用户名: 密码: 验证码:
植被理化参数反演的尺度效应与敏感性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被为包括人类在内的几乎所有生物的生存提供了物质和能量来源,是生态系统中重最的组成成分之一。许多有关植物物质能量交换的生态过程如光合作用、蒸腾作用、呼吸作用、初级生产力和分解作用等都与植被的理化参数密切相关,因此准确地估算植被的理化参数含量具有重要意义。遥感技术是在一系列空间和时间尺度上监测地球生物圈和植被动态变化的十分有效的工具,尤其是近年来高光谱成像技术的快速发展,使得通过遥感技术定量反演植被理化参数成为研究的热点。
     遥感技术的迅速发展,为地物信息的提取提供了各种不同空间尺度和光谱尺度的遥感数据,随之而来的是遥感应用中所面临的各种尺度问题,植被所具有的独特尺度特征,使得系统地分析理化参数反演的尺度效应问题显得尤为重要。本文的研究目的在于以机载AISA高光谱影像为数据源,将野外实测数据与数值模拟相结合,系统、全面地对植被理化参数反演过程中存在的尺度效应进行定量分析,并在此基础上进一步研究理化参数敏感性以及理化参数反演精度的尺度变化规律,探讨不同尺度上理化参数反演方法的选择,以期为植被理化参数的高精度定量反演提供充足的理论依据。
     基于野外实测数据,分别在叶片尺度和冠层尺度上分析叶绿素含量与反射率、反射率导数以及多种光谱指数的相关关系。同时,以反演叶片叶绿素含量为例,将因子分析方法和分形分维理论应用于植被理化参数的提取中。结果表明,反射率、反射率导数以及光谱指数与叶绿素含量的关系在叶片和冠层尺度上都有很大的差异,在一定程度上说明了理化参数反演中尺度问题的存在。基于降维思想的因子分析方法和能够综合反映光谱曲线变化的分形分维理论作为具有潜在应用价值的方法可以较好地用于植被理化参数的反演。
     提出植被理化参数反演中的三个尺度:叶片尺度、冠层尺度和像元尺度,从获取地物反射率或光谱指数和进行反演两个步骤展开对理化参数反演中尺度效应问题的分析。利用叶片光学模型PROSPECT-5及其与冠层辐射传输模型4SAIL耦合的PROSAIL模型,结合机载AISA高光谱遥感影像数据,分析三个尺度上植被反射率、植被指数的尺度变化规律;在像元尺度上,以叶绿素含量为例定量分析不同混合像元组合类型、不同植被覆盖度及不同空间分辨率对理化参数反演的影响。结果表明,植被反射率从叶片尺度到冠层尺度的变化受LAI的影响最为强烈,从冠层尺度到像元尺度植被覆盖度是影响反射率变化的主要因素;随着植被覆盖度和空间分辨率的变化,反射率和线性植被指数具有尺度不变的特征;而非线性指数则具有明显的尺度变化特征,并且离散林地相对于连续林地尺度的变化特征更为明显;叶绿素反演值和真实值的关系与像元中地物的组成类型以及像元内植被所占的面积比例都有密切的关系,随着空间分辨率的降低,叶绿素反演值与真实值的差值逐渐减小
     基于模型的模拟数据,采用EFAST全局敏感性分析方法,定量分析叶片尺度、冠层尺度和像元尺度下植被理化参数如叶绿素含量、类胡萝卜素含量、含水量、干物质含量、叶片结构参数、LAI、叶倾角以及土壤背景等对植被反射率的敏感性变化。结果显示,叶片尺度上,叶片反射率对叶绿素含量、含水量和叶片结构参数最为敏感;冠层尺度上,LAI较低时,LAI是冠层反射率最为敏感的理化参数,LAI较高时,叶绿素、干物质和含水量成为分别影响可见光、近红外和短波红外冠层反射率的主要理化参数;像元尺度上,像元内植被所占的面积是影响像元反射率变化的最主要因素,其他参数如LAI、叶绿素、含水量、干物质、冠层的土壤背景信息等对像元反射率变化的贡献都较小。进一步分析理化参数对光谱指数的敏感性随尺度的变化规律,选择了在三个尺度上用于反演叶绿素含量、类胡萝卜素含量、含水量、干物质含量和叶面积指数的最佳高光谱指数和多光谱指数。
     在上述研究的基础上,论文还对植被理化参数遥感反演研究当前存在的问题和发展趋势进行了分析和展望。
As one of the most important components of the ecosystem, vegetation provides matter and energy for almost all organism including humans. Many ecological processes about the exchange in matter and energy, like photosynthesis, evapotranspiration, respiratory, primary productivity, decomposition and so on, are closely related to vegetation biophysical and biochemical variables, so estimating these vegetation variables has a vital significance. Remote sensing data plays a crucial role in monitoring earth biosphere and dynamic change of vegetation. With the development of hyperspectral imaging techniques, devising vegetation biophysical and biochemical variables quantitatively becomes a research hotspot.
     Remote sensing technique provides a series of remote sensing data with different spatial and spectral resolution, and the scale issues in remote sensing application follow. The unique scale characteristics make the scale issues in vegetation physicochemical parameters inversion more prominent. Based on the field experiment, airborne AISA hyperspectral data as well as PROSAIL model, we researched systemically the scale issues in vegetation physicochemical parameter inversion and the sensitivity change of vegetation reflectance to vegetation physicochemical parameter, which were wished to provide adequate theoretical basis for accurately inversing vegetation physicochemical parameters.
