尔穷矿区属于冈底斯-念青唐古拉板片与南羌塘-三江复合板片缝合带西段,位于狮泉河晚燕山期结合带与冈底斯-念青唐古拉板片两大构造单元的交汇处。矿区地层为白垩系则弄群多爱组碳酸盐岩和火山碎屑岩,主要出露的侵入岩为燕山晚期的石英闪长岩、花岗斑岩和闪长玢岩等。矿区主矿体位于3-0-16线之间,呈北西走向,倾向北东,在走向上长大于900m,沿倾向方向延伸大于400米。矿体产于多爱组碳酸盐岩与石英闪长岩的接触带中,主要呈似层状和透镜状产出,其形态受岩体外接触带构造所控制。矿区有用元素以铜和金为主,矿石矿物以黄铜矿、斑铜矿和自然金为主,脉石矿物以矽卡岩矿物为主。矿石结构以结晶作用、交代作用和固溶体分离结构为主,矿石构造以稀疏浸染状和细脉状构造为主。通过研究矿石组构和矿物组合特征,石英闪长岩和花岗斑岩两次侵位分别存在有岩浆期、矽卡岩期和热液期。
     通过研究岩体的空间分布、形态和产状,岩石学、岩石化学和岩石地球化学特征,认为矽卡岩矿体的成矿母岩为石英闪长岩,提出花岗斑岩具有一定的成矿潜力。石英闪长岩和花岗斑岩属于钙碱性-高钾钙碱性的位于偏铝质和过铝质之间的过渡型花岗岩系列,具有铕弱负异常、轻稀土富集特征的稀土配分型式,具有富集大离子不相容元素Rb、K、Sr和亏损Th、Ta、Nb、Ti等高场强元素的微量元素地球化学特征。在总结不同类型岩体的含矿性评价思路及评价手段的基础上,建立矽卡岩型矿床成矿母岩的含矿性评价准则,从宏观到微观以区域地球化学块体、矿区岩石和矿物三个层次为主要的评价体系,各层次的含矿标志作为主要的研究内容。通过微量元素地球化学标志、岩石标志及矿物标志三方面指示岩体具有较好的含矿性,并预测矿区具有形成斑岩型矿床的潜力。
Gaerqiong Copper-gold deposit belongs to the western suture zone of Gangdese-nianqintanggula plate and the composite plate of southern Qiangtang-Sanjiang rivers,located at the junction of the two structure unit that Shiquanhe-LateYanshan period junction zone and Gangdese-nianqintanggula plate.What the deposite diggings are carbonatite and pyroclasticrock which belongs to Duoai Formation of Zelong Group, Cretaceous system.The main emergence intrusiverock are quartz diorite, granite porphyry and diorite porphyrite of Late Yanshan period.The main ore body lied in the 3-0-16 line, over 900m in strike with NWW and over 400m in dip with NNE in length.The ore originated in the aureole belt of carbonatite and quartz diorite,outputing as bedded vein and lensing, and the form of which was controlled by the exomorphiczone structure of rock mass.The available element is mainly copper and gold, with major ore minera such as chalcopyrite、bornite and nature gold, and gangue mineral such as skarnmineral.The ore structure is priority to crystallization、solid solution isolated structure,and the texture is priority to sparsity disseminationstructure.According to study the form,it is presented that metallogenic epoch can be setted of magmatic stage、skarn stage and thermal metallogenic stage as twice intrusion of quartz dioriten and granite porphyry.
     According to study the space distribution、shape and attitude of the ore body,the characteristic of petrology、petrochemistry and lithogeochemistry,it is learned that the host rock of the skarn ore was quartz diorite and proposed that granite porphyry had certain mineralizing potential.Quartz diorite and granite porphyry pertained to the series of cal-alkaline and high-K calc-alkaline, transitional granite between peraluminous and metaluminous series, characterized by minor negative Eu anomalies and LREE enrichment in rare earth and the enrichment of large ion lithophile elements(LILE) such as Rb,K and Sr and depletion of high field strength element(sHPSE)such as Th,Nb,Ta and Ti of trace elements.Based on discussing the ore-bearing potential evaluated train of thought and evaluated methods of different type ore,raised ore-bearing potential interpretational criteria of skarnal host rock, established three layers as mainly evaluated series which were regional geo-chemistry block,rock and mineral in deposit from micro to macro level with the metallogenic information of each level as evaluation contents.It was discussed that the intrusive rock had a good mineralizing potential by the means of indication of petrology,mineralogy and geochemistry and the deposit shows a good potential of porphyry deposit.
