用户名: 密码: 验证码:
新安煤田小浪底水库下采煤地表水防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新安煤田系河南省主要重点大型煤田之一,横跨新安、孟津两县,-1000m标高以浅面积约600km2,煤炭资源量估算为26亿t,是义马煤业(集团)有限责任公司四大煤田之一。该煤田大面积可采煤层为二1煤,局部可采煤层为二2煤、七1煤等,煤种为市场畅销的优质贫煤、瘦煤等。新安煤矿位于新安煤田浅部,面积54km2,煤炭工业储量2.4亿t,设计生产能力150万t/a,基建投资近4亿元,1988年建成投产,是义马煤业(集团)有限责任公司大型骨干矿井之一。小浪底水库设计库容126.5亿m3,有效库容51亿m3,水库面积272km2。小浪底水库达到最高蓄水位+275m标高后,将淹没新安煤田50 km2以上,水下压煤2.5亿t;其中,淹没新安井田东翼21.7km2,水下压煤1.2亿t。小浪底水库蓄水后,区域水文地质条件和矿井充水条件将发生重大改变,矿井水害加剧,矿井防治水难度加大,矿井水文地质条件继续向复杂方向转化。
     水体下采煤在国内外有较长时间的历史。基于安全考虑,国外的水下采煤有关规定过于保守,对采后导水裂隙带发育规律研究不足,牺牲了大量可采资源,例如:美国规定在地表大型水体下的安全采深为60倍的开采厚度。我国的水下采煤技术研究等方面走在世界前列。解放以来,我国比较广泛地在各种水体类型下开采煤炭资源,中国的煤炭科技工作者也对此做了大量研究,取得了许多科技成果。早在上世纪八十年代,我国在《矿井水文地质规程》、《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》对水下采煤就有了具体规定,对采后所造成的最大导水裂隙带发育高度根据不同岩性、地层倾角等条件给出了经验公式。这些对做好水下采煤的安全工作有重要的指导作用。但随着放顶煤一次采全高技术的推广应用和大储量高产高效工作面的推行,采煤技术发生了重大改变,原来给出的导水裂隙带发育最大高度已不再完全适用;加之给定的经验公式的适用范围过于宽泛,而进行水下采煤的煤矿的井田岩性组合、地层倾角等千差万别,采用同一公式,精确度不足。新安煤田机械套用这些公式可能会出现较大偏差。
     论文利用水文地质学原理,对区域水文地质条件变化进行研究。本区域的主要含水层为奥陶系、寒武系灰岩溶裂隙承压含水层。该含水层厚度大,富水性较强,在煤田的西北部有大面积出露。小浪底水库蓄水之前,灰岩含水层在其裸露区接受大气降水补给,然后,地下水从西北向东南方向径流,在煤田深部遇到滞流区,然后转向东北方向运移,最终排泄于黄河。水库水位上涨时,地下水的排泄出口将成为补给通道,水库成为地下水的补给源;水位下降时,排泄出口恢复其原有功能。地下水增加水库这一间歇性补给源,地下水位有一定程度提高,但随着小浪底水库蓄泄水而周期性升降。
     论文对矿井水害因素进行了研究。新安煤田地表仅有畛河、石寺河、北冶河等数条季节性河流,对矿井的充水作用有限。蓄水后,地表水成为矿井的重要充水因素之一。新安煤田浅部曾存在数百个大小不等的小煤窑,其中有数十个小煤窑井口处于淹没区内,加之小煤窑采空区相互连通,造成小窑水与地表水连为一体对新安等大矿构成水害威胁。地下含水层由于得到地表水、小窑水的充足补给,径流途径缩短等原因而加强对矿井的充水作用。这样,新安煤田在开采过程中,在垂向上,上部受水库水的威胁,下部受底板奥灰水;在侧向上受到小窑水的威胁。
     论文对采后导水裂隙带发育高度进行了研究。利用新安井田三个工作面布置3组钻孔(11201工作面地面孔K3,井下仰孔Y1、Y2;14141工作面地面孔K7,井下仰孔Y5、Y6;14191工作面地面孔K5、K6,井下仰孔Y3)对二1煤上覆岩层全程取样,然后在室内进行岩石物理力学性质测试,取得了岩层强度等各项基本参数。通过地面钻孔冲洗液的漏失量来判断导水裂隙带发育大致层位;采用的超声波成像技术测井根据生产工作面的推进情况在开采前进行原岩裂隙测试,工作面推过后1.5到3个月进行第二次采动裂隙测试,工作面推过后6个月进行第三次裂隙闭合测试。通过开采前后测试结果对比,更加直观的反映采动裂隙的发育规律;井下仰孔并行网络电法CT技术探测采用跟踪工作面生产的测试方法,最终描绘采动裂隙随工作面推进的动态发育过程。根据新安煤田煤层上部的岩性特征、开采方式等实际条件和特点,总结出适用于本矿区的导水裂隙带高度计算方法。
     论文通过分析二l煤层上部岩层的岩性特征与组合、煤厚及其变化、煤层埋深、导水裂隙带最大发育高度、第四系松散含水层情况与地表水体深度、钻孔及其封闭不良情况、防水煤(岩)柱及其它因素对新安煤田水下开采的安全性进行了评价。
     论文提出了新安煤田水下采煤诸如淹没区封闭不良钻孔处理、淹没区三维地震勘探查地质构造、水库水位动态实时监测、矿井(采区、工作面)防排水技术、井下物探查异与钻探查证、防水煤(岩)柱和防水闸墙的留设、迟后开采以及水下采煤工作面参数选取等地表水防治技术。
     通过研究,认为在相关地表水防治水技术措施落实到位的前提下,在新安煤田大部分区段开展水下采煤是安全的。开展新安煤矿小浪底水库下采煤地表水防治技术研究,一方面可以解放新安煤田水下压煤约1亿t,另一方面可为其它矿区开展水下采煤或开采其它矿床提供借鉴,从而在一定程度上缓解我国乃至世界能源供应紧张的现状,社会经济效益显著。
Xin'an Coalfield which spans Xin'an county and Mengjin county is one of Henan's main large coal fields, and is one of the four major coal fields Yima Coal Industry Group Co. Ltd., the area under -1000m is about 600 sq km, its coal resources is about 2.6 billion tons. The main commercial seam of the coalfield is No.Ⅱ1 coal, the part commercial seam is No.Ⅱ2 coal and No.