     Based on the field experiment, the relationships between chlorophyll content and vegetation reflectance, derivative of the reflectance and vegetation indices in leaf and canopy scale were analyzed quantitatively. In addition, the factor analysis method and the fractal dimension were used in this paper to retrieve vegetation physicochemical parameters. The results show that there are great differences of relationships between leaf scale and canopy scale, which illustrate the scale problems in the physicochemical parameters inversion to a certain extent. The results also prove that the factor analysis method reducing dimension and the fractal dimension reflecting synthetic variations of vegetation reflectance have potential applications on vegetation physicochemical parameters inversion.
     In this paper, leaf scale, canopy scale and pixel scale were proposed as three consecutive scales in vegetation physicochemical parameters inversion, and the scale effect was analyzed from two steps of obtaining landmark reflectance or spectral index and inversing parameters. Based on the AISA hyperspectral data and the simulated data from PROSPECT model and PROSAIL model, we analyzed the spatial scale effects of vegetation reflectance and vegetation indices at leaf, canopy and pixel scale, and the effect of different combination type in the pixel, different vegetation coverage and different spatial resolution on the physicochemical parameters inversionat pixel scale. The results show that from leaf scale to canopy scale, the scale variation of vegetation reflectance is most strongly impacted by LAI, while by vegetation coverage from canopy scale to pixel scale. At pixel scale, the linear vegetation index DVI shows a scale-invariant feature, while the nonlinear index NDV1shows significant scale variation, which is more obvious in the continuous woodland. The relationship between the inversed chlorophyll content and the true content has close related to the element type and the vegetation area in the pixel. With the reduced spatial resolution, the difference between the inversed chlorophyll content and the true content gradually decreases.
     Based on the simulated data from PROSPECT and PROSAIL model, the sensitivity of vegetation reflectance at leaf, canopy and pixel scale to vegetation physiochemical parameters (chlorophyll content, carotenoid content, water content, dry matter content,leaf structure parameter, LAI, leaf angle and soil background) were analyzed adopting the EFAST global sensitivity analysis method. The results show that at leaf scale, chlorophyll, water content and leaf structure parameter are the most sensitive variables to leaf reflectance. At canopy scale, LAI is the most important variable to canopy reflectance in lower foliage cover (LAI<3), and as LAI increased, chlorophyll a+b, dry matter content, and water content control the variation of canopy reflectance in VIS, NIR and SWIR regions respectively. At pixel scale, the vegetation area in the pixel is the most important parameter to the reflectance variety, and the other variables like LAI, chlorophyll, water content, dry matter content, soil background and son on have no significant contribution to the variation of pixel reflectance. In addition, we analyzed the sensitivity of physicochemical parameters to spectral indices with scale changing, and the best hyperspectral indices and multispectral indices used to retrieve chlorophyll content, carotenoid content, water content, dry matter content and LAI are chose at different scale, by calculating and comparing the correlation coefficient between vegetation indices and vegetation physiochemical variables.
     Based on the study mentioned above, we analyzed the problems existed in vegetation physicochemical parameters diversion at present, and discussed the overview of its trends.
引文
[1]Arbia G.. Benedetti R., Espa G. Effect of the MAUP on image classification. Geographical System.1996,3:123-141.
    [2]Asner G. P.. Wessman C. A. Scaling PAR absorption from the leaf to landscape level in spatially heterogeneous ecosystems. Ecological Modelling.1997.103(1):81-97.
    [3]Asner, G. P., Martin R. E. Spectral and chemical analysis of tropical forests:Scaling from leaf to canopy levels. Remote Sensing of Environment,2008,112:3958-3970.
    [4]Atzberger C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sensing of Environment,2004,93(1-2):53-67.
    [5]Bacour C., Baret F., Beal D., Weiss M.. Pavageau K. Neural network estimation of LAI, fAPAR. fCover and LAIxCab- from top of canopy MERIS reflectance data:Principles and validation. Remote Sensing of Environment,2006,105(4):313-325.
    [6]Bacour C. Baret F., Jacquemoud S. Information content of HyMap hyperspectral imagery. Proceedings of the 1st International Symposium on Recent Advances in Quantitative Remote Sensing, Valencia (Spain),16-20 September 2002 (pp. 503-508).
    [71 Baret F._ Fourty T. H. The limits of a robust estimation of canopy biochemistry. In:G. Guyct & Th. Phulpin (Eds.) Physical measurements and signatures in remote sensing, AA Balkema, Rotterdam,1997, pp:413-420
    [8]Baret F., Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment Remote Sensing of Environment. 1991,35(2-3):161-173.
    [9]Baret F., Guyot G., Major D. J. Crop biomass evaluation using radiometric measurements. Photogrammetria,1989,43(5): 241-256.
    [10]Baret F., Jacquemoud S., Guyot G., Leprieur C. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sensing of Environment,1992,41:133-142.
    [11]Barnes J. D., Balaguer L., Manrique E., Elvira S., and Davison A. W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany,1992,32: 85-100.
    [12]Blackburn G. A. Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany,2006.58(4):855-867.
    [13]Blackburn G. A. Quantifying chlorophylls and carotenoids at leaf and canopy scales:an evaluation of some hyperspectral approaches. Remote Sensing of Environment,1998,66:273-285.
    [14]Blackburn G. A. Wavelet decomposition of hyperspectral data:A novel approach to quantifying pigment concentrations in vegetation. International Journal of Remote Sensing,2007,28:2831-2855.
    [15]Blackburn G. A., Ferwerda J. G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sensing of Environment,2008,112:1614-1632.
    [16]Boegh E., Soegaard H., Thomsen A. Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance. Remote Sensing of Environment,2002.79(2-3):329-343.
    [17]Bonan G. B. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. Journal of Geophysical Research,1995,100:2817-2831.
    [18]Boochs F. Shape of the red edge as vitality indicator for plants. International Journal of Remote Sensing,1990,11 (10): 1741-1753.
    [19]Bousquet L., Lacherade S., Jacquemoud S., et al. Leaf BRDF measurement and model for specular and diffuse component differentiation. Remote Sensing of Environment,2005,98:201-211.