引文
[1]艾晓玲,马昌前.2000.大别山同剥露刘家洼杂岩体角闪石、长石的矿物化学[J].矿物学报,20(3):213~219.
    [2]曹圣华,邓世权,肖志坚,廖六根.2006.班公湖—怒江结合带西段中特提斯多岛弧构造演化[J].沉积与特提斯地质,26(4): 25~32.
    [3]曹圣华,肖晓林,欧阳克贵.2008.班公湖—怒江结合带西段侏罗纪木嘎岗日群的重新厘定及意义[J].沉积学报,26(4): 559~564.
    [4]陈国荣,陈玉禄.2004.张宽忠等.班戈幅地质调查新成果及主要进展[J].地质通报.23(5-6).
    [5]陈国安,周瑄若.1996.漳州地区白垩纪I型和A花岗岩中黑云母的矿物学特征[J].矿物岩石,16(2):25~30.
    [6]陈俊兵,曾志刚.2007.马里亚纳岛弧南部前弧方辉橄榄岩的交代作用:单斜辉石和角闪石的微量元素特征[J].中国科学D辑,37(6):720~727.
    [7]陈奇,谢琳,肖志坚.2007.青藏高原西部班公湖蛇绿混杂岩带的基本特征与构造演化[J].东华理工学院学报,30(2): 107~112.
    [8]陈永清,夏庆霖,刘红光.2003.滇东Pt-Pd-Cu含矿建造地球化学特征及其含矿性分析[J].中国地质,30(3):225~234.
    [9]陈玉禄,张宽忠,李关清等.2005.班公湖—怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义[J].地质通报,24(7): 621~624
    [10]陈玉禄,张宽忠,杨志民等.2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J].地质通报,25(6): 694~699.
    [11]邓万明著.1998.青藏高原北部新生代板内火山岩.北京:地质出版社.
    [12]丁奎首,秦克章,许英霞等.2007.东天山主要铜镍矿床中磁黄铁矿的矿物标型特征及其成矿意义[J].矿床地质,26(1):109~119.
    [13]房立民,扬振升著.1991.变质岩区1/5万区域地质填图方法指南[M]..武汉:中国地质大学出版社.
    [14]高秉璋等.1991.花岗岩区1/5万区域地质填图方法指南[M].武汉:中国地质大学出版社.
    [15]高珍权,方维萱,胡瑞忠等.2006.新疆东天山卡拉塔格斑岩型铜(金)矿成矿地质背景与找矿评价[J].地质学报,80(1):90~100.
    [16]桂林冶金地质研究所情报室.1974.矽卡岩金属矿床八十例[M].北京:冶金工业出版社.
    [17]郭铁鹰,梁定一等.1991.西藏阿里地质[R].武汉:中国地质大学出版社.
    [18]侯德义.1984.找矿勘探地质学[M].北京:地质出版社.
    [19]侯增谦,孟祥金,曲晓明等.2005.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质,24(2):108~121.
    [20]胡恭任,刘丛强,章邦桐等.2004.赣中周潭群石榴石、斜长石和黑云母微区化学成分特征及其地球动力学意义[J].岩石矿物学杂志,23(4):337~345.
    [21]胡恭任,于瑞莲.2004.相山两种不同成因角闪石的地球化学特征对比[J].矿物岩石,24(4):65~70.
    [22]胡建,邱检生,王汝城等.2006.广东龙窝和白石冈岩体错石U-Pb年代学、黑云母矿物化学及其成岩指示意义[J].岩石学报,22(10):2464~2474.
    [23]黄汲清,陈国铭,陈炳蔚. 1984.特提斯-喜马拉雅构造域初步分析[J]..地质学报.1:1~17.
    [24]黄勇.2009.西藏谢通门县雄村铜金矿矿床地球化学特征[D].成都:成都理工大学.
    [25]季绍新,余根峰,邢文臣. 2001.试论青藏高原岩浆活动史及其与板块构造的关系[J].火山地质与矿产.22(1):31~40.
