用户名: 密码: 验证码:
中子受激辐射计算机断层扫描成像技术中若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中子受激辐射计算机断层扫描成像(NSECT:Neutron Stimulated EmissionComputed Tomography)是国际上最新发展的除核磁共振成像以外的另一种具备元素识别能力的三维成像方法。其利用快中子激发原子核,探测其产生的元素特征γ射线,便可得到物体内部的各种化学元素的分布。NSECT能够描述为对传统发射计算机断层扫描成像的一种改进,只是发射的γ射线由传统的天然放射同位素替换为稳定同位素,另外需要外部的额外中子束产生非弹性散射产生特征γ射线,然后对其进行重建,就能够反映元素的组成。早期的研究表明,细胞在发生病变和癌细胞在形成时,良性组织和恶性组织中的微量元素的浓度有着很大的区别。而NSECT技术可以得到人体不同元素的空间分布,提供分子过程,因此有可能在此基础上发展出一种新的诊断技术,用于癌症的早期或超早期诊断。
     NSECT技术有其独特的优势:1)它基本上不受物体的化学组成的限制,除氢(无特征γ射线)与氦(特征γ射线能量太高)外,所有的元素(无论是稳定的还是放射性的)从理论上讲都可以被成像。2)由于中子有很强的穿透力,因此能够对人体深处的结构进行探测成像,而大部分其它方法并没有这个效果。3)利用一定的探测结构获得三维信息,NSECT技术就能够获得化学元素的真实三维图像。然而在此技术实际研究过程中,由于特征γ光子的高能量,同时获得其能量和位置信息并不容易,导致现有的技术并不能很好地对其进行断层成像。另外,还存在本底噪声过大,中子损伤效应大等一系列值得重视的问题。
     NSECT的核心是成像探测器的设计。由于中子与物质相互作用的特殊性质,中子的输运过程非常复杂且特征γ射线的出射范围遍及空间各个角度,在目前的实际研究中普遍采用的是蒙特卡罗数值模拟方法。本论文针对在NSECT技术实现存在的部分关键问题,尤其是高能γ光子探测中空间分辨和能量分辨之间存在的互斥问题,介绍了利用Geant4系统进行的大量模拟研究工作,取得的主要成果如下:
     1)在分析适用于NSECT技术的中子源特性的基础上,根据入射中子能量的差异会产生不同的激发反应和核反应几率,提出了最优化入射中子能量的概念。在Geant4模拟中以最佳入射能量的中子去轰击感兴趣的元素,通过分析其能谱和主要激发γ光子的能量,得到了特征光子的大致能量范围。元素的主要特征γ光子能量范围在0.1MeV-7MeV之间。而此能量区间的γ射线有一些相似的性质,例如康普顿散射截面都较大等,这将有助于我们今后在如获得优化的探测装置、材料等方面工作中提供一定的指导意义。
     2)探讨了利用常规阵列探测器同时获得高能γ光子的位置、能量信息的可行性。通过对高能γ射线在BGO晶体中的能量沉积特性研究发现,阵列探测器中利用单根BGO晶体信号输出并不能得到较好的能量分辨,而通过对相邻晶体信号进行叠加修正后,在我们所需要的能量范围内能谱被极大地优化。在能量分辨率为90keV时,此阵列探测器能够获得3.938mm的固有分辨率。
     3)由于塑料闪烁光纤在探测成像方面巨大的优势,通过模拟研究探讨了其在NSECT技术发展中潜在的可能性应用。对塑料闪烁光纤在高能γ射线下辐照特性的研究发现,其严重的能量泄露和串扰将极大的影响其在此探测领域的发展。因此光纤阵列并不能直接用于NSECT技术;但是另一方面,这些结果可能对探测器的构造方式提供一定意义的指导作用,比如,根据光纤在不同能量区域范围内的沉积特性,实现一定程度的n/γ识别。
     另外,根据康普顿散射电子谱及闪烁光纤与电子、光子作用的不同特性,提出了利用大直径闪烁光纤模型测量高能γ射线特性的思想。闪烁光纤在此能区内的康普顿截面比较大,而其对高能γ光子的能量沉积也主要表现在对康普顿电子的沉积效应,这一特性有可能在将来发展类似Compton相机的高能γ光子探测模型中发挥一定的作用。
     4)利用Geant4系统研究了闪烁光纤在快中子辐照下的反冲质子能量分布与方向分布特性,得到各种入射中子能量下闪烁光纤的优化半径。这为之后的基于塑料闪烁光纤的快中子吸收成像打下了基础。结果表明,反冲质子的能量在零与入射中子能量之间连续地分布,并且在接近垂直入射方向(50°-100°之间)产生的质子数较多。另外,反冲质子的出射角度越小,其能量越大,即沿着入射方向的反冲质子能量较大,而垂直入射(即沿着半径)方向的反冲质子能量较小。
     5)在上述研究基础上,对单根光纤及其阵列成像系统随着各种参数的变化趋势进行了模拟研究,以此探讨在NSECT探测装置中加载中子吸收成像同步测量以提高成像系统的探测效率和灵敏度的可行性。在快中子入射下,由于闪烁光纤材料本身主要是氢、氧等轻元素,探测效率比传统的荧光屏要高,并且可以通过增加光纤长度等措施来提高吸收效率;同时,由于闪烁光纤长度的变化基本上不改变最后图像的空间分辨率,这就使得可以利用光纤这一独特的性质来很好的完成快中子成像。另外,在闪烁光纤阵列中加入铅介质后,确实对抑止串扰、提高图像空间分辨率是具有积极的作用的,但同时铅介质的厚度又不宜过大,否则将反而起到消极的作用。这与在高能X射线成像下的结论是一致的。
Neutron Stimulated Emission Computed Tomography(NSECT),a newly developed molecular imaging technique,can measure the trace element concentrations,similar to magnetic resonance imaging(MRI),which has been proven successful for a limited set of isotopes and the response of these isotopes can be strongly influenced by their molecular binding.Using neutrons to stimulate characteristic gamma emission from atomic nuclei in the body,spatial projections of the emitted energy spectra allow tomographic image reconstruction of the elemental concentrations.NSECT can be pictured as a modification of conventional emission computed tomography(ECT) where the