用户名: 密码: 验证码:
保护地番茄灰霉病流行规律及病害防治决策支持系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄灰霉病(Botrytis cinerea Pers)是保护地番茄的重要病害,对保护地番茄生产构成极大威胁,目前生产上主要采用化学药剂防治。本研究利用病害流行学和农业气象学手段,对不同保护地设施(日光温室和大棚)以及不同灌溉方式条件下(大水漫灌和膜下滴灌)番茄灰霉病的发生和流行情况进行监测,同时记载保护地内外逐小时温、湿度变化和逐日的天气状况。将所得的数据借助计算机进行统计分析,旨在明确保护地番茄灰霉病季节流行动态和造成病原菌大量侵染的关键因素和最适环境条件临界值,为建立病害防治决策支持系统和病害防治提供理论基础。
     通过2001年和2002年试验,对保护地内病害逐日调查、孢子逐小时捕捉和气象数据的收集整理并分析可以得出:
     1、影响保护地空气中孢子飞散的主要气象因素为连续阴雨日。保护地内空气温、湿度影响孢子的飞散量,一天中各小时的孢子飞散量与空气温度呈显著正相关(R=0.9295,P<0.01),与空气相对湿度呈显著负相关(R=-0.8091,P<0.01)。
     2、病原真菌分生孢子是病害发生的先决条什,病菌严重侵染日是孢子飞散高峰日,但孢子飞散高峰日不一定是病菌严重侵染日,这与环境条件有关。
     3、病害发生与天气状况密切相关,当有两个以上连续阴雨日,有利于孢子大量产生、发生严重侵染,晴朗的天气对灰霉病的严重侵染起抑制作用。
     4、保护地内空气温、湿度直接影响病害的发生,在病原菌严重侵染时期,保护地内空气相对湿度在80%以上持续时间不得少于24h,空气温度在以相对湿度为准的前提下,变化范围在6.0℃~13.0℃之间。
     5、由保护地内、外环境的相关性分析可以得出不同保护地设施内、外空气温湿度的相关回归方程。日光温室内、外空气温度的相关同归方程为:Y=1.60+1.08X,其中Y为日光温室内空气温度(℃),X为该小时日光温室外空气温度。日光温室内、外空气相对湿度的回归方程为:Y=2.96+1.07X(Y≤100),其中Y
    
     河北农业大学硕士学位(毕业)论文
    为日光温室内空气相对湿度(知,二为该小时日光温室外空气相对湿度(知。大棚
    内、外空气温度相关方程为:Y。1.76+1.13X,其中可为大棚内空气温度(C),X
    为该小时大棚外空气温度。大棚内、外空气相对湿度的回归方程为:Y二22.10+
    0.86X(y<100),其中Y为大棚内空气相对湿度(%),X为该小时大棚外空气相对
    湿度(知。
     在计算机上建立了预测模型并组建了保护地番茄灰霉病防治决策支持系统。
    将大气预报信息或采集的温湿度数据输入系统,即可预知保护地内病菌严重侵染
    的最适环境条件临界值发生与否。通过人为调控措施可以避开最适环境条件临界
    值,使病害不能发生,或及时用化学药剂加以保护。运行本系统能够达到减少化
    学药剂使用次数的目的。
Tomato grey mold which is an important plant disease in greenhouse can severely decrease yield of tomato in greenhouse and be mainly controlled by fungicides today. This study focused on investigating temporal dynamic of the disease in growing season in different type of greenhouse through epidemic means. During the test, the temperature and humidity of air in and out of greenhouse were collected, and the condition of weather was recorded day by day, and airborne spores of Botrytis cinerea were trapped hourly. The main aim is to find the key factors which made spore infect severely and the suitable environmental condition. All the data obtained in 2001 and 2002 were input into a microcomputer for analysis and statistics. The results were as follows:
    1. The main weather factor to effect airborne spore flying is continue cloudy day or rainy day. The relationship between the quantity of airborne spores of Botrytis cinerea and meteorological factors is highly correlated. The quantity of airborne spores of Botrytis cinerea at each hour in a day has a significant negative correlation with relative humidity (R= -0.8091, P<0.01) and positive correlation with relative temperature (R=0.9295, P<0.01) respectively.
