用户名: 密码: 验证码:
鄂豫陕交界区主要公路沿线泥石流沟的地貌学识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流沟的发育与山地地貌演化过程有很大的关系。泥石流沟的判识,是要科学区分泥石流沟和一般的沟谷(洪水沟)。本文基于地貌信息熵理论,以及对新构造应力场与泥石流活动的关系的探讨,对泥石流沟的地貌学识别进行了研究,取得的主要成果如下:
     1.对鄂豫陕交界区主要公路沿线的沟谷信息进行了提取。根据地貌信息熵理论,对所有沟谷的面积-高程信息进行了分析和统计,得到了相应的地貌信息熵值以及危险程度划分标准,并进行了沟谷危险程度的划分。考虑新构造应力场对泥石流灾害的宏观影响特性,采用水系反演法得到了区域应力场的基本特征,并与沟谷的分布特点进行比较,得到了潜在泥石流沟的分布。综合考虑地貌信息熵与新构造应力场的共同作用效应,实现了双因子条件下的泥石流沟的地貌学识别。
     2.对提取到的沟谷进行了地貌信息的量化,分别求算了每一条流域的面积-高程积分以及地貌信息熵值。研究区内各条沟谷的地貌信息熵值范围为:0.053-0.441;基本处于地貌发育的幼年期-壮年期阶段。对地貌信息熵值求取中值,结果为:0.25,处于壮年发育期的早期阶段。结合研究区的实际情况,提出了“鄂豫陕交界区公路沿线危险沟谷划分标准”。对鄂豫陕交界区内主要公路沿线不同危险程度沟谷进行了划分:将E值小于0.25的沟谷视为危险沟谷,共计62条,主要分布在G316沿线(26条)与G209沿线(23条),而G207与G311沿线则分别有2条和11条。
     3.利用水系法反演了研究区的新构造应力场:第一组优势方向(Max1):NW[45°,40°);第二组优势方向(Max2):NE[35°, 40°);区域主压应力方向σT=NW[5°,0°)。对各条沟谷的轴线走向及相应的流域面积进行了统计,并绘制了流域分布玫瑰图以做分析:沟谷集中分布在NE方向,区间为NE[0°,40°);流域分布的第一组优势方向α1为NE[0°,10°),第二组优势方向α2为NE[30°,40°)。α2与Max2剪切带方向基本一致,是地表的软弱带,沿该方向带展布的沟谷在易于发生水土流失,可以将其判识为潜在泥石流沟——共计10条,集中分布在湖北省十堰市郧县和陕南地区的G316沿线(6条),豫西的G209与G311沿线各有2条。
     4.综合考虑地貌信息熵理论的分析结果与新构造应力场的作用效应,将判断出的共同沟谷识别为泥石流沟——共计9条。
Debris flow develops with the mountainous geomorphic evolution process. To identify debris flows velley, means to distinguish debris flow from general gully valleys scientifically. Based on the theory of geomorphic information entropy and the analysis of the relationship between New-tectonic Stress Field and debris flow activities, have made some research on the morphological identification of debris flow. The main results obtained are as follows:
     1. According to the valley-data collected along the main roads in the border area of Hubei-Henan-Shanxi provinces, the area-altitude information can be revealed. For each valley, the entropy value can be calculated and the dangerous standard can be advanced based on the above information. The New-tectonic Stress Field has some affection on the development of the debris flow. The characteristic of the stress field has been studied with the back-stepping of the local river system. Compared the characteristic with the distribution features of the valleys, the potential debris flow have been found. With the synthetically analysis of the results from geomorphic information entropy and New-tectonic Stress Field, the identification of debris flow can be realized.
     2. After quantizing the valley data, the area-altitude information and entropy value have been taken. The values range from 0.053 to 0.441——basically at the infancy- manhood development stage, and the mid-value is 0.25——at the early stage of manhood. For the valleys, the“Division standard of dangerous level”can be raised up with the further consideration of the actual situation. The standard can be used to divide the different valleys with different standard. If the E-value is smaller than 0.25, the related valley would be viewed as dangerous. After summarization, there are 62 dangerous valleys which are mainly distributing along G316(26) and G209(23), and respectively 2 and 11 along G207 and G311.