gamma emissions are not from naturally radioactive isotopes(as is conventional),but instead are from stables that have been stimulated tO emit characteristic gamma photons through inelastic scattering of an external neutron beam.Earlier studies demonstrated a significant difference in trace element concentrations between benign and malignant tissue for several cancers. Through NSECT,the spatial distribution of elemental concentration in the body can provide the molecular process,which can be used to identify cancer by its change in elemental concentration long before it has begun to cause the anatomical changes.
     NSECT has several unique advantages:1) Any isotopes,stable or radioactive,can be imaged(with the exception of hydrogen or helium).2) Neutrons are highly penetrating particles and they can image structures deep within the body that cannot be reached using most other probes.3) NSECT can obtain true 3D maps of chemical isotopes,by using detector geometries that yield 3D information.However,it is difficult to obtain energy and position information at one time due to high energy of the characteristic gamma photons,which causes the existing technology cannot tomography well.In addition,there are a serial of other problems for attention,such as the large background noise,the neutron irradiation effect,et al.
     The key point of the NSECT technology is the design of the imaging detector. Due to the special nature of neutron interaction with the material,the complexity of the neutron transport process,and the characteristic gamma photons with emitting angles throughout the space,the Monte-Carlo simulation methods have been widely adopted in practical researches.In view of several key issues of NSECT technology, especially the contrary problem of spatial and energy resolution in detecting high-energy gamma photons,this thesis introduces a great deal of work using Geant4 simulation toolkit.Main results are as follows:
     1) After analyzing the characteristic of neutron source for NSECT,we proposed a conception of optimal incident neutron energy,according to the truth that the incident neutron energy differences will produce different nuclear exciting reaction and the probability of nuclear reaction.In Geant4 simulations,the energy range of the characteristic photons has been obtained through analyzing the energy spectrum achieved by stimulating the elements using incident neutrons with optimal energies. The results indicate that optimal energy for different elements is varied and the energies of characteristic gamma photons of all the elements are mainly in the range of 0.1~7 MeV.There are some similar characteristics for photons in this energy range, such as large cross-section of Compton Scattering.All these results will provide some guidance in our future work,such as achieving optimal detector material and installing configuration.