    [20]Broge N. H., and Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment,2000,76:156-172.
    [21]Cao C., Lam N. S. Understanding the scale and resolution effects in remote sensing and GIS. In:Scale in Remote Sensing and GIS,1997, PP.57-72.
    [22]Card D. H., Peterson D. L., Matson P. A. Prediction of leaf chemistry by use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment,1988,26:123-147.
    [23]Carter G. A. Ratios of leaf reflectance in narrow wavebands as indicators of plant stress. International Journal of Remote Sensi(?),1994,15:697-704.
    [24]Chappelle E. W., Kim M. S., and McMurtrey J. E. Ratio analysis of reflectance spectra (RARS):An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment,1992,39:239-247.
    [25]Chen D., Stow D. A., Gong P. Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case. International Journal of Remote Sensing,2004,25(11):2177-2192.
    [26]Chen J. M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing,1996,22:229-42.
    [27]Cheng Y. B., Zarco-Tejada P. J., Riano D., Rueda C. A., Ustin S. L. Estimating vegetation water content with hyperspectral data for different canopy scenarios:Relationships between AVIRIS and MODIS indexes. Remote Sensing of Environment. 2006,105:354-366.
    [28]Cho M. A., Skidmore A. K. A new technique for extracting the red edge position from hyperspectral data:The linear extrapolation method. Remote Sensing of Environment,2006,101:181-193.
    [29]Cho M. A., Skidmore A. K., Atzberger C. Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data. International Journal of Remote Sensing,2008,29(8):2241-2255.
    [30]Clark R. N., Roush T. L. Reflectance spectroscopy:Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research-atmospheres,1984,89:6329-6340.
    [31]Clevers J. G. P. W., Kooistra L., Schaepman M. E. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. International Journal of Applied Earth Observation and Geoinformaticn,2008,10: 388-397.
    [32]Cloutis E. A. Hyperspectral geological remote sensing:Evaluation of analytical techniques. International Journal of Remote Sensing,1996,17(12):2215-2242.
    [33]Colombo R.. Meroni M., Marchesi A.. Busetto L.. Rossini M., Giardino C., Panigada C. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sensing of Environment.2008. 112:1820-1834.
    [34]Combal B., Baret F., Weiss M. Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies. Agronomy,2002,22(2):205-215.
    [35]Combal B., Baret F., Weiss M., Trubuil A., Mace D., Pragnere A., Myneni R., Knyazikhin Y., Wang L. Retrieval of canopy biophysical variables from bidirectional reflectance:Using prior information to solve the ill-posed inverse problem. Remote Sensing of Environment,2003,84(1):1-15.
    [36]Cukier R. I., Fortuin C. M., Shuler K. E., Petschek A. G., and Schaibly J. H. study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients.Ⅰ. Theory. The Journal of Chemical Physics,1973,59:3873-3878.
    [37]Curran P. J. Remote sensing of foliar chemistry. Remote Sensing of Environment,1989 (30):271-278
    [38]Curran P. J., Windham W. R., Gholz H. L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine leaves. Tree Physiology,1995,15:203-206.
    [39]Darvishzadeh R., Skidmore A., Schlerf M., Atzberger C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment,2008,112:2592-2604.
    [40]Dash J., Jeganathan C., Atkinson P. M. The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India. Remote Sensing of Environment,2010,114(7):1388-1402.
    [41]Datt B. A new reflectance index for remote sensing of chlorophyll content in higher plants:Tests using Eucalyptus leaves. Journal of Plant Physiology,1999,154:30-36.
    [42]Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sensing of Environnient,1998,66:111-121.
    [43]Datt B., McVicar T. R., Van Niei T. G., Jupp D. L. B., and Pearlman J. S. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing,2003.41. 1246-1259.
    [44]Daughtry C. S. T., Walthall C. L., Kim M. S., Colstoun E. B., McMurtrey J. E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,2000,74:229-239.
    [45]Dawson T. P., Curran P. J. A new technique for interpolating the reflectance red edge position. International Journal of Remote Sensing,1998,19:2133-2139.
    [46]Dawson T. P., Curran P. J., North P. R. J., et al. LIBERTY:modeling the effects of leaf biochemistry on reflectance spectra. Remote Sensing of Environment,1998,65:50-60.
    [47]Dawson T. P., Curran P. J., North P. R. J., Plummer S. E. The propagation of foliar biochemical absorption features in forest canopy reflectance:A theoretical analysis. Remote Sensing of Environment,1999,67:147-159.
    [48]Delalieux S., Somers B., Hereijgers S., Verstraeten W. W., Keulemans W., and Coppin P. A nearinfrared narrow-waveband ratio to determine Leaf Area Index in orchards. Remote Sensing of Environment,2008,112:3762-3772.
    [49]Demarez V., Gastellu-Etchegorry J. P. A modeling approach for studying forest chlorophyll content. Remote Sensing of Environment,2000,71:226-238.
    [50]Demetriades-Shah T. H., Steven M. D., Clark J. A. High-resolution derivative spectra in remote-sensing. Remote Sensing of Environment,1990,33(1):55-64.
    [51]Dong P. L. Fractal signatures for multiscale processing of hyperspectral image data. Advances in Space Research.2008,41: 1733-1743.
    [52]Farina A. Principles and methods in landscape ecology. Chapman & Hall,1998,35-49.
    [53]Feng Y., Miller J. R. Vegetation green reflectance at high spectral resolution as a measure of leaf chlorophyll content. Proceedings of the 14th Canadian Symposium on Remote Sensing. Calgary Alberta,1991:351-355.
    [54]Fensholt R., and Sandholt I. Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment. Remote Sensing of Environment 2003,87(1):111-121.