     3. The New-tectonic stress field has been back-stepped with the study of the local river system——the local principal compressive stress is NW[5°,0°)(σT), and the two shear zone directions are NW(45°,40°](Max1) and NE[35°,40°)(Max2) respectively. For each valley, the information of the strike and area can be figured out and use to draw the rose map. The rose map would reveal the characteristic of the valley distribution which is intensively in the direction of NE[0°, 40°), and one of the dominant directions is NE[0°,10°)(α1) and the other is NE[30°,40°)(α2).α2 is next to the Max2 and the valleys which distribute in this direction are weakly-developing and easily suffered from soil and water loss. Therefore, they would be viewed as potential debris flow and are counted to 10 totally which are mainly distributing along G316(6) in Yun county, Shiyan city, Hubei province and the South of Shanxi. And for G209 and G311,there are 2 respectively.
     4. With the comprehensive consideration of the results from the geomorphic information entropy and the New-tectonic stress field, there are 9 common valleys which can be viewed as debris flow.
引文
[1]康志成,李焯芬,马蔼乃,等.中国泥石流研究[M].北京:科学出版社,2004.
    [2]邓嘉农,赵继东,刘丹.陇南陕南滑坡泥石流发育程度及发展趋势研究[J].中国水土保持, 2003,(9):24-25.
    [3]张永双,曲永新,何锋,等.秦巴山区宁陕县城坡面型泥石流的形成机理[J].水文地质工程地质,2005,(5):84-88.
    [4]焦赞超,梁会娟,李震.河南鲁山县泥石流灾害特征及防治建议[J].地质灾害与环境保护,2005,16(4):341-362.
    [5]邢永强.河南省泥石流形成环境的量化研究[J].信阳师范学院学报(自然科学版),2007,20 (2):179-182.
    [6]邢永强.小秦岭地区泥石流发生趋势研究[J].中国水土保持,2007,(08):20-23.
    [7]崔鹏,韦方强,何思明,等.“5·12”汶川地震诱发的山地灾害及减灾措施[J].山地学报, 2008,26(3):280-282.
    [8] Cui P,Chen X Q,Zhu Y Y,et al.The Wencuan Earthquake(12 May 2008),Sichuan Province,China,and resulting geohazards[J].Nature Hazards,2009,DOI 10.1007 /s11069-009-9392-1.
    [9]崔鹏,庄建琦,陈兴长,等.汶川地震区震后泥石流活动特征与防治对策[J].四川大学学报(工程科学版),2010,42(5):10-19.
    [10]郑明新,王兰生.分形理论在区域地质灾害预测中的应用[J].地质灾害与环境保护,1998, 9(3):1-5.
    [11]王协康,方铎.白龙江流域泥石流沟形态非线性研究[J].人民长江,1999,30(9):18-20.
    [12]李俊才,胡卸文.金沙江向家坝库区泥石流发育状况及其沟谷形态的非线性特征[J].山地学报,2001,19(1):29-32.
    [13]胡卸文,钟沛林.云南蒋家沟流域泥石流沟谷演变的非线性特征[J].长江流域资源与环境,2002,11(1):94-96.
    [14]倪化勇.泥石流流域地貌形态的统计分形[J].水土保持研究,2006,13(6):92-93.
    [15] Li Yong,Hu Kai-heng,Cui Peng,et al. Morphology of Basin of Debris Flow[J]. Journal of Mountain Science,2002,20(1):1-11.
    [16]陈彦光,靳军.地理学基础理论研究的方法变革及其发展前景[J].干早区地理,2003,26 (2):97-102.
    [17] Koons P O.The topographic evolution of collisional mountain belts:A numerical look at the Southern Alps,New Zealand[J].Am J Sci.1989,289:1041-1069.