     2) The possibility of traditional array detector to obtain both spatial and energy resolution of high-energy gamma photon has been presented through simulation.As the results show,when using signals form a single BGO crystal it is impossible to achieve good energy resolution for those high-energy photons.When summing additional signals from adjacent crystals,the energy spectrum becomes much better. Using an energy window with energy resolution of 90 keV,an average intrinsic spatial resolution of 3.938 mm FWHM is obtained.
     3) For its advantages in the field of detection and imaging,the potential possibility of plastic scintillating fiber applied in the NSECT technology has been discussed.As the characteristic under high-energy gamma radiation show,plastic scintillating fiber has limited application in high-energy photon detection,because of the severe energy-leakage and cross-talk.That is,the fiber array is impossible to directly contribute in NSECT technology;however,it should provide a meaningful role in guiding the detector installation.For example,it is possible to carry out a certain degree of n /γidentification through the energy deposition characteristics in the scintillating fiber for photons with different energy range.
     When interacted in the scintillating fiber,there exist different characteristics for electrons and photons.According to this difference and also the Compton-Scattered electron spectrum,We proposed the idea of measuring high-energyγphotons using big-diameter scintillating fiber.There is a large cross-section of Compton Scattering in the energy range,and the energy deposition of high-energy photons in scintillating fiber is mainly contributed by the Compton-Scattered electron.This characteristic will play the role in developing a similar Compton-Camera for high-energy photon detection in future.
     4) Through Geant4 simulation,the characteristics of recoil proton in plastic scintillating fibers irradiated by fast neutrons have been presented.The energy and angular distributions of recoil proton have been analyzed and optimal radius of scintillating fiber has been found out with different incident neutron energy.As the results show,the energy of recoil proton varies from zero to incident neutron energy. The recoil proton energies vary inversely as angles,that is,the protons along the direction of incident neutrons have big energies and that along the fiber radius have relative small energies.All these results should lay the foundation for fast neutron absorption imaging based on plastic scintillating fiber.
     5) The varieties of different parameters have been studied in single fiber and fiber array system.The possibility of improving detection efficiency and sensitivity by loading a synchronous neutron absorption imaging system in the NSECT detection installing has also been discussed.The detection efficiency is higher than that using traditional fluorescence screen,because of the scintillating material mainly composed of hydrogen and oxygen,which have large cross-sections for fast neutrons. Furthermore,the efficiency can be improved by increasing the fiber length,which basically does not change the spatial resolution of the image.We also investigated the approach of coating fiber with metal layers,which indeed would play a positive role in restraining cross-talk and improving spatial resolution.However,to increase the thickness of the metal layer,the overall resolution would be further reduced.It is consistent with the previous conclusion for high-energy X-ray imaging.
引文
[1]丁大钊,叶春堂,赵志祥等。中子物理学-原理、方法与应用[M],北京:原子能出版社,2001。
    [2]徐克尊等。粒子探测技术[M],合肥:中国科学技术大学出版社,1981。
    [3]谢一冈,陈昌,王曼等。粒子探测器与数据获取[M],北京:科学出版社,2003。
    [4]核素图表编制组.核素常用数据表[M],北京:原子能出版社,1977.
    [5]Floyd C,Howell C,Kapadia A,et al.Neutron-Based Imaging May Lead to Earlier Breast Cancer Diagnosis[R],Pittsburgh:American Physical Society,APS News 14(2),AAPM Meeting Paper WE-D-315-6,2004.
    [6]Floyd C E,Bender J E,Sharma A C,et al.Introduction to neutron stimulated emission computed tomography[J].Physics in Medicine and Biology,2006,51(14):3375-3390.
    [7]Floyd C E,Howell C,Harrawood B,et al.Neutron Stimulated Emission Computed Tomography of Stable Isotopes[C],Proceeding of SPIE,2004,5368(1):248-254.