    [55]Feret J. B., Francois C., Asner G. P., et al. PROSPECT-4 and 5:Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment,2008,112:3030-3043.
    [56]Filella I., Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing,1994,15(7):1459-1470.
    [571 Friedl M. A., Davis F. W., Michaelsen J., Moritz M. A. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables:an analysis using a scence simulation model and data fro FIFE. Remote Sensing of Environment,1995,54:233-246.
    [581 Fukuda S., Hirosawa H. A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing,1999,37:2282-2286.
    [591 Galvao L. S., Formaggio A. R., and Tisot D. A. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment,2005,94:523-534.
    [60]Gamon J. A., and Surfus J. S. Assessing leaf pigment content and activity with a reflectometer. New Phytol,1999,143: 105-117.
    [61]Gamon J. A., Penuelas J., and Field C. B. A narrow waveband spectral index that tracks diumal changes in photosynthetic efficiency. Remote Sensing of Environment,1992,41:35-44.
    [62]Ganapol B. D., Johnson L. F., Hammer P. D., et al. LEAFMOD:A new within-leaf radiative transfer model. Remote Sensing of Environment,1998,63:182-193.
    [631 Garrigues S., Allard B. D., Baret F. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing date. Remote Sensing of Environment,2006,105:286-298.
    [64]Gitelson A. A. Wide dynamic range vegetation index for remote quantification of crop biophysical characteristics../Plan! PhysioL 2004,161:165-173.
    [65]Gitelson A. A., Keydan G. P.. Merzlyak M. N. Three-band model for noninvasive estimation of chlorophyll, carotenoids. and anthocyanin contents in higher plant leaves. Geophysical Research Letters,2006,33(11):1-5.
    [66]Gitelson A. A., Merzlyak M. N., and Chivkunova O. B. Optical properties and nondestructive stimation of anthocvanin content in plant leaves. Photochem Photobiol,2001,74:38-45.
    [67]Gitelson A. A., Zur Y., Chivkunova O. B., and Merzlyak M. N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol,2002,75:272-281.
    [68]Gobron N., Pinty B., Verstraete M. M., et al. A semidiscrete model for the scattering of light by vegetation. Journal of Geophysical Research-Atmospheres,1997,102(D8):9431-9446.
    [69]Goel N. S., Thompson R. L. A snapshot of reflectance models and a universal model for the radiation regime. Remote Sensing of Environment,2000,18:197-225.
    [70]Gong P., Pu R., Biging G. S., Larrieu M. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing,2003,41 (6):1355-1362.
    [71]Gong P., Pu R., Heald R. C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. International Journal of Remote Sensing,2002,23(9):1827-1850.
    [72]Gong P., Pu R., Miller J. R. Correlating leaf area index of Ponderosa pine with hyperspectral CASI data. Canadian Journal of Remote Sensing,1992,18(4):275-282.
    [73]Gong P., Wang D., Liang S. Inverting a canopy reflectance model using an artificial neural network. International Journal of Remote Sensing,1999,20(1):111-122.
    [74]Guyot G. F., Jacquemond S. Imaging spectroscopy for vegetation studies, Imaging Spectroscopy:Fundamentals and prospective application,1992:145-165.
    [75]Haboudane D., Miller J. R., Pattery E., et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precision agriculture. Remote Sensing of Environment,2004,90: 337-352.
    [76]Haboudane D., Miller J. R., Tremblay N., Zarco-Tejada P. J., and Dextraze L. Integrated narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment,2002, 81(2-3):416-426.
    [77]Hansena P. M., Schjoerring J. K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003.86: 542-553.
    [78]Hardinsky M. A., Lemas V., and Smart R. M. The influence of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alternifolia canopies. Photogrammetric Engineering and Remote Sensing,1983,49:77-83.
    [79]Harris A., Dash J. The potential of the MERIS Terrestrial Chlorophyll Index for carbon flux estimation. Remote Sensing of Environment,2010,114(8):1856-1862.
    [80]Hatfield J. L., Gitelson A. A., Schepers J. S., Walthall C. L. Application of spectral remote ensing for agronomic decisions. Agronomy Journal,2008,100:117-131.
    [81]He Y., Guo X., Wilmshurst J. Studying mixed grassland ecosystems I:suitable hyperspectral vegetation indices. Canadian Journal of Remote Sensing,2006,32(2):98-107.
    [82]Henry W. B., Shaw D. R., Reddy K. R., Bruce L. M., Tamhankar H. D. Remote sensing to detect herbicide drift on crops. Weed Technology,2004,18:358-368.
    [83]Houborg R. M., Soegaard H. Regional simulation of ecosystem CO2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data. Application to Zealand, Denmark, Remote Sensing of Environment,2004, 93:150-167.
    [84]Houborg R., Anderson M. C., Daughtry C. S. T. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sensing of Environment,2009,113,259-274.
    [85]Houborg R., Anderson M. C., Daughtry C. S. T., Kustas W. P., Rodell M. Using leaf chlorophyll to parameterize light-use-efficiency within a thermal-based carbon, water and energy exchange model. Remote Sensing of Environment, 2011,115(7):1694-1705.
    [86]Houborg R., Boegh E. Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data. Remote Sensing of Environment,2008,112(1):186-202.
    [87]Hsieh P. F., Lee L. C., Chen N. Y. Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing. IEEE Transactions on Geoscience and Remote Sensing,2001,39(12):2657-2663.
    [88]Hsu P. H., Tseng Y. H. Multiscale analysis of hyperspectral data using wavelets for spectral feature extraction. In 21st Asian Conference on Remote Sensing, Taipei, Taiwan, Online proceedings:http://www.gisdevelopment.net/aars/acrs/2000/.
    [89]Huber S., Kneubuhler M., Psomas A., Itten K., Zimmermann N. E. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy. Forest Ecology and Management,2008,256:491-501.