    [26]纪伟强,许文良,王清海等.2005.徐州-宿州地区榴辉岩类捕虏体中角闪石的结构、矿物化学及成因意义[J].矿物岩石,25(4):11~16.
    [27]蒋国豪,胡瑞忠,谢桂青等.2002.大吉山花岗岩体黑云母地球化学特征及其成岩成矿意义[J].矿物岩石,25(5):58~61.
    [28]赖绍聪,邓晋福,赵海玲著.1996.青藏高原北缘火山作用与构造演化[R]..西安:陕西科学技术出版社.
    [29]赖绍聪,伊海生,刘池阳.2002.青藏高原北羌塘新生代高钾钙碱岩系火山岩角闪石类型及痕量元素地球化学[J].岩石学报,18(1):17~24.
    [30]劳雄.2000.班公湖-怒江断裂带的形成-二论大陆地壳层波运动[J].地质力学学报,6(1): 69~76.
    [31]吕志成,李鹤年,刘丛强等.2000.大兴安岭中南段花岗岩中黑云母矿物学地球化学特征及成因意义[J].矿物岩石,20(3):1~8.
    [32]吕志成,段国正,董广华等.2003.大兴安岭中南段燕山期三类不同成矿花岗岩中黑云母的化学成分特征及其成岩成矿意义[J].矿物学报,23(3):177~184.
    [33]吕志成,段国正,郝立波等.2003.大兴安岭中南段燕山期两类不同成矿花岗岩类角闪石的化学成分及其成岩成矿意义[J].矿物岩石,23(1):5~10.
    [34]李昌年著.1992.火成岩微量元素岩石学[M]..武汉:中国地质大学出版社.
    [35]李光明,李金祥,秦克章,张天平,肖波.2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报,23(5):935~952.
    [36]李鸿莉,毕献武,胡瑞忠等.2007.芙蓉锡矿田骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义[J].岩石学报,23(10):2605~2614.
    [37]李鸿莉,毕献武,涂光炽等.2007.岩背花岗岩黑云母矿物化学研究及其对成矿意义的指示[J].岩石学报,27(3):49~54.
    [38]李杰美,王美娟.2007.重视斑岩型铜-金矿床的找寻、勘探和评价[J].中国黄金,10:11~15.
    [39]李金祥,李光明,秦克章,肖波.2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报,24(3): 531~543.
    [40]李金祥,秦克章,李光明,肖波,张天平,雷晓光.2008.西藏班公湖带多不杂富金斑岩铜矿床中金红石的特征及其意义[J].矿床地质,27(2):209~219.
    [41]黎道立.1994.江西与火山-次火山岩(斑岩)有关的铜金矿成矿主要地质条件及找矿标志[J].江西地质科技,21(3): 1~8.
    [42]梁祥济.2000.中国矽卡岩和矽卡岩矿床形成机理的实验研究[M].北京:学苑出版社.
    [43]廖国兴. 1983.西藏班公湖-怒江板块缝合带东段地质特征.北京:地质出版社.青藏高原地质文集(12).
    [44]廖忠礼,潘桂棠,朱弟成等.2006.西藏过铝花岗岩矿物化学特征及其岩石学意义[J].沉积与特提斯地质,26(4):15~23.
    [45]廖忠礼,莫宣学,潘桂棠等.2006.西藏过铝花岗岩的岩石化学特征及成因探讨[J].地质学报,80(9):1329~1341.
    [46]林文蔚,彭丽君.1994.由电子探针分析数据估算角闪石、黑云母中的Fe2+、Fe3+ [J].长春地质学院学报,24(2):155~162.
    [47]刘彬,马昌前,刘园园等.2010.鄂东南铜山口铜(钼)矿床黑云母矿物化学特征及其对岩石成因与成矿的指示[J].岩石矿物学杂志,29(2):151~165.
    [48]刘燊,迟效国.2001.藏北新生代火山岩系列的地球化学及成因[J].长春科技大学学报.31(3):232-235.
    [49]刘燊,李才.2000.西藏措勤盆地晚中生代构造一岩相演化[J].长春科技大学学报.30(2). 134-138.
    [50]刘肇昌.1985.板块构造学[M].成都:四川科学技术出版社.