Ⅷ1 coal, etc. The coal ranks are salable high grade lean coal and blind coal, etc. Xin'an Coal Mine completed and put to production in 1998 which is one of large-sized key mines of Yima Coal Industry Group Co. Ltd. locates in the superficial part of Xin'an Coalfield, its area is 54 sq km, industrial reserves is 0.24 billion tons, designed annual production capacity is 1.5 million tons, the capital construction investment is close to 0.4 billion yuan. The designed storage capacity of the Xiaolangdi reservoir is 12.65 billion cubic meter, the effective storage capacity is 5.1 cubic meter, its area is 272 sq km. When the water level of the Xiaolangdi reservoir reach the highest impounded level (+275m), more than 50 sq km of the Xin'an Coalfield will be submerged, the capacity of coal under water is 0.25 billion tons, thereinto, the submerged area is 21.7 sq km, and the capacity of coal under water is 0.12 billion tons at the east wing of the Xin'an Coal Mine. After the Xiaolangdi reservoir is impounded, the local hydrogeologic condition and the filling water condition will gravely change, which gradually leads to water trouble of the mine and increase the difficulty of waterproofing, in the end, the mine hydrogeologic condition change to more complexity.
     Marine mining has a long history at home and abroad. Based on the safety, the foreign related provision for marine mining is too conservative, the study is lack for the growth laws of water conducted zone following mining, which resulted in the waste of lots of resources, such as: which the safe mining depth under the large water body of the earth's surface is 60 times of the working thickness is prescribed in USA. China's marine mining technology is leading the world. Since the liberation, China can widely exploit coal resources under various types of water bodies, and coal science and technology workers achieve a lot of results after lots of researches. As early as the 1980s, there are specific provisions for marine mining at "Mine Hydrogeologic Rule" and "Rules for Building, water body, railway, coal pillar design and mining pressed coal", based on the different rock characters and stratigraphic dip,etc., the empirical formulas for the maximum development height of the water conducted zone resulted from mining are put forward, these results have an important role in safe marine mining. But with the extensive application for the full-seam mining technology of the top-coal caving and the high yield and high efficient working face of large reserves, the mining technology significantly changed, the former empirical formulas for the maximum development height of the water conducted zone resulted is no longer applicable. And the application scope of the given empirical formulas is too broad, the rock characters combination and the stratigraphic dip of mine carried out marine mining differ in thousands ways, using the same formulas results in lack of accuracy. There will be relative deviations if mechanically using the empirical formulas in Xin'an Coalfield.