    [18] Montgomery D R,Balco G,Willett S.Climate.tectonics and the morphology of theAndes[J].2001.Geoloyg,29:579-582.
    [19]于海龙,邬伦,林星,等.基于WebService的小流域地貌演化问题计算设计与实现[J].北京大学学报(自然科学版),2005,41(6):890-897.
    [20]武春龙,李壁成,雷会珠.小流域侵蚀地貌演化的计量分析[J].土壤侵蚀与水土保持学报,l997,3(4):55-61.
    [21]杨发相.塔里术盆地地貌过程对绿洲形成演变的影响[J].干旱区地理,2003,26(4): 361-366.
    [22]崔灵周,李占斌,肖学年.岔巴沟流域地貌形态分形特征量化研究.水土保持学报,2004, 18(2):41-44.
    [23]朱永清,李占斌,崔灵周,等.基于GIS地貌形态特征分形信息维数与等高距关系研究[J].水土保持学报,2005,19(1):105-108.
    [24]王民,李占斌,崔灵周,等.基于变分法的流域地貌形态分形特征量化研究[J].沈阳农业大学学报,2008,39(3):340-343.
    [25]许世远,孙以义.地貌形态模拟[J].地理学报,2000,55(3):266-273.
    [26] Culling W E H. Soil creep and the development of hillside slopes[J].Geology,1963, 71:127-161.
    [27] Scheidegger A E. Mathematical models of slope development[J].Bull Geol Soc Am, 1961,72:37-50.
    [28]平野昌繁.斜坡特别是断层崖斜坡发育的数学模型[J].地理学评论,1966,39:324-366.
    [29]平野昌繁.斜坡发育数学模型的几点补充[J].地理学评论,1966,39:606-617.
    [30]艾南山,顾恒岳.泛系地貌学初论[J].重庆交通学院学报,1984,3(2):72-80.
    [31] Penck W. Die morphologische Analysa[M].Engelhorns Nachf,1924.
    [32] Scheidegger A E. The principle of antagonism in the Earth’s evaluation[J]. Tectonophysics,1979,55:7-10.
    [33] Scheidegger A E. Theoretical Geomorphology[M].2thed. Spring-Verlag,1970.
    [34]艾南山.侵蚀流域系统的信息熵[J].水土保持学报,1987,1(2):1-7.
    [35]艾南山,岳天祥.再论流域系统的信息熵[J].水土保持学报,1988,2(4):1-7.
    [36]蒋忠信.矩形流域地貌信息熵的探讨[J].水土保持通报,1989,9(6):83-87.
    [37]马新中,陆中臣,金德生.流域地貌系统的侵蚀演化与耗散结构[J].地理学报,1993,48 (4):367-375.
    [38]任美锷译.台维斯地貌学论文选[M].北京:科学出版社,1958.
    [39]励强,陆中臣,袁宝印.地貌发育阶段的定量研究[J].地理学报,1990,45(1):110-120.
    [40] Strahler A N. Hypsometric (area-altitude) analysis of erosional topography[J]. Geological Society of America,1952,63:1117-1142.
    [41]承继成,江美球.流域地貌数学模型[M].北京:科学出版社,1986.
    [42]郭彦彪,李占斌,崔灵周.流域地貌形态的定量化研究[J].水土保持学报,2002,16(1): 117-120.
    [43]姜鲁光,张祖陆.鲁中南山地流域地貌的高程-面积分析[J].山东师范大学学报(自然科学版),2003,18(1):63-66.
    [44]肖学年,崔灵周,王春,等.模拟流域地貌发育过程的空间数据获取与分析[J].地理科学, 2004,24(4):439-443.
    [45]孙然好,张百平,潘保田,等.祁连山北麓地貌信息熵与山体演化阶段分析[J].干旱区地理,2006,29(1):88-93.
    [46]陆中臣.流域地貌系统[M].大连:大连出版社,1991.
    [47]管华,高更和.秦岭-黄淮平原交界带地貌演化阶段的信息熵判定[J].地理科学,2002,22 (6):673-676.