    [51]刘增乾. 1990.青藏高原大地构造与形成演化[M]..北京:地质出版
    [52]刘庆宏,肖志坚,曹圣华,廖六根,肖业斌.2004.班公湖—怒江结合带西段多岛弧盆系时空结构初步分析[J].沉积与特提斯地质,24(3): 15~21.
    [53]刘小斌.2009.太行山中段麻棚岩体成因矿物学及其与成矿的关系[D].北京:中国地质大学.
    [54]罗建宁,朱忠发.1998.青藏高原区域地层划分对比[R]..成都地矿所环境地质与资源开发研究所.
    [55]毛晓梅,陈前军,张晓兰,黄智辉.2007.论湖北大冶朱成山-宝盖垴地区寻找斑岩型铜金矿的可能性[J].资源环境与工程,21(2): 108~111.
    [56]孟良义.1997.斑岩铜矿床的成矿模式和石英脉金矿床的成矿信息[M].北京:海洋出版社.
    [57]牛利锋,张宏福.2005.南太行山地区中基性侵入岩中角闪石的矿物学及其成因[J].大地构造与成矿学,29(5):269~277.
    [58]潘桂棠,徐强,王立全.2001.青藏高原多岛弧-盆系格局机制[J].矿物岩石.21(3):186-189.
    [59]潘桂棠,郑海翔,徐耀荣等. 1983.初论班公湖-怒江结合带[R].北京:地质出版社.青藏高原地质文集(12).
    [60]朴寿成,贾红杰,翟玉峰等.2003.金厂沟梁金矿床矿脉原生地球化学特征及深部含矿性评价[J].地质地球化学,31(1):47~51.
    [61]秦克章,丁奎首,许英霞等.2007.东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J].矿床地质,26(1):1~14.
    [62]秦克章,孙赫,唐冬梅等.2009.东天山镁铁-超镁铁岩含矿性评价以及Cu-Ni(PGE)成矿规律与隐伏矿定位预测[J].矿物学报(增刊):80~81.
    [63]邱家骧,王方正,马昌前等. 1991.应用岩浆岩石学[M]..中国地质大学出版社.155~211.
    [64]曲晓明,辛洪波.2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报,25(7): 792~799.
    [65]宋海峰,张兴洲,王跃等.2006.黑龙江涌泉地区变质基性火山岩中钠质角闪石的成因及演化[J].世界地质,25(1):10~15.
    [66]山西地质调查院.2007.西藏自治区革吉县尕尔穷及尕尔穷外围铜金矿普查地质报告[R].
    [67]佘宏全,李进文,丰成友,马东方,潘桂棠,李光明.2006.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义[J].地质学报,80(9):1434~1448.
    [68]史仁灯.2006.班公湖SSZ型蛇绿岩年龄对新特提斯洋构造转型时限的制约[A]. 2006年全国岩石学与地球动力学研讨会.
    [69]唐菊兴,陈毓川,王登红等.2009.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,83(5):698~704.
    [70]唐菊兴,王成辉,屈文俊等.2009.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义[J].岩矿测试,28(3):215~218.
    [71]唐菊兴,李志军,刘文周等.2009.西藏自治区革吉县尕尔穷铜矿详查地质报告[R].
    [72]唐菊兴,张丽,李志军等.2006.西藏玉龙铜矿床—鼻状构造圈闭控制的特大型矿床[J].矿床地质,25(6):654~662.
    [73]田毅.2009.西藏班公湖-怒江成矿带西段铜(金)、铁矿床岩石地球化学特征研究[D].吉林:吉林大学.
    [74]佟更生.2005.包古图斑岩铜金矿找矿方向探讨[J].新疆有色金属,7~8.
    [75]王建平.班公湖一怒江缝合带东段地质特征—特提斯洋演化[A].选自:31届国际地质大会论文集[C],64~48.
    [76]王强,王人镜,邱家骧等.2000.大别山核部九资河花岗岩体成因[J].地球化学,29(2):120~131.
    [77]王一先,裘愉卓,高计元等.2002.内蒙古白云鄂博矿区元古代非造山岩浆岩及其对成矿的制约[J].中国科学(D辑),32:22~32.
    [78]卫万顺,路彦明,刘桂阁,范俊杰,陈勇敢.2001.西藏班公湖—怒江成矿带中段砂金成色特征[J].黄金地质,7(4): 9~14.