     By use of the theory of hydrogeology, the dissertation researches the local hydrogeologic condition. The region's main aquifer is the Ordovician and the Cambrian karst fissures confined aquifer. The aquifer has large thickness and strong water abundance, it exposes in northwest coalfield on a large scale. Before the Xiaolangdi reservoir impounds, limestone aquifer receives precipitation supply in the exposed area, then, groundwater runs off from the northwest to the southeast, when encounters stagnation flow zone in the deep coalfield, then, groundwater immigrates to north-east, in the end, groundwater discharges at the Yellow River. When the reservoir water level rising, the drain outlet of groundwater will be feeder channel, the reservoir will also be supply source of groundwater, on the other end, when the reservoir water level descending, the drain outlet resume its original features. Because of the intermittent supply source of the reservoir, the underground water level raise to a certain extent, however, it cyclically moves with the Xiaolangdi reservoir impoundment and discharge.
     The dissertation researched the factors of the mine water trouble. There are only a few of seasonal rivers on the surface of Xin'an Coalfield, such as Zhen River, Shisi River and Beiye River, these rivers play a limited role in water filling mine. After impoundment, surface water will be one of a important water filling factors. There ever exists hundreds of small mines varying in scale in the shallow part of the Xin'an Coalfield, among dozens of small mine lie in the inundated region, in addition, small coal mined-out areas connect with each other, resulting in water inrush from the small coal mines and surface water together, which has a major flood threat against Xin'an coal mine and other big mines. Because of the aquifer of attaining adequate water supply from surface water and water inrush from the small coal mines, reduced runoff and other reasons, the water filling function is reinforced. So, during the course of exploitation, the upper part of Xin'an Coalfield is threatened by water reservoir, the lower by a threat of Ordovician limestone water, the limestone by a threat of water inrush from the small coal mines.
     The dissertation studied the growth laws of water conducted zone following mining. By use of three groups drilling (the ground drilling K3, the upholes Y1 and Y2 on 11201 working face; the ground drilling K7, the upholes Y5 and Y6 on 14141 working face on three working faces; the ground drillings K5 and K6, the uphole Y3 on 14191 working face) at Xin'an coal mine, the overburden rock on No.Ⅱ1 coal is wholly sampled, and then the physical and mechanical properties of the rock is tested for receiving rock strength and other basic parameters in laboratory. The probable horizon of water conducted zone is determined through the amount of leakage of drilling fluid. According to the advancing situation of working face, virgin fracture is tested by ultrasonic imaging technique before exploitation, after exploiting a half month to three months, the working face is conducted the second test for exploitation fractures, six months later, the third test for closure fractures. By comparing the fore-and-aft test results, the growth rules of exploitation fractures are more intuitively reflected. The production of working face is tracked by parallel electrical network CT technology, the dynamic growth course of exploitation fractures with advancing working face is described at last. Combined with the results of physical simulation, numerical simulation and site test, according to the rock signatures and mining ways and other actual situations and features at the top of coal vein, the calculation methods of the water conducted zone height suited to the Xin'an coal mine are summarized.
     The dissertation appraises the security for marine mining in Xin'an Coalfield by the analysis of the rock signatures and combinations of the rock stratum on No.Ⅱ1, coal thickness and its varying, depth of coal seam, the maximum growth height of water conducted zone, the Quaternary system loose aquifer status and the depth of surface water, drillings and its closure status, water barrier and other factors.
     The dissertation put forward the marine mining technologies of surface water proofing in Xin'an Coalfield, such as the treatment to close the bad drillings in inundated land, geologic structure exploration by three dimensional seismic prospecting in inundated land, the dynamic real time supervision for the reservoir water level, the water proofing technologies for mining well, mining district and working face, the examination by physical prospection and verification by drilling, the design of water barrier and cutoff wall, delaying mining and the parameters choice of marine mining working face, and so on.