    [8]Sharma A C,Harrawood B,Bender J E,et al.neutron stimulated emission computed tomography:A Monte Carlo simulation approach[J],Physics in Medicine and Biology 2007,52(20):6117-6131.
    [9]Kapadia A J,Harrawood B P,Tourassi G D.Validation of a GEANT4 simulation of neutron stimulated emission computed tomography[J],Proceedings of SPIE,2008,6913:69133H.
    [10]Gardner R P,Xu L.Prompt Gamma-Ray Imaging for Small Animals[C],2004 2nd IEEE International Symposium on Biomedical Imaging:Macro to Nano.2004,2:I373-6.
    [11]Gozani T.Nuclear based techniques for cargo inspection - a review[C],Proceeding Contraband and Cargo Inspection Technology International symposium,The White House Office of National Drug Control Policy,1992,pp.9.
    [12]Vourvopoulos G.Techniques for detecting explosives and contraband[J].Chemistry and Industry,1994,8:297-300.
    [13]Nunes W V,Silva A X,Crispim V R,et al.Explosives detection using prompt-gamma neutron activation and neural networks[J],Applied Radiation and Isotopes,2002,56:937-943.
    [14]Evans R J,Jupp I D,Lei F,et al.Design of a large-area CsI(T1) photo-diode array for explosives detection by neutron-activation gamma-ray spectroscopy[J],Nuclear Instruments and Methods A,1999,422:900-905.
    [15]Geraki K,Farquharson M J,Bradjey D A.Concentrations of Fe,Cu and Zn in breast tissue: a synchrotron XRF study[J],Physics in Medicine and Biology,2002,47(13):2327-39.
    [16]Geraki K,Farquharson M J,Bradjey D A.X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue[J],Physics in Medicine and Biology,2004,49:99-110.
    [17]Tang S B,Yin Z J,Ma Q L.Possible use of a BGO array for neutron stimulated emission computed tomography by summing adjacent signals[J],Nuclear Instruments and Methods B,2007,263(2):441-445.
    [18]Sharma A C,Tourassi G D,Kapadia A J,et al.Design and development of a high-energy gamma camera for use with NSECT imaging:Feasibility for breast imaging[J],IEEE Transactions on Nuclear Science,2007,54(5):1498-1505.
    [19]Sharma A C,Turkington T G,Tourassi G D,et al.Near-field high-energy spectroscopic gamma imaging using a rotation modulation collimator[J],Nuclear Instruments and Methods B,2008,266(22),4938-4947.
    [20]Lin R P,Krucker S,Hurford G J,et al.,REHSSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare[J],Astrophysical Journal Letters,2003,595(2):L69-76.
    [21]Floyd C E,Sharma A C,Bender J E,et al.neutron stimulated emission computed tomography:Background corrections[J],Nuclear Instruments and Methods B,2007,254(2):329-336.
    [22]Floyd C E,Bender J E,Harrawood B,et al.Breast cancer diagnosis using neutron stimulated emission computed tomography:Dose and count requirements[C],Proceedings of SPIE,2006,6142 Ⅱ:614210.
    [23]Kapadia A J,Sharma A C,Tourassi G D,et al.Neutron stimulated emission computed tomography for diagnosis of breast cancer[J],IEEE Transactions on Nuclear Science,2008,55(1):501-509.
    [24]刘林茂,刘雨人,景士伟。中子发生器及其应用[M],北京:原子能出版社,2005.
    [25]丁厚本王乃彦.中子源物理[M],北京:科学出版社,1984。
    [26]Oka Y,Koshizuka S,Saito I,et al.Fast neutron source reactor,YAYOI[J],Progress in Nuclear Energy,1998,32(1-2):3-10.
    [27]Borcea C,Cennini P,Dahlfors M.Results from the commissioning of the n_TOF spallation neutron source at CERN[J],Nuclear Instruments and Methods A,2003,513:524-537.