    2. The conidiospore is a precondition caused disease eruption. The day in which conidiospore infected severely is the day in which the quantity of airborne spores is the most, but the day in which the quantity of airborne spores is the most is not properly the day in which conidiospore infected severely because of different circumstance.
    3. It was beneficial for spores to bourgeon and infect when there were more than two days' rainy or more than two days' cloudy in greenhouse.
    4. The suitable condition for severe infection of the disease was relative humidity
    
    
    
    above 80% for more than 24 hours, at the same time, the temperature ranged from 7 to 13 .
    5. The air temperature and relatively humidity in different type of greenhouse can be estimated by different equations. The greenhouse has two styles. In the sunlight greenhouse, the air temperature ( ) (Y) in greenhouse in each hour of a day can be estimated by the equation: Y=1.60+1.08X (R=0.9914, P<0.01), where X is temperature( ) out of the greenhouse. The air relatively humidity(%) (Y) in greenhouse in each hour of a day can be estimated by the equation: Y=2.96+1.07X (R=0.9649, P<0.01), where X is air relatively humidity(%).In the second type of greenhouse, the air temperature ( ) (Y) in greenhouse in each hour of a day can be estimated by the equation: Y=1.76+1.13X (R=0.9856, P<0.01), where X is temperature( ) out of the greenhouse. The air relatively humidity (%) (Y) in greenhouse in each hour of a day can be estimated by the equation: Y=22.10+0.86X (R=0.9378, P<0.01), where X is air relatively humidity (%).
    According to above conclusion, decision support system which could be used to control tomato grey mold in greenhouse was set up in the computer. After inputing the information of weather forecast weather or the data of temperature and relatively humidity collected in the past days, the system can tell the user whether the circumstance has met the most suitable environmental condition in which conidiospore can bourgeon and infect severely and how to deal with the greenhouse. Comparing to normal disease control in a routine way, it could save much chemical use.
引文
[1] 齐素芳,王宏,马宗超,等.葫芦岛市保护地番茄灰霉病的发生和防治[J].微生物学杂志,1994,14(2):76~79.
    [2] 尹学军,孙琴华.早春大棚番茄灰霉病及防治[J].长江蔬菜,1996,(3):16~17.
    [3] 李保聚,朱国仁.番茄灰霉病发展症状诊断及综合防治[J].植物保护,1998,24(6):18~20.
    [4] 吕佩珂,李明远,吴锯文,等.中国蔬菜病虫原色图谱[H].北京:农业出版社,1992:50~80.
    [5] 南京农学院植物保护系.植物病害诊断[M].北京:农业出版社,1977:242~244.
    [6] 李保聚,朱国仁,赵奎华,等.番茄灰霉病在果实上的侵染部位及防治新技术[J].植物病理学报,1999,29(1):63~67,
    [7] 林传光, 黄河,王高才,等.马铃薯晚疫病的田间动态观察及防治试验[J].植物病理学报,1955(1),1:31~42.
    [8] Bristow P R. Infection of straw berry flowers by Botrytis cinerea and its revelance to grey mould development[J]. Ann. App.boil. 1986, (109): 545~554.
    [9] Shaul O, Elad Y, Krrshner Betal. Control of Botrytis cinerea in cut rose flowers by gibberellic acid, ethylene inhibitors and calcium. In: VerhoeffKeds[C]. Proceedings of the 10th International Botrytis Symposium, Wageningen: Pudoc Scientific Publishers. 1992: 275~261.
    [10] 史如峰,袁素玲.沛县温棚番茄灰霉病的发生特点与防治对策[J].植物保护,1996,(1):47~48.
    [11] 黄仲生.番茄灰霉病发生规律及防治技术[J].吉林蔬菜,1996,(5):14~16.
    [12] 董克峰,早春番茄灰霉病的防治技术[J].农业科技通讯,1997,(2):32.
    [13] 杨升炯.番茄灰病的发生及防治[J].保技术与推广,1994,(4):35.
    [14] 高振江,刘文珍,吕佩珂,等.番茄灰霉病发生与防治研究[J].中国农学通报1996,12(3):9~11.
    [15] 杨海珍,郑晓莲,赵海增,等.保护地番茄灰霉病的发生和菌剂防治试验简报[J].中国蔬菜,1992,(1):31~32.
    [16] 方中达.植病研究方法[M].北京:农业出版社,1979:102~159.
    [17] 蒋德新,陈爱山,葛建中.等.棚室番茄灰霉病的发生与防治.1997,(6):27~28.