    [79]卫万顺,张宇辉,路彦明,刘桂阁.2003.西藏班公湖—怒江成矿带中段岩浆演化及其金矿成岩成矿动力学模式[J].黄金科学技术,11(3): 1~10.
    [80]吴华英,张连昌,陈志广等.2008.内蒙古西拉木伦成矿带库里吐相(铜)矿区二长花岗岩地球化学、构造环境及含矿性分析[J].岩石学报,24(4):867~877.
    [81]西藏地矿局地质六队.2004.西藏自治区革吉县尕尔穷铜金矿普查地质报告[R].
    [82]西藏自治区地矿局.1997.西藏自治区岩石地层[R].武汉:中国地质大学出版社.
    [83]西藏自治区地矿局. 1984.1:150万西藏板块构造建造图[M].北京:地质出版社.
    [84]西藏自治区地质调查院.2005.1/25万(狮泉河幅)区域地质调查报告[R].
    [85]夏代祥. 1986.班公湖-怒江、雅鲁藏布江缝合带中段演化历程剖析[A].北京:地质出版社,青藏高原地质文集(90).
    [86]夏代祥.1985.班公湖一怒江、雅鲁藏布江缝合带中段演化历程的剖析[A].选自:青藏高原地质文集[C],9:123~138.
    [87]许文良,杨德彬,裴福萍等.2009.华北克拉通中生代拆沉陆壳物质对岩石圈地幔的改造:来自橄榄岩捕虏体中角闪石的成分制约[J].吉林大学学报,39(4):606~617.
    [88]徐小军,赵子福,郑永飞等.2005.大别造山带天柱山燕山期中酸性岩浆岩元素和同位素地球化学研究[J].岩石学报,21(3):607~622.
    [89]杨富贵,王中刚,刘丛刚等.2004.西北准噶尔地区碱性花岗岩体中角闪石的地质地球化学意义[J].矿物学报,19(1):70~76.
    [90]杨群慧,林振宏,张富元等.2004.南海东部表层沉积物中普通角闪石和磁铁矿的特征及其成因[J].海洋地质与第四纪地质,24(2):29~34.
    [91]应立娟.2007.新疆乔夏哈拉铁铜金矿床地质、地球化学特征与成因研究[D].北京:中国地质科学院.
    [92]雍永源,贾宝江.2000.板块剪式汇聚加地体拼贴—中特提斯消亡的新模式[J].沉积与特提斯地质.20(1).P85-89.
    [93]余光明,王成善,张哨楠.1991.西藏班公湖-丁青断裂带侏罗纪沉积盆地的特征[J]..中国地质科学院成都地质矿产研究所所刊.第13号,33-43.
    [94]翟淳,林金辉,龚夏生.1999.豫南高压麻粒岩中富钛角闪石类的成因和意义[J].矿物学报,19(1):63~69.
    [95]张保平,丁见广,申开洪等.2007.河南商城鲢鱼尖变形花岗岩体地质、地球化学及含矿性特征[J].世界地质,26(4):413~419.
    [96]张志强,曹书武,宋雷鹰等.2008.两类岩体含矿性的地球化学评价方法[J].地质与勘探,44(3):47~51.
    [97]张遵忠,顾连兴,吴昌志等.2005.东天山尾亚杂岩体:同源还是异源?-来自黑云母的证据[J].地球化学,34(4):328~338.
    [98]赵斌,1989.中国主要夕卡岩及夕卡岩型矿床[M].北京:科学出版社.
    [99]赵明,王赐银.1998.东疆哈尔里克造山带中角闪石的特征及其地质意义[J].矿物岩石地球化学通报,17(1):13~15.
    [100]赵希林,毛建仁,叶海敏等.2009.福建上杭地区晚中生代花岗质岩体黑云母的地球化学特征及成因意义[J].矿物岩石地球化学通报,28(2):162~168.
    [101]赵一鸣.1990.中国夕卡岩矿床[M].北京:地质出版社.
    [102]赵一鸣,李大新.2003.中国夕卡岩矿床中的角闪石[J].矿床地质,22(4):345~359.
    [103]赵政璋,李永铁,叶和飞,张昱文主编.2001.青藏高原地层[R].北京:科学出版社.
    [104]赵政璋,李永铁,叶和飞,张昱文主编.2001.青藏高原大地构造特征及盆地演化[R].北京:科学出版社.