    [28]Agostinelli S,Allison J,Amako K,et al.Geant4-a simulation toolkit[J],Nucl.Instr.Meth.A 2003,506:250-303.
    [29]Allison J,Amako K,Apostolakis J,et al.Geant4 Developments and Applications[J],IEEE Trans.Nucl.Sci.,2006,53(1):270-278.
    [30]Geant4 User's Guide[M/OL].Available from:http://geant4.web.cern.ch/geant4.
    [31]马文淦。计算物理学[M],合肥:中国科学技术大学出版社,2004。
    [32]唐孝威,粒子物理实验方法[M],北京:人民出版社,1982。
    [33]唐世彪,阴泽杰,朱大鸣等。中子激发碳、氧、铁、铜的模拟研究[J],核技术,2007,30(3):189-191.
    [34]李延斌,金梅。正电子发射计算机断层扫描的特点和临床应用[J],中国全科医学,20047(22):171-171。
    [35]Ziemons K,Auffray E,Barbier R,et al.The ClearPETTM project:development of a 2~(nd)generation high-pergormance small animal PET scanner[J],Nuclear Instruments and Methods A,2005,537:307-311.
    [36]Tamda N,Bakkali A,Parmentier M,et al.Characterizaion of a γ-ray detector based on square PSPMT array[C],2004 IEEE Nuclear Science Symposium Conference Record,2004,6:3445-8.
    [37]Pani R,Scafe R,Pellegrini R,et al.Scintillation arrays characterization for photon emission imaging[J],Nuclear Instruments and Methods A,2002,477:72-76.
    [38]Gimenez E N,Benlloch J M,Gimenez M,et al.Detector Optimization of a Small Animal PET Camera Based on Continuous LSO Crystals and Flat Panel PS-PMTs[C],IEEE Nuclear Science Symposium Conference Record 2004,Rome,Italy,2004,6:3885-9.
    [39]Pani R,Soluri A,Scafe R,et al.Multi-PSPMT scintillation camera[J].IEEE Transactions on Nuclear Science,1999,46(3):702-707.
    [40]Pani R,Pellegrini R,Cinti M N,et al.Recent advances and future perspectives of position sensitive PMT[J],Nuclear Instruments and Methods B 2004,213:197-205.
    [41]Crespo P,Kapusta M,Pawelke J,et al.First In-Beam PET Imaging with LSO/APD-Array Detectors[C],IEEE Nuclear Science Symposium.Conference Record 2003:19-25.
    [42]Leonard S M A,Fremout A A R,Wisniewski D,et al.Feasibility studies with PET detector modules based on APD array and LSO[C],IEEE Nuclear Science Symposium Conference Record 2001:43-7.
    [43]李玉兰,金永杰。21世纪的核医学探测器[J],核电子学与探测技术,2000,20(1):74-78.
    [44]Chatziioannou A F,Cherry S R,Shao Y,et al.Performance evaluation of microPET:a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging[J],Journal of Nuclear Medicine,1999,40(7):1164-1175.
    [45]Shao Y,Silverman R W,Farrell R,et al.Design studies of a high resolution PET detector using APD arrays[J],IEEE Trans.Nucl.Sci,2000,47:1051-1057.
    [46]Pichler B,Boning C,Lorenz E,et al.Studies with a prototype High resolution PET scanner based on LSO-APD Modules[J],IEEE Trans.Nucl.Sci.,1998,45:1298-1302.
    [47]Anger H O,Scintillation camera[J],Rev.Sci.Instrum.,1958,29:27-33.
    [48]Vaska P,Kirshnamoorthy S,Stoll S,et al.An Improved Anger Detector Approach for PET with High Resolution and Sensitivity[C],2004 IEEE Nuclear Science Symposium Conference Record,Rome,Italy,2004,6:3463-6.
    [49]Craig S L.Detector design issues for compact nuclear emission cameras dedicated to breast imaging[J],Nuclear Instruments and Methods A,2003,497:60-74.
    [50]Formiconi A R.Collimators[J],the Quarterly Journal of Nuclear Medicine.2002,46(1):8-15.