    [18] 长贵林,管翠霞,王永存,等.疫霉净烟剂防治保护地蔬菜几种病害的研究[J].河北农业大学学报,1998,(1):40~44.
    
    
    [19] 李风云,李宝聚,徐淑艳,等.番茄灰霉病嫡原菌的生物学特性[J].辽宁农业科学,1992(4):34~36.
    [20] Rahman Md Shafiqur, Anwar M N, Begum Jaripa, et al. Antimicrobial activies of the alkaloids of three plant leaves [J]. Bangladesh J Bot. 1997, 26 (1): 79~83.
    [21] 李明远.北京郊区春季蔬菜灰霉病发生调查[J].植物保护学报,1980,6(5):4~6.
    [22] Wilson C L, Solar J M, Ghaouth A E L, et al. Fruit volatiles inhibitory to Montlinia fructicola and Botrytis cinerea [J]. Plant Disease, 1987, 71: 316~319.
    [23] Suhaila Mohamed, Suzana Saka, Saleh H, et al. Antimycotic screening of 58 Malaysian plants against plant pathogens [J]. Pesticide science, 1996, 47: 259~264.
    [24] 童蕴慧,徐敬友,陈夕军,等.灰葡萄孢分生孢子萌发的条件研究[J].江苏农业研究,1999,20(4):29~31.
    [25] 田世平.低温对葡萄孢菌(Botrysis cinerea)菌丝生长和孢子萌发以及对贮藏菊苣侵染力的影响.植物病理学报,2001,31(1):56~62.
    [26] Dale J L. Bananan bunchy top: an economically important tropical virus disease[J]. Adv. Virus, 1987, 33: 301~325.
    [27] 丁兆龙,时成李,岳凤荣,等.中草药制剂防治黄瓜霜霉病研究[J].山东农业大学学报,1995,26(3):376~380.
    [28] 徐秉良,郁继华.番茄叶霉病初侵染再侵染及发病条件的研究[J].甘肃农业大学学报,1994,30(4):386~391.
    [29] Vakiling. Bunchy top disease of bananas in the central highlands of south Vietnam[J]. Plant Disease Rep., 1969, 53: 634~638.
    [30] 朱建兰.番茄灰霉病的生物学特性研究[J].甘肃农业大学学报,1995,30(1):73~78.
    [31] 张显伟,金绍选,曹晓林,等.浅淡保护地黄瓜霜霉病发生因素与防治[J].病虫害防治,1998:18~19.
    [32] 长数正.日光温室黄瓜霜霉病发生规律与防治措施[J].西北园艺,1998,(1):42~43.
    [33] 王淑英.葫芦科霜霉病近牛研究进展[J].北方园艺,1989,(6):6~9.
    [34] 黄仲生.日光温室蔬菜主要病虫害防治技术(连载)白粉病的发生与防治[J].蔬菜.1999,12:23.
    [35] 黄明.译.温室作物的灰霉病和白粉病的生物防治[J],植物医生,1997,10(1):36~40.
    
    
    [36] 戴芳澜.中国真菌总汇[M].科学出版社,1979:134~136,318~321.
    [37] 屈振淙.长春地区黄瓜白粉病菌的鉴定[J].吉林农业大学学报,1981,(2):32~34.
    [38] 张中义.植物病原真菌学[M].成都:四川科学出版社,1998:88~89.
    [39] 许修宏,郭亚芬,刘亚光,等.番茄叶霉病菌生物学特性的研究[J].东北农业大学学报,1994,25(3):224~228.
    [40] 许修宏,刘亚光,郭亚芬,等.番茄叶霉病药剂防治研究[J].东北农业大学学报,1999,30(1):36~40.
    [41] 许修宏,程志明,矫洪双,等.番茄叶霉病菌生物学特性的研究[J].植物保护,1999,25(2):12~15.
    [42] 徐秉良.番茄叶霉病菌生物学性状的初步研究[J].甘肃农业大学学报,1993,28(3):283~286.
    [43] 石井正义.温湿度对番茄叶霉病发生的影响[J].中国蔬菜.1990,(1):53~54.
    [44] 王金友,朱虹.苹果斑点落叶病侵染与发病规律研究[J].中国果树,1998,(4):38~43.