    [90]Huemmrich K. F. The GeoSail model:A simple addition to the SAIL model to describe discontinuous canopy reflectance. Remote Sensing of Environment,2001,75:423-431.
    [91]Huete A. R. A soil-adjusted vegetation index (SAVI) Remote Sensing of Environment,1988,25(3):295-309
    [92]Huete A., Diadan K., Miura T., Rodriguez E. P., Gao X., Ferreira L. G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment,2002,83:195-213.
    [93]Jacquemoud S., Baret F. PROSPECT:A model of leaf optical properties spectra. Remote Sensing of Environment,1990, 34:75-91.
    [94]Jacquemoud S., Baret F., Andrieu B., Danson F. M., Jaggard K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sensing of Environment,1995,52(3):163-72.
    [95]Jacquemoud S.. Ustin S. L., Verdebout J.. Schmuck G.:Andreoli G.. Hosgood B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sensing of Environment,1996.56:194-202.
    [96]Jacquemoud, S., Bacour C. Poilvc H., Frangi.J. P. Comparison of four radiative transfer models to simulate plant canopies reflectance:Direct and inverse mode. Remote Sensing of Environment.2000,74(3):471-481.
    [97]Jasinski M. F.. Eagleson P. S. Estimation of subpixel vegetation cover using red-infrared scattergrams. IEEE Transactions on Geoscience and Remote Sensing.1990.28(2):253-267.
    [98]Jiang Z., Huete A. R., Didan K... Miura T. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment.2008.112:3833-3845.
    [99]Johnson L. F., Hlavka C. A.. Peterson D. I.. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect. Remote Sensing of Environment.1994,47:216-230.
    [100]Jordan C. F. Derivation of leaf area index from quality of light on the forest floor. Ecology,1969,50:663-666.
    [101]Kim M. S., Daughtry C. S. T., Chappelle E. W., and McMurtrey J. E. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (APAR). In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing,1994,299-306. France:Val d'Isere.
    [102]Knyazikhin Y., Martonchik J. V., Diner D., Myneni R. B., Verstraete M. M, Pinty B., Gobron N. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. Journal of Geophysical Research,1998,103 (D24):32239-32256.
    [103]Koetz B., Schaepman M., Morsdorf F., Bowyer P., Itten K., Allgower B. Radiative transfer modeling within heterogeneous canopy for estimation of forest fire fuel properties. Remote Sensing of Environment,2004,92:332-344.
    [104]Kokaly R. F., Clark R. N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment,1999,67:267-287.
    [105]Kussk A. The hot spot effect in plant canopy reflectance. In R. B. Myneni, & J. Ross (Eds.), Photon-vegetation interaction. Applications in optical remote sensing and plant ecology (pp.139-159). Berlin:Springer Verlag,1991.
    [106]Kuusk A. A Markov chain model of canopy reflectance. Agricultural and Forest Meteorology,1995,76:221-236.
    [107]Kuusk A. A multispectral canopy reflectance model. Remote Sensing of Environment,1994,50:75-82.
    [108]Laba M., Tsai F., Ogurcak D., Smith S., Richmond M. E. Field determination of optimal dates for the discrimination of invasive wetland plant species using derivative spectral analysis. Photogrammetric Engineering and Remote Sensing,2005, 71(5):603-611.
    [109]Lam N.S., Quattrochi D. A. On the issues of scale, resolution and fractal analysis in the mapping sciences. Professional Geographer,1992,44:88-98.
    [110]le Maire G., Francois C., Dufrene E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment,2004,89:1-28.
    [111]le Maire G., Francois C., Soudani K., Berveiller D., Pontailler J. Y., Breda N., Genet H., Davi H., Dufrene E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sensing of Environment,2008,112:3846-3864.
    [112]le Maire G., Marsden C., Verhoef W., et al. Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations. Remote Sensing of Environment,2011,115:586-599.
    [113]Lelong C. C. D., Pinet P. C., Poilve H. Hyperspectral imaging and stress mapping in agriculture:a case study on wheat in because (France).Remote Sensing of Environment,1998,66:179-191.
    [114]Li Q., Hu B., Pattey E. A scale-wise model inversion method to retrieve canopy biophysical parameters from hyperspectral remote sensing data. Canadian Journal of Remote Sensing,2008,34(3):311-319.
    [115]Li X., Strahler A. H. Geometric-optical bi-directional reflectance modeling of a coniferous forest canopy. IEEE Transactions on Geoscience and Remote Sensing,1986,24:906-919.
    [116]Li X., Strahler A. H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy, IEEE Transactions on Geoscience and Remote Sensing,1992,34:276-292.
    [117]Li X., Strahler A. H. Geometric-optical modeling of a coniferous forest canopy, IEEE Transactions on Geoscience and Remote Sensing,1985,23:705-721.
    [118]Li X., Strahler A. H., Friedl M. A conceptual mouei for effective directional emissivity from nonisothermal surface. IEEE Transactions on Geoscience and Remote Sensing,1999,37:2508-2517.
    [119]Li X., Woodock C., Davis R. A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies, IEEE Transactions on Geoscience and Remote Sensing,1994,33:466-480.
    [120]Li Y., Demetriadesshah T. H., Kanemasu E. T., Shultis J. K., Kirkham M. B. Use of 2nd derivatives of canopy reflectan for monitoring prairie vegetation over different soil backgrounds. Remote Sensing of Environment,1993,44(1):81-87.
    [121]Liang S., Strahler A. H. Calculation of the angular radiance distribution for a coupled atmosphere and leaf canopy. IEEE Transactions on Geoscience and Remote Sensing,1993,31(2):491-502.
    [122]Lillesand T. M., Kiefer R. W. Remote sensing and image interpretation (3rd Ed), published by John Wiley & Sons, Inc 1994.