    [51]Ricard M.Imaging of gamma emitters using scintillation cameras[J],Nuclear Instruments and Methods A,2004,527:124-129.
    [52]曾海宁,严世奎,汪兆民,等。基于位置灵敏光电倍增管的小型γ相机[J],核技术,2001,24(2):118-121.
    [53]刘士涛,许咨宗,曾海宁,等。PSPMT基本特性的实验研究[J],核技术,2000,23(8):555-558。
    [54]Liu Hong-Chih.Scintillation event positioning by BGO array and PSPMT[C].SPIE conference on Input/Output and Imaging Technologies,1998,3422:293-297.
    [55]Hamamatsu Photonics[OL],http://sales.hamamatsu.com/.
    [56]Nassalski A,Batsch T,Wolski D,et al.Comparative study of scintillators for PET/CT detectors[J].IEEE Trans.Nucl.Sci.2007,54(1):3-10.
    [57]Simone W,Daniela C,Marcel K,et al.Comparison of LuYAP,LSO,and BGO as scintillators for high resolution PET detectors[J].IEEE Trans.Nucl.Sci.2003,50(5):1370-1372.
    [58]Zavattini G,Domenico D G,Gambaccini M,et al.High Z and medium Z scintillators in ultra-high-resolution small animal PET[J].IEEE Trans.Nucl.Sci.2003,52(1):222-230.
    [59]Carrier C,Lecomte R.Theoretical modelling of light transport in rectangular parallelepipedic scintillators[J].Nuclear Instrum.Meth.A,1990,292(3):685-692.
    [60]Herbert D J,Meng L J,Ramsden D.Investigating the energy resolution of arrays of small scintillation crystals[J].IEEE Transactions on Nuclear Science,2002,49(3):931-936.
    [61]Knoll G E Radiation Detection and Measurement[M].Hoboken:John Wiley & Sons,2000.
    [62]Vaska P,Stoll S P,Woody C L,et al.Effects of intercrystal crosstalk on multielement LSO/APD PET detectors[J].IEEE Tran.Nucl.Sci.2003,50(3):362-366.
    [63]Miyaoka R S and Lewellen T K.Effect of detector scatter on the decoding accuracy of a DOI detector module[J].IEEE Trans.Nucl.Sci.2000,47(4):1614-1619.
    [64]Tang S B,Ma Q L,Yin Z J,et al.Determination of spatial resolution of plastic scintillation fiber array with a simple method[J].Nuclear Science and Techniques,2007,18(2):111-114.
    [65]Rollo F D.Nuclear Medicine Physics,Instrumentation,and Agents[M],Saint Louis:Mosby Company.1977.
    [66]Verger L,Gentet M C,Gerfault L,et al.Performance and Perspectives of a CdZnTe-Based Gamma Camera for Medical Imaging[J],IEEE Trans.Nucl.Sci.,2004,51(6):3111-7.
    [67]马庆力。基于塑料闪烁光纤的X射线瞬态成傢的研究[D],合肥:中国科学技术大学,2005。
    [68]马庆力,Nasseri M M,阴泽杰等。闪烁光纤阵列用于高能射线成像的可行性研究[J],核技术,2005,28(3):556-560。
    [69]Nasseri M M,Yin Z,Wu X,et al.X-ray imaging using a single plastic scintillating fiber[J],Nuclear Instruments and Methods B,2004,225:617-622
    [70]Nasseri M M,Ma Q,Yin Z et al.Low Energy X-ray Imaging Using Plastic Scintillating Fiber:a Simulation Study[J],Nuclear Instruments and Methods B,2005,234:362-368.
    [71]Scintillation Production - Scintillating Optical Fiber[M/OL].http://www.detectors.saint-gobain.com.
    [72]White T O.Scintillating Fibers[J].Nuclear Instruments and Methods A,1988,273:820-825.
    [73]Data taken from the website of NIST[M/OL],USA:http://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/polystyrene.html
    [74]Ikhlef A,Skowronek M.Some Emission Characteristics of Scintillating Fibers for Low Energy X and γRays[J],IEEE Trans.Nucl.Sci.,1994,41(2):408-414.