    [45] 马辉刚,李瑞明,胡水秀,等.番茄灰霉病菌生物学特性研究[J].江西农业大学学报,1998,20(2):207~209.
    [46] 马辉刚,李瑞明,胡水秀,等.番茄灰霉病化学防治试验报告[J].江西农业科技,1997(2):41~43.
    [47] 马辉刚,李瑞明,胡水秀,等.木霉素防治番茄灰霉病田间药效试验[J].植物保护,1998(2):38~39.
    [48] 邢勇.山茶花灰斑病菌生物学特性研究[J].植物保护学报, 1990,(3):161~166.
    [49] 李云山,郑成.浙贝母灰霉病菌的生物学特性研究[J].浙江农业大学学报,1984,10(3):289~298.
    [50] 邓党勤.观赏植物灰霉病防治.植物保护,1982,(1):36~38.
    [51] 张石新.主要蔬菜病虫害防治技术及研究进展[M].北京:农业出版社,1992:100~103.
    [52] Sherf, A. F.et al. Vegetable disease and their control[Jj. John & Bons Ine, Toronto. 1986:645~647.
    [53] A J Dik, Y Elad. Comparison of antagonists of Botrytis cinerea in greenhouse-grown cucumber and tomato under different climatic conditions[J]. Europen Journal of Plant Pathology 1999,(105): 123~137.
    
    
    [54] Neill T M O, A Niv, Y Elad, Shtienberg. Biological control of Botrytis cinerea on tomato stem wounds with Trichoderma harzianum[J]. European Journal of Plant Pathology, 1996, (102): 635~643.
    [55] 张玉勋,张光明,李光,等.外源营养物质对番茄灰霉病分生孢子萌发及其侵染的研究[J].莱阳农学院报,1999,16(3):199~202.
    [56] 顾振芳.桑树灰霉病Botrytis Cinerea Pers.的生物学特性[J].浙江农业大学学报,1986,12(1):198~204.
    [57] 吕佩珂.Phoma betac Fre.孢子萌发的研究[J].植物病理学报,1981,11(3):86~89.
    [58] 张石新.保护地番茄灰霉病发生与防治[J].病虫测报,1991,(1):38~41.
    [59] 王探应,陈雯.番茄叶霉病的发生与防治研究[J].西北农业学报,1997,6(4):77~80.
    [60] 蔡银杰,李均.番茄灰霉病发生规律及田间药剂防治试验[J].长江蔬菜,1992(2):17~18
    [61] 杨升炯,张晓刚,胡思全,等.番茄灰霉病发生规律及防治技术研究[J].西北农业学报,1996,5(2):66~70.
    [62] 是栋梁,张贵林,王凤英,等.保护地番茄灰霉病生态防治配套技术[J].南京农业大学学报,2000,23(1):39~42.
    [63] 李明远,柯常取,曾丽,等.环境因素对芸苔链格孢生长发育的影响[J].植物保护学报,1991,12(4):317~321.
    [64] 范明山,程根武,张益先,等.灰霉病菌对多菌灵和乙霉威抗性研究[J].沈阳农业大学学报,1998,(3):213~216.
    [65] 褚福林.番茄灰霉病的发生与综合防治[J].江西农业科技,1995,(4):30~31.
    [66] 赵蕾,杨合同.蔬菜灰霉病生防菌的筛选与防效试验初报[J].应用与环境生物学报,1999,5(1):85~88.
    [67] 刘波等.速克灵抗性灰霉病菌菌株性质的研究[J].植物保护学报,1992,(4):297~301.
    [68] 王佩霞,宋军.应用灭克粉尘剂粉尘法防治保护地番茄灰霉病[J].辽宁农业科学,1994,(6):31~32.
    [69] 周明国,叶钟音.植物病原菌对苯丙咪唑类及相关杀菌剂的抗药性[J].植物保护,1987,13(2):31~33.
    [70] 周明国,叶钟音,杭建胜,等.对多菌灵具有抗性的草莓灰霉病菌菌株形成与分布的研究
    
    [J].南京农业大学学报,1990,13(3):57~60.
    [71] Pappas. A C., et al. Insensitivity of Botrytis cinerea to inprodione, procymidone and vinclozolin and their uptaken by the fungus[J]. PLPath, 1979, 28: 71~76.