    [123]Lucas K. L., Carter G. A. The use of hyperspectral remote sensing to assess vascular plant species richness on Horn Island, Mississippi. Remote Sensing of Environment,2008,112:3908-3915.
    [124]Luther J. E., Carroll A. L. Development of an Index of Balsam Fir Vigor by Foliar Spectral Reflectance. Remote Sensing of Environment,1999,241-252.
    [125]Maire G. L., Francois C., Soudani K. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sensing of Environment,2008,112(10):3846-3864.
    [126]Major D. J., Baret F., Guyot G. A ratio vegetation index adjusted for soil brightness. International Journal of Remote Sensing,1990,11:727-740.
    [127]Matthew F. M. C., Wood E. F. Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sensing of Environment,2006.105:271-285.
    [128]Meroni M. Colombo R., Panigada C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sensing of Environment.2004.92(2):195-206.
    [129]Miller.1. R.. Hare E. W.. Wu.1. Quantitative characterization of the vegetation red edge reflectance. I. An inverted-Gaussian reflectance model. International Journal of Remote Sensing.1990.11:1775-1795.
    [1301 Ming D. P., Yang.1. Y,. Li L. X., Song Z. Q. Modified ALV for selecting the optimal spatial resolution and its scale effect on image classification accuracy. Mathematical and Computer Modelling.2011.54:1061-1068.
    [131]Moody A.. Woodcock C. E. Scale-dependent errors in the estimation of land-cover proportions:implication for global land-cover datasets. Photogrammetric Engineering & Remote Sensing,1994,60(5):585-594.
    [132]Nagler P. L., Daughtry C. S. T., and Goward S. N. Plant litter and soil reflectance. Remote Sensing of Environment,2000, 71:207-215.
    [133]North P. R..1. Three-dimensional forest light interaction model using a Monte Carlo methds. IEEE Transactions on Geoscience and Remote Sensing,1996,34:946-956.
    [134]Pedros R., Goulas Y.. Jacquemoud S., et al. FluorMODIeaf:A new leaf fluorescence emission model based on the PROSPECT model. Remote Sensing of Environment,2010,114:155-167.
    [135]Penuelas J., Baret F., and Filella I. Semi-empirical indices to assess.carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica,1995,31:221-230.
    [136]Penuelas J., Gamon J. A., Fredeen A. L., Merino J., and Field C. B. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sensing of Environment,1994,48:135-146.
    [137]Penuelas J., Gamon J. A., Griffin K. L, Field C. B. Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment,1993,46(2): 110-118.
    [1381 Penuelas J., Pinol J., Ogaya R., and Filella I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing,1997,18:2869-2875.
    [139]Peterson D. L., Aber J. D., Matson P. A., Card D. H., Swanberg N., Wessman C., Spanner M. A. Remote sensing of forest canopy and leaf biochemical contents. Remote Sensing of Environment,1988,24:85-108.
    [140]Peterson D. L., Hubbard G. S. Scientific issues and potential remote-sensing requirements for plant biochemical content. Journal of Imaging Science and Technology,1992,36(5):446-456.
    [141]Pittner S., Kamarthi S. V. Feature extraction from wavelet coefficients for pattern recognition tasks. IEEE Trans Pattern Anal Much Intell,1999,21:83-88.
    [142]Pu R., Ge S., Kelly N.M., Gong P. Spectral absorption features as indicators of water status in Quercus Agrifolia leaves. International Journal of Remote Sensing,2003,24(9):1799-1810.
    [143]Pu R., Gong P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping. Remote Sensing of Environment,2004,91:212-224.
    [144]Pu R., Gong P., Biging G. S., and Larrieu M. R. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):916-921.
    [145]Pu R., Kelly N. M., Chen Q., Gong P. Spectroscopic determination of health levels of Coast Live Oak (Quercus agrifolia) Leaves. Geocarto International,2008,23(1):3-20.
    [146]Pu, R., Ge S., Kelly N. M., Gong P. Spectral absorption features as indicators of water status in Quercus Agrifolia leaves. International Journal of Remote Sensing,2003,24(9):1799-1810.
    [147]Pyne S. J., Andrews P. J., Laven R. D. Introduction to wildland fire. Second edition. New York-Chichester UK, John Wiley & Sons,1996.
    [148]Qi J., Chehbouni A., Huete A. R., Kerr Y. H., Sorooshian S. A modified soil adjusted vegetation index. Remote Sensing of Environment,1994,48:119-126.
    [149]Qu Y., Wang J., Wan H., Li X., Zhou G. A Bayesian network algorithm for retrieving the characterization of land surface vegetation. Remote Sensing of Environment,2008,112 (3):613-622.
    [150]Rama Rao N., Garg P. K., Ghosh S. K., Dadhwal V. K. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. Journal of Agricultural Science,2008,146:65-75.
    [1511 Ray S. S, Das G., Singh J. P., Panigrahy S. Evaluation of hyperspectral indices for LAI estimation and discrimination of potato crop under different irrigation treatments. International Journal of Remote Sensing,2006,27(24):5373-5387.
    [152]Rondeaux G., Steven M., and Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996,55:95-107.
    [153]Rosema A., Verhoef W., Noorbergen H., et al. A new forest light interaction model in support of forest monitoring. Remote Sensing of Environment,1992,42:23-41.
    [1541 Roujean J. L., Breon F. M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment,1995,51(3):375-384.
    [1551 Rouse J. W., Haas R. H., Schell J. A., and Deering D. W. Monitoring vegetation systems in the Great Plains with ERTS. Proc 3rd ERTS Symp,1973,1:48-62.
    [156]Saltelli A. Sensitivity analysis:Could better methods be used? Journal of Geophysical Research,1999,104:3789-3793.