     After study, it is found that, if the related surface water proofing measures can be ensured, it is safe to carry out marine mining in the most region of the Xin'an Coalfield. The surface water proofing research of marine mining under the Xiaolangdi Reservoir can liberate the underwater coal about 0.1 billion tons, on the other hand can be used for references for other coal mines, so as to ease China and the world current tense supply of resources at a certain extent, it is evident that there is a significant social and economic benefits.
引文
[1]陈佩佩,许延春,王恩志.玉舍河下煤层开采安全性分析[J].煤田地质与勘探,2007,35(4):46~49.
    [2]常颖,包政礼.北皂煤矿海域下采煤的论证与开发[J].中国煤炭,2006,32(6):40~41.
    [3]熊英.中国首个海下采煤系统成功试运行[J].矿业安全与环保,2005,32(4):8~8.
    [4]孟凡和.龙口矿区海下采煤技术与实践[J].煤炭科学技术,2006,32(2):19~22.
    [5]韩仁桥,王兰健.海下采煤海溃防治工作重点及对策研究[J].煤矿开采,2007,12(3):4~7.
    [6]孙洪星,刘武章.龙口矿区近海冲积层下综放采煤防水煤岩柱的留设研究[J].煤炭科学技术,1999,27(6):6~9.
    [7]谢海峰.对龙口矿区海下采煤完全性的认识[J].煤炭工程,2003(12):38~40.
    [8]薛忠臻,张文.龙口矿区近海含水层采煤实践[J].煤矿开采,2000(2):13~14,21.
    [9]梅文泽,杜计平,韩可琦.水库下安全采煤可行性研究[J].矿山压力与顶板理,2003,20(4):86~88.
    [10]杨宗震,王吉才.淮南煤矿进行“三下”采煤的技术对策[J].煤炭学报,1994,19(1):5~11.
    [11]王文波.海域覆岩导水裂隙带发育高度影响因素分析[J].中国煤炭工业,2008(1):41~42.
    [12]刘增辉,杨本水.利用数值模拟方法确定导水裂隙带发育高度[J].矿业安全与环保,2006,33(5):16~19.
    [13]王双美.导水裂隙带高度研究方法概述[J].水文地质工程地质,2006,33(5):126~128.
    [14]汪华君,姜福兴,成云海等.覆岩导水裂隙带高度的微地震(MS)监测研究[J].煤炭工程,2006(3):74~76.
    [15]陈荣华,白海波,冯梅梅等.综放面覆岩导水裂隙带高度的确定[J].采矿与安全工程学报,2006,23(2):220~223.
    [16]别小勇,周国庆,赵光思等.煤层开采覆岩变形与破坏试验研究[J].矿业研究与开发,2005,25(2):27~30.
    [17]田文明,徐文泉.五家矿含水砂层下提高回采标高的可行性[J].煤田地质与勘探,2002,30(3):47~48.
    [18]王经明,马茂盛.沙下大采高采煤导水裂隙带高度的确定:以鄂尔多斯煤田南部为例[J].煤田地质与勘探,1999,27(1):45~47.
    [19]朱鲁,温兴水.反程序开采的导水裂隙带高度研究[J].矿业安全与环保,1999(4):16~17,20.
    [20]M.,AB杜娟.下部采动岩层位移导水裂隙扩展速度的测量[J].国外煤田地质,1989(2)16~17.
    [21]杨武军,疏开生.大型地表水体—微山湖下采煤的研究[J].矿业科学技术,1992,(4):12~20.
    [22]谭志祥,周鸣,邓喀中.断层对水体下采煤的影响及其防治[J].煤炭学报,2000,25(3):256~259.
    [23]李玉民,康永华,高成春等.我国水体下综放开采技术的应用与展望[J].煤炭开采技术,2003,31(12):1~4.
    [24]谭志祥,何国清,吴启森.国外水体下采煤水体底界面极限拉应变法的适用性分析[J].江苏煤炭,1997(3):3~5.
    [25]程金泉,李小果.鹤壁八矿1301南上段工作面砾岩水下采煤可行性研究[J].煤矿现代化,2005,64(1):17~18.