    [72] Hunter T, et al. Effects of fungicide spray regimes on incidence of dicarboximide resistance in grey mould (B. cinerea )on strawberry plants[J]. Ann Appl Biol, 1987, 19: 515~525.
    [73] Northhover J. Persistence of dicarboximide-resistant Botrytis cinerea in Ontario vineyards[J]. Canadian Journal of Plant Pathology, 1988, 10: 123~132.
    [74] 周明国,叶钟音.交链孢霉对速克灵的抗药性研究[J].植物保护,1991,17(2):6~7.
    [75] 刘波.对多菌灵、速克灵具多重抗性的灰霉病菌菌株性质的研究[J].南京农业大学学1993,16(3):50~54.
    [76] 林柏青,姚技强,朱国仁,等.北京郊区大棚蔬菜灰霉病菌的抗药性检测[J].植物护,1998,24(2):30~31.
    [77] Locher F J, Lorenz G. Methods for monitoring the sensitivity of Botrytis cinerea to dicarboximide fungicides[J]. EPPO Bulletin, 1992, 22: 297~322.
    [78] 邓文斌, 王玉全,王庆华,等.防治番茄灰病药剂筛选试验研究[J].辽宁农业科学,1995,(3):31~32.
    [79] 曹德银,丁建成.25%灰克防治大棚番茄灰霉病防效试验[J],安徽农业科学,1997:95~96.
    [80] 山川邦夫著.蔬菜抗病品种及其利用[H].高振华译.北京:农业出版社,1982:41~48.
    [81] 农业部农药鉴定所.新编农药手册[M].北京:农业出版社,1989:280~367.
    [82] 李保聚.温室番茄灰霉病流行规律研究[J].见:冯兰香等主编.中国番茄虫害及其防治学研究进展.北京:中国农业出版社,1998:31~35.
    [83] Morgen W M. The effect of night temperature and glasshouse ventilation on the incidence of botrytis cinerea in a late planted tomatocrop [J]. Crop Prtection, 1998, (3): 242~252.
    [84] Morgen W M. Influence of energy saving night temperature regimes on Botrytis cinerea in an early season glasshouse tomatocrop[J]. Crop Protection, 1985, (4): 99~110.
    [85] 韩建华,祝木金,冯俊涛,等.31种植物提取物对番茄灰霉病菌的抑制作用.第二届全国植物农药暨第六届药剂毒理学术讨论会[C],2001:307~311.
    [86] 李正鹏,吴萍,卜兴江,等.中草药对真菌菌丝生长抑制作用的研究[J].安徽农业技术
    
    师范学院学报,2000,14(2):26~28.
    [87] Hyre R A. Progress in forecasting late blight of potato and tomato[J]. Plant Disease Reporter, 1954, 38: 245~253.
    [88] Strimttatter G, Janssens J, Opsomer C, et al. Inhibition of fungal disease development in plant by engineering controlled cell death[J]. Bio-Technolog, 1995, 13: 1085~1089.
    [89] 肖悦岩,季伯衡,杨之为,等.植物病害流行与预测[M].北京:中国农业大学出版社,1998:53~152.
    [90] 肖悦岩,曾士迈.小麦条锈病显症率三种预测式的比较[J].中国科学(B辑)1985,(2):151~157.
    [91] 徐明珍,胡群宝.马铃薯晚疫病的发生规律与防治方法[J].云南农业科技,1998,5:44~47.
    [92] Menzies, J G, and Belanger, R R. Recent advances in cultural management of diseases of grrenhouse crops. Can. J. Plant Pathol. 1996, 18: 186~193.
    [93] Shtienberg, D, Elad. Y. incorporation of weather forecasting in integrated biological-chemical management of Botrytis cinerea. Phytopathology, 1997, 87(3): 332~340.
    [94] Eden, M A; Hill, R A. The influence of inoculum concentration, relative humidity and temperature on infection of greenhouse tomatoes by Botrytis cinerea. Plant Pathology 1996,45(4): 795~806.
    [95] Elad, Y., Shtienberg, D. Integrated management of foliar diseases in greenhouse vegetables ccording to principles of a decision support system GREENMAN. Bulletin OILB/SROP 1997, 20(4):71~76.
    [96] Cao K Q, M Ruckstuhl, H R Forrer. Crucial weather condition for P. infestans: A reliable tool for improved control of potato late blight?[J]. Special PAV-report, 1996, 1: 85~90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700