    [105]张翔,刘建宏,黎志恒等.2006.北祁连成矿带地球化学块体含矿性评价[J].地质与勘探,41(3):42~48.
    [106]郑文宝.2009.西藏墨竹工卡县甲玛铜多金属矿矿床地球化学特征[D].成都:成都理工大学.
    [107]中国地质调查局.2004.班公湖—怒江结合带区域地质调查成果与进展[J].地质通报,23(1): 61~62.
    [108]郑有业,许荣科.2003.班怒带向北俯冲的新证据:尕苍见一带沟弧盆体系的厘定及地质意义.地质通报. 23(5-6).
    [109] Allegre C J and 34 others. 1984. Structure and evolution of the Hi-malayan_Tibet orogenic belt[J]. a) Nature, 307: 17~22.
    [110] Baker T and Lang J R. 2003. Reconciling fluid inclusions, fluids processand fluid source in skarns: An example from the Bismark skarn de-posit, Mexico[J]. Mineralium Deposita, 38: 474~495.
    [111] Baker T, Van A E, Ryan C, et akl. 2004. Composition and evolution of ore fluids in a magmatic_hydrothermal skarn deposit [J]. Geol. (Boulder), 32(2): 117~120.
    [112] Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoicvolcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamic significance [J]. EarthPlanet. Sci. Lett. 79: 281~302.
    [113] Durr S B. 1996. Provenance of Xizang fore_arc basin clastic rocks (Cre-taceous, south Tibet)[J]. Geol. Soc. Am. Bull., 108: 669~684.
    [114] Gaetani M and Garzanti E. 1991. Multicyclic history of the northern In-dia continental margin(northwestern Himalaya)[J]. Am. Assoc. Pet.Geol.Bull,75:1427~1446.
    [115] Harris,A.C.,S.E.Bryan&R.J.Holcombe.2006.Volcanic Setting of the Bajo de la Alumbre-ra Porphyry Cu-Au Deposit,Farallon Negro Volcanics,Northwest Argentina[J].Economic Geology,101:71~94
    [116] Harris,A.C.,Golding,S.D.&White,N.C..2005.Bajo de la Alumbrera Copper-Gold Deposit:Stable Isotope Evidence for a Porphyry-Related Hydrothermal System Dominated by Magmatic Aqueous Fluids[J].Economic Geology,100:863~886
    [117] Harris,A.C.&Golding,S.D.2002.New Evidence of Magmatic-fluid-related Phyllic Alteration:Implications for the Genesis of Porphyry Cu Deposits[J].Geological Society of America,30(4):335~338
    [118] Harrsion T M, Copeland P and Kidd W S F, et al. 1992. Raising Tibet [J]. Science, 288: 1 663~1 670.
    [119] Harrison T M, Grove M, McKeegan K D, et al. 1999. Origin andepisodic emplacement of the Manaslu intrusive complex, central Hia-malaya[J]. Petrol., 40: 3~19.
    [120] Heithersay,P.S.&Walshe,J.L.1995.Endeavour 26 North:A Porphyry Copper-Gold Deposit in the Late Ordovician,Shoshonitic Goonumbla Volcanic Complex,New South Wales,Austrilia[J]. Economic Geology,90:1506~1532
    [121] Mitchell A.H.G , Garson M S. 1981.Mineral deposits and global tectonic settings[M].Academic press,100~140.
    [122] Penniston-Dorland,S.C..2001.Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence:Grasberg Igneous Cpmplex,Irian Jaya,Indonesia[J].American Mineralogist,86:652~666.
    [123] Pierce J A and Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotra-verse Lhasa to Golmud[M]. Londm: Phil. Trans. Roy. Soc. Lond., A327: 203~213.
    [124] Pollard,P.J. &Taylor R.G.. 2005.Ages of Intrusion, Alteration, and Mineralization at the Grasberg Cu-Au Deposit, Papua, Indonesia[J]. Economic Geology,100:1005~1020
    [125] Sawkins F.J.,1984.Metal deposits in relation to plate tectonics[M].Springer-Verlag,1~110.
    [126] Shinohara H and Hedenquist J W. 1997. Constraints on magma de-gassing beneath the Far Southeast porphyry Cu_Au deposit, Philip-pines[J]. J. Petrol.,38:1741~1752.