    [157]Schlerf M., Atzberger C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sensing of Environment,2006,100:281-294.
    [158]Schlerf M., Atzberger C., and Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment,2005,95:177-194.
    [159]Serrano L., Penuelas J., and Ustin S. L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data:Decomposing biochemical from structural signals. Remote Sensing of Environment,2002,81:355-364.
    [1601 Simhadri K. K., Iyengar S. S., Holyer R. J., Lybanon M., Zachary J. M. Wavelet-based feature extraction from oceanographic images. IEEE Transactions on Geoscience and Remote Sensing.1998,36:767-778.
    [161]Sims D. A., and Gamon J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment.2002,81:337-354.
    1162] Smith M. L., Martin M. E., Plourde L. Ollinger S.V. Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentrationxomparison between and Airboren (AVIRIS) and a spaceborne (Hyperion) sensor. IEEE Transactions on Geoscience and Remote Sensing.2003.41:1332-1337.
    [163]Sobol" I. M. Sensitivity Analysis for Nonlinear Mathematical Models, Mathematical Modeling & Computational Experiment,1993:1407-1414 [translation of Sobol" (1990), Sensitivity Estimates for Nonlinear Mathematical Models. Matematicheskoe Modelirovanie,2:112-118 (in Russian)].
    [164]Strahler A. H., Jupp D. L. B. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics, Remote Sensing of Environment,1990,34:153-166.
    [165]Tagliavini M., Rombola A. D. Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy,2001,15(2):71-92.
    [1661 Tian Y. H., Wang Y. J. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sensing of Environment,2003,84:143-159.
    [167]Townshend J.R.G., Justice C. O. Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations. International Journal of Remote Sensing,1988,9:187-236.
    ] 1681 Tsai F., Philpot W. Derivative Analysis of Hyperspectral Data. Remote Sensing of Environment,1998,66(1):41-51.
    [169]Turner M. G., Dale V. H., Gardner R. H. Predicting across scales:Theory development and testing Landscape Ecology, 1989,3:245-252.
    [170]Ustin S. L. Manual of Remote Sensing for Natural Resource Management and Environmental Monitoring. ASPRS.2004. John Wiley and Sons, New York 736p.+cd.
    [171]Ustin S. L., Robertsd A., Pinzon J., Jacquemoud S., Gardner M., Scheer G., Castaneda C. M., Palacios-orueta A. Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods. Remote Sensing of Environment,1998,65(3): 280-291.
    [172]Van Aardt J. A. N., Wynne R. H. Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field-based results. International Journal of Remote Sensing,2007,28(2):431-436.
    [173]Van Aardt J. A. N., Wynne R. H. Spectral separability among six southern tree species. Photogrammetric Engineering and Remote Sensing,2001,67(12):1367-1375.
    [174]Vander M. F., Bakker W. CCSM:Cross correlogram spectral matching. International Journal of Remote Sensing,1997, 18(5):1197-1201.
    [175]Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling:The SAIL model. Remote Sensing of Environment,1984,16:125-141.
    [176]Verhoef W., Bach H. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sensing of Environment,2007,109:166-182.
    [177]Verhoef W., Bach H. Simulation of hyperspectral and directionai radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sensing of Environment,2003,87:23-41.
    [178]Verhoef W., Xiao Q., Jia L., et al. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE Transactions on Geoscience and Remote Sensing,2007,45:1808-1822.
    [179]Vincini M., Frazzi E., Alessio P. D. Angular dependence of maize and sugar beet Vis from directional CHRIS/PROBA data. In 4th ESA CHRISPROBA Workshop,2006,19-21. Frascati, Italy:ESRIN.
    [180]Walthall C., Dulaney W., Anderson M., Norman J., Fang H., Liang S. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sensing of Environment, 2004,92(4):465-474.
    [181]Weihs P., Suppan F., Richter K., Petritsch R., Hasenauer H., Schneider W. Validation of forward and inverse modes of a homogeneous canopy reflectance model. International Journal of Remote Sensing,2008,29(5):1317-1338.
    [182]Weiss M., Baret F. Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote Sensing of Environment,1999,70(3):293-306.
    [1831 Weiss M., Baret F., Myneni R. B., Pragnere A., Knyazikhin Y. Investigation of a model inversion technique 20(1):3-22.
    [1841 Weiss M., Troufleau D., Baret F., et al. Coupling canopy functioning and radiative transfer models for remote sensing data assimilation. Agricultural and Forest Meteorology,2001,108:113-128.
    [1851 Woodcock C. E., Strahler A. H. The factor of scale in remote sensing, Remote Sensing of Environment,1987,21:311-332.
    [1861 rco-Tejada P. J., Berjon A., Lopez-Lozano R., Miller J. R., Martin P., Cachorro V., Gonzalez M. R., and Frutos A. Assessing vineyard condition with hyperspectral indices:Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment,2005,99:271-287.
    [187]Zarco-Tejada P. J., Miller J. R, Mohammed G. H. Estimation of chlorophyll fluorescence under natural illumination from hyperspectral data. International Journal of Applied Earth Observation and Geoinformation,2001,3(4):321-327.
    [188]Zarco-Tejada P. J., Miller J. R., Mohammed G. H. Chlorophyll fluorescence effects on leaf and canopy reflectance: Experimental results and model simulation. First Workshop on Remote Sensing of Solar Induced Fluorescence. ESA/ESTEC, Noordwijk, The Netherlands,19-20 June 2002. In:R.A. Harris (Ed.) Proceedings of the FLEX Workshop, European Space Agency (ESA),19-20 June 2002, ESTEC, Noordiwijk, The Netherlands. ISBN 92-9092-837-9, ISSN 1609-042X.
    [189]Zarco-Tejada P. J.. Miller J. R., Morales A., Berjon A., Aguera J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment,2004,90:463-476.