    [75]Levi Leo.Applied Optics:a guide to optical system design[M],Hoboken:John Wiley &Sons,1980
    [76]Shao H,Miller D W,Pearsall C R.Scintillating fiber optics for X-ray radiation imaging[J],Nucl.Instr.Meth.A,1990,299(1-3):528-533.
    [77]Zanella G,Zannoni R.X-ray imaging with scintillating glass optical fibres[J],Nucl.Instr.Meth.A,1990,287(3):619-627.
    [78]Melnyk R,Dibianca F A.Monte Carlo study of X-ray cross-talk in a variable resolution x-ray detector[C],Proceedings of SPIE,2003,5030:694-701.
    [79]Levin C S,Tornai M P,Cherry S R,et al.Compton scatter and X-ray crosstalk and the use of very thin intercrystal septa in high-resolution PET detectors[J],IEEE Trans.Nucl.Sci., 1997,44(2):218-24.
    [80]Levin C S,Tornai M P,Cherry S R,et al.Compton scatter and X-ray cross-talk and the use of very thin inter-crystal septa in high resolution PET detectors[C],IEEE Nuclear Science Symposium and Medical Imaging Conference,1995,1:1036-1040.
    [81]Tang Shibiao.Ma Qingli,Yin Zejie,et al.Numerical simulation of simple position-sensitive γ-ray detector based on plastic scintillating fiber array[J].Optical Fiber Technology,2008,14:36-40.
    [82]Todd R W,Nightingale J M,Everett D B.A Proposed Gamma Camera[J],Nature,1974,251:132-134.
    [83]Singh M.An electronically collimated gamma camera for single photon emission computed tomography[J],Med.Phys.1983,10(4):421-427.
    [84]Conka-Nurdan T,Nurdan K,Constantinescu F,et al.Impact of the Detector parameters on a Compton Camera[J],IEEE Transactions on Nuclear Science,2002,49(3):817-821.
    [85]Studen A,Burdette D,Chesi E,et al.First coincidences in pre-clinical Compton camera prototype for medical imaging[J],Nuclear Instruments and Methods A,2004,531:258-264.
    [86]Conka-Nurdan T,Constantinescu F,Freisleben B,et al.Influence of the Detector Parameters on a Compton Camera[C],IEEE Nuclear Science Symposium and Medical Imaging Conference,2000,3:22/26-22/29.
    [87]Uhlman Norman,Wolfel Stefan,Pauli Johannes,et al.3D-Position-Sensitive Compact Scintillation Detector as Absorber for a Compton-Camera[J],IEEE Transactions on Nuclear Science,2005,52(31):606-611.
    [88]Scannavini M G,Speller R D,Royle G J,et al.Design of a Small Laboratory Compton Camera for the Imaging of Positron Emitters[J],IEEE Transactions on Nuclear Science,2000,47(3):1155-1162.
    [89]Scannavini M G,Speller R D,Royle G J,et al.A possible role for silicon microstrip detectors in nuclear medicine:Compton imaging of positron emitters[J],Nuclear Instruments and Methods A,2002,477:514-520.
    [90]Fujine S,Yoneda K,Yoshii K,et al.Development of imaging techniques for fast neutron radiography in Japan[J],Nucl.Instrum.Methods Phys.Res.A,1999,424:190-199.
    [91]Kim K H,Klann R T,Raju B B.Fast neutron radiography for composite materials evaluation and testing[J],Nucl.Instrum.Methods Phys.Res.A,1999,422:929-932.
    [92]Ress D,Lerche R A,Ellis R J,et al.High-sensitivity scintillating-fiber imaging detector for high-energy neutrons[J],Rev.Sci.Instrum.1995,66(10):4943-4948.
    [93]蒋诗平,陈亮,陈阳等,快中子照相的实验研究[J],核技术,2005,28(2):151-154.
    [94]Lehmann E H.Status of Neutron Imaging[J],Lecture Notes in Physics,2006,694:231-249.