    [127] Sotnikov, Vitaliy I., Berzina, Anita N, Economou-Eliopoulos, Maria; Eliopoulos, Demetrios G. , 2001
    [128] Streck J M, Dilles J H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith[ J] . Geolo- gy, 1998, 26: 523-526
    [129] Takagi T, Tsukimura K. Genesis of oxidized and reduced type granite[J]. Economic Geology, 1997, 92: 81-86
    [130] Tapponnier P, Molna P. 1976.Slip-line field theory and large scale continental tectonics.Nature, 264(5584), 319~324
    [131] Tapponnier P, Peltzer G, Le-Dain A Y, et al . 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10 :611~616
    [132] Taylor D, Leeuwen T U. Porphyry-type deposits in southern Asia. Mining Geology(Specials issue), 1980, 8: 95–116
    [133] Titley S R, Beane R E. Porphyry copper deposits [J]. Economic Geology, 1981, 75TH Anniv Vol: 214-269
    [134] Tomlinson, Andrew J, Dilles, John H, Maksaev, Victor. Application of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile. Economic Geology and the Bulletin of the Society of Economic Geologists, 2001, Vol.96, No.5, pp.1307-1309
    [135] Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[ J]. Nature, 1993, 364: 50-54.
    [136] Vance D, Harris N. 1999. Timing of prograde metamorphism in the Zanskar Himalaya. Geology, 27(5):395~398
    [137] Van der Hilst R D, Widiyantoro S, Engdahl E R. Evidence for Deep Mantle Circulation from Global Tomography [J]. Nature, 386:578~584
    [138] Van der Voo R, Spakman W, Bijwaad H. 1999. Mesozoic subducted slabs under Siberia[J]. Nature, 397: 246~249
    [139] Vargas R, Ricardo, Gustafson, et al, M Alexandr Ore breccias in the Rio Blanco-Los Bronces porphyry copper deposit, Chile. Special Publication - Society of Economic Geologists, 1999, Vol.7, pp.281-297
    [140] Venable, Margaret E. Mineralization in northeast Nicaragua; known deposits and exploration potential. Special Publication - Society of Economic Geologists, 2001, Vol.8, pp.339-347
    [141] Voggenreiter W., Hotzl H. and Mechie J. 1998. Low-angle detachment origin for the Red sea rift system.tectonophysics.150(1-2), 51~75
    [142] von Quadt, Albrecht, Peytcheva, et al. The Elatsite porphyry copper deposit in the Panagyurishte ore district, Srednogorie Zone, Bulgaria; U-Pb zircon geochronology and isotope-geochemical investigations of magmatism and ore genesis. Geological Society Special Publications, 2002, Vol.204, pp.119-135.
    [143] Watanabe, Yasushi, Hedenquist, Jeffrey W. Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile. Economic Geology, 2001, Vol.96, No.8, pp.1775-1797
    [144] Weber, Bodo, Lopez Martinez, Margarita. Sr, Nd, Pb isotopes and Ar-Ar dating of the "ElArco" porphyry copper deposit, Baja California; evidence for Cu mineralization within an oceanic island arc. Abstracts with Programs - Geological Society of America, 2002, Vol.34, No.6, pp.88
    [145] White D E . Environments of generation of some basemetal ore deposits [J]. Econ Geol, 1968, 63, (4): 301-335
    [146] Widiyantoro S, Van der Hilst R D. 1996. The slab of subducted lithosphere beneath the Sunda arc, Indonesia [J]. Science, 271:1566~1570
    [147] Wild M J, Tabner B J, Macdonald R. 1999.ESR dating of quartz phenocrysts in some rhyolitic extrusive rocks using Al and Ti impurity centres. Quaternary Sci. Rev., 18(13): 1507~1514
    [148] Zartman,R.E. and Doe,B.R. 1981. Plumbotectonics—the model. Tectonophysics,vol.75:135~162.
    [149] Z .Qiang, Z .Wenyao, X, Yonqin . 1999.Global plate Motion Models Incorporating the velocity field of ITRF96 . G. R . Lett, 26(18):2813~2816.
    [150] Zhao W, Nelson K D, Project INDEPTH Team. 1993.Deep seismic reflection evidence for continental underthrusting beneath S. Tibet[J]. Nature, 366:557~559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700