    [48]李青,曾凡伟,徐刚.泥石流流域地貌发育阶段的定量分析——以北碚区为例[J].宜宾学院学报,2004,4(4):82-85.
    [49]吕学军,刘希林,苏鹏程.四川达曲河流域泥石流沟发育阶段的面积-高程分析[J].山地学报,2005,23(3):336-341.
    [50]王晓朋,潘懋,任群智.基于流域系统地貌信息熵的泥石流危险性定量评价[J].北京大学学报(自然科学版),2007,43(2):211-215.
    [51] Ai N S,Li Y L,Scheidegger A E., et al.The neotectonic tree field in the regions of Shaanxi,Gansu,Ningxia and Qinghai(China).Rock Mechanics,1981,14:167-185.
    [52]艾南山,梁国昭,Scheidegger A E.等.东南沿海水系及新构造应力场.地理学报,1982,37 (2):111-122.
    [53] Scheidegger A E.Geojoints and geostresses.In Rossmanith(ed.). Mechanics of Jointed and Faulted Rock.Balkma: Rotterdam,1995.3-35.
    [54]陈洪凯,唐红梅,艾南山.三峡库区的新构造应力场及其对库岸滑坡滑动优势方向的影响[J].地理研究,1997,16(4):15-22.
    [55]陈洪凯,唐红梅.公路泥石流水毁概化模式分析[J].公路,2003,(08):143-147.
    [56]唐红梅,陈洪凯,李亚训,等.新疆天山公路泥石流形成环境研究[J].公路,2004,(6):87- 92.
    [57]唐红梅,陈洪凯,金发均,等.美姑河流域公路泥石流物源成因[J].山地学报,2005,23(6): 714-718.
    [58]艾南山,陈洪凯,李后强.从新构造应力场论公路水毁问题——兼论地貌发育的对抗性原理[J].地理科学,1996,16(4):298-304.
    [59]谭炳炎.泥石流沟的严重程度的数量化综合评判[J].水土保持通报,1986,6(1):51-57.
    [60]中国科学院-水利部成都山地灾害与环境研究所.中国泥石流[M].北京:商务印书馆, 2000.
    [61]王礼先,于志民.山洪及泥石流灾害预报[M].北京:中国林业出版社,2001.
    [62]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.
    [63]阮诗昆,庄儒新.泥石流流域地貌发育阶段的定量分析[J].资源环境与工程,2007,21(6): 695-697.
    [64]张逸阳.河南省典型地质灾害问题与防治对策[J].科学咨询,2008,(5):65-66.
    [65]河南省地质矿产局.河南省区域地质志[M].北京:地质出版社,1989.
    [66]潘懋,李铁锋.灾害地质学[M].北京:北京大学出版社,2002.
    [67]秦大河,高庆华,苏桂武,等.中国自然灾害与全球变化[ M].北京:气象出版社,2003.
    [68]彭建,杨明德,梁虹.基于GIS的路南巴江喀斯特流域地貌演化定量研究[J].中国岩溶, 2002,21(2):90-95.
    [69]李细光,史水平,黄洋,等.广西及其邻区现今构造应力场研究[J].地震研究,2007,30(3): 235-240.
    [70] Zhen-jie Jing,Yi Du,and Fu-ren Xie. Fault slip and modern tectonic stress field in and around Kunming Basin[J]. Acta Seismologica Sinica,2008,(21):233-242.
    [71] Song Weihua,Zhang Hongwei. Assessment on faults slide criterion and stability and back-analysis of tectonic stress field[J]. Chinese journal of rock mechanics and engineering,2008,27(z2):3740-3745.
    [72]付玉华,王兴明,袁海平.构造应力场边界载荷反演的有限元逆逼近法[J].岩土力学, 2009,30(6):1850-1855.
    [73]秦胜伍,刘传正,李广杰.基于GIS改进法水系反演三峡地区新构造应力场[J].世界地质,2006,25(2):160-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700