    [1901 Zarco-Tejada P. J., Miller J. R., Noland T. L., Mohammed G. H., Sampson P. H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing,2001,39(7):1491-1507.
    [191]Zarco-Tejada P. J., Rueda C. A., Ustin S. L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment,2003,85(1):109-124.
    [192]Zhang Q., Xiao X., Braswell B., Linder E., Baret F. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sensing of Environment,2005.99(3): 357-371.
    [193]Zhang Y., Chen J. M., Miller J. R., Noland T. L. Leaf chlorophyll content retrieved from airborne hyperspectral remote sensing imagery. Remote Sensing of'Environment,2008,112:3234-3247.
    [194]陈扬,张太宁,郭澎,王湘晖,王倩,常胜江.基于主成分分析的复杂光谱定量分析方法的研究.光学学报,2009,29(5):1285-1291.
    [195]陈云浩,蒋金豹,黄文江,王圆圆.主成分分析法与植被指数经验方法估测冬小麦条锈病严重度的对比研究.光谱学与光谱分析,2009,29(8):2161-2164.
    [196]杜华强,金伟,葛宏立等.用高光谱曲线分形维数分析植被健康状况.光谱学与光谱分析,2009,29(8):2136-3140.
    [197]杜培军,陈云浩,方涛,陈雍业.高光谱遥感数据光谱特征的提取与应用.中国矿业大学学报,2003,32(5):500-504.
    [198]傅伯杰,陈利顶,马克明.景观生态学原理及应用.科学出版社,2001.
    [199]韩鹏,龚健雅,李志林,柏延臣,程亮.遥感影像分类中的空间尺度选择方法研究.遥感学报,2010,14(3):507-518.
    [200]黄慧萍,吴炳方.地物提取的多尺度特征遥感应用分析.遥感技术与应用,2003,18(5):276-281.
    [201]江淼,张显峰,孙权,童庆禧.不同分辨率影像反演植被覆盖度参数确定与尺度效应分析.武汉大学学报(信息科学版),2011,36(3):311-315.
    [202]姜志伟,陈仲新,周清波,任建强CERES-Wheat作物模型参数全局敏感性分析.农业工程学报,2011,27(1):236-242.
    [203]李静萍,谢邦昌.多元统计分析方法与应用[M]中国人民大学出版社,2008.
    [204]李契,朱金兆,朱清科.分形维数计算方法研究进展.北京林业大学学报,2002,24(2):71-78.
    [205]李小文,王锦地, A. H. Strahler.尺度效应及几何光学模型用于尺度纠正.中国科学(E辑),2000,30(8):12-17.
    [206]李小文,王锦地.Strahler A. H.不连续植被及其下地表对光辐射的吸收与反照率模型.中国科学(B辑),1994,24(8):828-836.
    [207]李智勇,匡纲要,郁文贤,薛绮.基于高光谱图像主成分分量的小目标检测算法研究.红外与毫米波学报,2004,23(4):286-290.
    [208]吕群波,相里斌,薛彬,周锦松.高光谱图像中纯光谱提取方法.光子学报,2009,34(9):1336-1339.
    [209]彭瑞东,谢和平,鞠杨.二维数字图形分形维数的计算方法.中国矿业大学学报,2004,33(1):1924.
    [210]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    [211]任启伟,陈洋波,舒晓娟.基于Extend FAST方法的新安江模型参数全局敏感性分析.中山大学学报(自然科学版),2010,49(3):127-134.
    [212]施润和,庄大方,牛铮,王汶.基于辐射传输模型的叶绿素含量定量反演.生态学杂志,2006,25(5):591-595.
    [213]施润和,庄大方,牛铮,王汶.叶肉结构对叶片光谱及生化组分定量反演的影响.中国科学院研究生学报,2005,22(5):589-595.
    [214]王长耀,牛铮,唐华俊等.对地观测技术与精准农业.科学出版社,2001.
    [215]卫亚星,王莉雯.净初级生产力遥感估算模型尺度效应的研究.资源科学,2010,32(9):1783-1791.
    [216]夏学齐,田庆久,杜凤兰.高光谱遥感图像的单形体分析方法.中国图象图形学报,2004,9(12):1486-1490.
    [217]熊宇虹,温志渝,张流强等.分形理论在光谱识别中的应用.光谱学与光谱分析,2006,26(4):772-774.
    [218]徐希孺,范闻捷,陶欣.遥感反演连续植被叶面积指数的空间尺度效应.中国科学(D辑),2009,39(1):79-87.
    [219]薛利红,曹卫星,罗卫红,姜东,孟亚利,朱艳.基于冠层反射光谱的水稻群体叶片氮素状况监测.中国农业科学,2003,07:807-812.
    [220]薛利红,曹卫星,罗卫红,张宪.小麦叶片氮素状况与光谱特性的相关性研究,植物生态学报,2004,28(2):172-177.
    [2211薛利红,杨林章,沈明星.缺素对小麦冠层反射光谱的影响.麦类作物学报,2006,26(6):120-124.
    [222]杨莹,刘元波,阮仁宗,叶春,卢盼盼MODIS土地覆盖分类的尺度不确定性研究.遥感学报,2012,16(4):868-880.
    [223]姚延娟,刘强,柳钦火,李小文.异质性地表的叶面积指数反演的不确定性分析.遥感学报,2007,11(6):763-770.
    [224]赵英时.遥感应用分析原理与方法.科学出版社,2003.
    [225]周子勇,李朝阳.高光谱遥感数据光谱曲线分形特征研究.中北大学学报,2005,26(6):451-454.
    [226]朱小华,冯晓明,赵英时,宋小宁.作物LAI的遥感尺度效应与误差分析.遥感学报,2010,14(3):579-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700