    [26]胡向志,刘庆军,牛书安.黄河小浪底水库蓄水运行对新安煤矿淹没影响[J].中州煤炭,2001,112(4):28~29.
    [27]张改玲,蔡荣,董青红等.开采覆岩破坏工程地质力学模型实验研究[J].中国煤田地质,2003,15(5):34~36.
    [28]刘增平,刘鸿泉.可视化空间分析在水体下采煤中的应用[J].煤炭科学技术,2004,32(2):40~41
    [29]刘增辉,杨本水.利用数值模拟方法确定导水裂隙带发育高度[J].矿业安全与环保,2006,33(5):16~19.
    [30]孙越英,王佩钰,张大志.浅析小浪底水库蓄水对库区济源段煤矿采空塌陷区的影响[J].水文地质工程地质,2006(1):72~75.
    [31]王兰健,韩仁桥.水情监测预警系统在海下采煤中的应用[J].煤田地质与勘探,2006,34(6):54~56.
    [32]李思标,贺小峰,孙永.水体下采煤安全程度评价实例[J].山东煤炭科技,2005(6):60~62.
    [33]王铁牛,郝洪海,张宏军等.宋沟水库下采煤安全性分析[J].煤炭技术,2006,25(7)
    [34]姚建伟.谈小浪底水库对新安煤矿的影响[J].煤炭企业管理,2006(2):54~55.
    [35]李佩全.淮南矿区水体下采煤的实践与认识[J].中国煤炭,2001,27(4),30~32,42.
    [36]杨建,王心义,李松营等.新安矿井突水水源的水化学特征分析[J].矿业研究与开发,2005,25(4):70~73,77.
    [37]文学宽,刘修源.用数理统计确定水体下安全开采深度[J].煤炭学报,1996,21(5):473~475.
    [38]熊晓英,杜广森,李俊斌.注水实验法探测导水裂隙带高度[J].煤炭技术,2004,23(2):77.
    [39]李松营.新安煤矿12161工作面突水灾害分析[J].中州煤炭,1999,99(3):39,46.
    [40]李松营,茹爱君.新安煤矿部分井田淹没后矿井水文地质条件变化探析[M].工业技术与管理工程新探,1999,59~-60.
    [41]李松营.应用动水注浆技术封堵矿井特大突水[J].煤炭科学技术,2000,28(8):28~30.
    [42]李松营,杜毅敏等.小煤窑水害及其防治[J].焦作工学院学报,2003,92(3):184~186.
    [43]李松营.新安煤矿井下水文孔漏水原因分析与防治[J].煤炭技术,2005,24(9):58~60.
    [44]李松营.新安煤矿综合防治水技术研究[J].能源管理与技术,2007,116(4),34~35
    [45]李松营.陕渑煤田矿井奥灰水防治技术[J].煤炭技术,2008,27(3):132~134.
    [46]Song-ying LI, Po FAN,Ping-ping LUO. Analysis on Causes of Large-scale Ordovician Karst Water Inrush at 27080 Working Face of Eastern Caoyao Mine, 室兰工业大学纪要2010, 2009,59(3),107-110.
    [47]A. Ghassemi, S. Tarasovs, A.H.-D. Cheng. A 3-D study of the effects of thermomechanical loads on fracture slip in enhanced geothermal reservoirs. International Journal of Rock Mechanics & Mining Sciences,2007(44):1132-1148.
    [48]Qingxiang Huang. Experimental research of overburden movement and subsurface water seeping in shallow seam mining. Journal of University of Sciences and Technology Beijing, 2007(6).
    [49]Jincai Zhang. Investigations of water inrushes from aquifers under coal seams. International Journal of Rock Mechanics & Mining Sciences,2005(42):350-360.
    [50]DONG Qing-hong, CAI Rong, YANG Wei-feng. Simulation of Water-Resistance of a Clay Layer during Mining:Analysis of a Safe Water Head. China University of Mining & Technology,2007,17(3):0345-0348.
    [51]Hermann J. Becker, Bernd Grupe, Horst U. Oebius. The behavior of deep-sea sediments under the impact of nodule mining processes. Deep-Sea Research II,48(2001):3609-3627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700