    [95]Ress D,Lerche R A,Ellis R J,et al.Scintillating-fiber imaging detector for 14-MeV neutrons[C],Proceedings of SPIE - The International Society for Optical Engineering,1994,2281:95-112.
    [96]Zhang Q,Wang Q,Xie z,et al.A new scintillating-fiber-array neutron detector[J],Nucl.Instrum.Methods Phys.Res.A,2002,486:708-715.
    [97]章法强,李正宏,杨建伦,等,基于闪烁光纤阵列快中子照相系统的点扩展函数数值研究[J],中国科学G辑,2007,37(5):569-575。
    [98]张前美。闪烁纤维中子探测技术研究[D],西安:西安交通大学,2004。
    [99]陈亮。快中子照相技术研究[D],合肥:中国科学技术大学,2004。
    [100]McDonald T E,Brun T O,Claytor T N,et al.Time-gated energy-selected cold neutron radiography[J],Nuclear Instruments and Methods A,1999,424:235-241.
    [101]袁汉铬,俞安孙,王连璧。中子源及其应用[M],北京:科学出版社,1978。
    [102]Mishima K,Hibiki T,Saito Y,et al.Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes [J].Nuclear Instruments and Methods A,1999,424:229-234.
    [103]Mikerov V,Waschkowski W.Fast neutron fields imaging with a CCD-based luminescent detector[J],Nuclear Instruments and Methods A,1999,424:48-52.
    [104]Rahmanian J,Watterson J I W.Optimisation of light output from zinc sulphide scintillators for fast neutron radiography[J],Nuclear Instruments and Methods B,1998,139:466-470.
    [105]Schillinger B,Lehmann E,Vontobel P.3D neutron computed tomography:requirements and applications[J],Physica B,2000,276-278(1):59-62.
    [106]Nakajima T,Oda M,Tamaki M,et al.Fast neutron computed tomography with TV imaging at YAYOI[J],Nuclear Instruments and Methods A,1996,377:90-92.
    [107]Allman B E,McMahon P J,Nugent K A,et al.Phase radiography with neutrons[J],Nature,2000,408(9):158-159.
    [108]Buding,er T F,Howerton R J,Plechaty E F.Neutron radiography and dosimetry in human beings:theoretical studies[J],Physics of Medical and Biological,1971,16(3):439-450.
    [109]唐彬。影响中子射线照相性能的主要因素[J],核电子学与探测技术,2004,24(4):387-390。
    [110]Matsubayashi Masahito,Kobayashi Hisao,Hibiki Takashi,et al.Design and characteristics of the JRR-3M thermal neutron radiography facility and its imaging systems[J],Nuclear Technology,2000,132(2):309-324.
    [111]Haight R C,Bateman F B,Grimes S M,et al.Measurement of the angular distribution of neutron-proton scattering at 10 MeV[J],Fusion Engineering and Design,1997,37:49-56.
    [112]Boukharouba N,Bateman F B,Brient C E,et al.Measurement of the n-p elastic scattering angular distribution at En=10 MeV[J],Physical Review C,2002,65(1):014004
    [113]Tang S,Ma Q,Fang J,et al.Simulation study of Energy Absorption of X- and Rays in Plastic Scintillating Fiber Arrays[J],IEEE Transactions on Nuclear Science,2007,54(5):1773-1778.
    [114]Stopping-Power and Range Tables for Electrons,Protons,and Helium Ions[M/OL].http://physics.nist.gov/PhysRefData/Star/Text/contents.html.
    [115]Smith F A.A Primer in Applied Radiation Physics[M],Singapore:World Scientific Publication,2000.
    [116]吴世法。近代成像技术与图像处理[M]。北京:国防工业出版社,1997。
    [117]王婉丽,江孝国,吴廷烈等。台阶法测量CCD成像系统MTF的数据处理方法[J],光电子.激光,2002,13(2):173-175
    [118]王云秀,王婉丽。台阶法测量CCD成傢系统MTF的原理及方法[J],光电子技术,2002,22(3):171-174。
    [119]Tzannes A P,Mooney J M.Measurement of the modulation transfer function of infrared cameras[J],Opt.Eng.1995,34:1808-1817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700