用户名: 密码: 验证码:
重大公路灾害遥感监测与评估技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路交通系统是分布区域很广的网状系统,极易遭受自然灾害的破坏,重大公路灾害不仅直接造成巨大的经济损失,还因交通阻断造成救援延误引起更为惨重的继发损失。在发生重大灾害的条件下,以不同平台的遥感数据为基础,不但可以获得灾害的范围、严重程度等信息,进一步的分析还可获得大范围路网中道路堵塞位置与程度、道路损毁位置与程度等信息,为灾后的道路抢修、应急交通组织和救援资源调度决策提供可靠依据。遥感测量是信息技术高度发展的产物,特别适用于对大范围环境的动态变化进行快速综合监测,已成功用于地震、火山、洪水、山体滑坡、冰雪、森林火灾、飓风等灾害的监测。但运用遥感数据对大范围路网中的树木、岩石、车辆、泥石流、冰雪、烟尘、洪水、倒坍建筑物等各类道路堵塞要素以及路基沉降、路基坍塌、路面断裂、桥梁断裂等道路损毁现象进行快速识别,在世界范围内都处于起步阶段,具有较大的研发难度。
     本文深入研究了重大公路灾害监测的几项关键技术,包括道路范围检测、多源数据配准、公路损毁信息检测。具体的研究工作可以分为如下几个部分:
     (1)本文对在灾害应急状况下,可被用来快速评估公路损毁情况的数据源进行了总结和分析。针对不同数据组合推导出几套可行的公路损毁检测方案,并分析了各种方案所能够提供的损毁信息内容和准度。
     (2)本文首先分析了高空间分辨率遥感影像中公路的理想和非理想模型特征,在此基础上讨论了一种基于MonteCalo跟踪方法和改进Snake边缘精确定位结合,检测高空间分辨率遥感影像中公路的方法。这种方法在实际应用中遇到公路边缘模糊情况时,检测效果不好。于是提出了基于公路几何特征约束的道路双边缘检测方法。该方法中引用了两个约束条件:公路不会出现急转弯(约束条件1);公路的宽度不会发生突变(约束条件2)。公路几何约束条件制定的依据为中国交通运输部公布的公路设计标准规范,该方法能够解决绝大多数公路范围检测。对于少量违反约束条件的公路,也提出了可行的检测方案。
     (3)本文针对山区LiDAR数据与光学影像配准问题,尝试了最小二乘法匹配和曲线特征匹配法,并通过实验比较发现后者是一种更可靠的方法。该配准方法采用w-d模型来描述曲线,并通过w-d模型匹配找到同名曲线,接下来通过曲线节点之间的相似关系构建代价矩阵,用动态规划方法确定同名曲线的节点之间的对应关系。
     (4)本文利用LiDAR数据来分析公路损毁信息。首先,通过对现有滤波算法的分类比较分析,以及ISPRS网站上提供的各种经典滤波算法处理几组同样实验数据的误差比较分析,得出使用Li的形态学滤波算法最使用于本文的结论,并改进该滤波算法,使其在滤除干扰信息的同时保留了桥梁点。接下来,将滤波后的点云构造的DSM用LBP和VAR纹理测度处理,突出表达起伏和平坦地形,并用面向对象的多尺度分割技术和模糊C均值分类算法被用来区分损毁和完好区域。最后根据损毁区域内每个微分体元的体积的变化积分,精确计算出路段损毁程度(滑坡堆积物或垮塌方量),并通过几种损毁模型,分析出损毁类型(掩埋类损毁、桥梁垮塌损毁、路基塌陷损毁)。
Road network traffic system is extremely easy destructed by the natural disaster. Road disaster not only brings a huge economic loss to disaster areas, but also some more serious loss result from rescue delay. After significant disaster occured, the multisource data is collected by different remote sensing platforms, it will be the foundation of disaster detection. Based on these multisource remote sensing data, several road damage information can be acquired, such as road damaged scope, road damaged degree and road damaged types information etc.. These kind of damage information will help for post-disaster road emergency repair, the emergency transportation organization and decision-making of rescue material schedule. The remote sensing survey is the product of information technology develops highly, it is very suitable in the fast and synthesis monitor of dynamic change of the wide range environment. Now, the technology has been succeeded used for some disaster monitor, such as earthquake, volcano, flood, landslide, snow and ice, forest-fire, hurricane and so on. But, it is difficult that remote sensing data is used to identify roadbed subsidence, roadbed collapse, the bridge break from the wide range road network and several kinds of block factors of road sections. In the world wide, the research has just been begin. This paper researched deeply three key technologies of significant road disaster monitor, including road scope detection, multisource data match and road damage information detection. The concrete research work may be divided into the following several parts:
     (1) Some remote sensing data sources can be used to evaluate road damage situation under disaster emergency condition. In the light of the different data combination, several feasible road damage detection schemes were deduced, and damage information content and precision of every kind of scheme were analyzed.
     (2) This paper analyzed road's ideal and non-ideal model characteristics in some high spatial resolution remote sensing images. Based on the model characteristics, a method that is combine arithmetic of MonteCalo particle filtering and arithmetic of improved Snake edge location is put forward. But when the road edge blurry, the detection result of the method is not good. In order to overcome the deficiency, a method of double edge tracking based on the road geometry characteristic restraint was proposed. Two restraint conditions were introduced into the method: The road can not present a extreme turn (constraint 1); Road's width can not have the sudden change (constraint 2). This method can solve the overwhelming majority road scope detection problems, for few road sections which violates the constraint conditions, a feasible detection plan was also proposed.
     (3) This paper is use for the least squares method and curve characteristics method match LiDAR data and optical image of mountainous area, and the later one is more reliable that is proved by experiment comparison and analysis. The curve match method is described as follows:firstly, it take use of w-d model describe a curve; And then it is use for the method of w-d model matching to find homonymous curves, Next it build price matrix by the similar relations of homonymous curve nodes. lastly, it confirm the corresponding relationships of homonymous curve nodes by the dynamic planning method.
     (4) This paper used the LiDAR data to analyze the road damage information. Firstly, a conclusion that the Li's morphology filtering algorithm is the most suitable for dealing with a mountainous area LiDAR data is obtained by analyze. And, a improved method based on Li's was proposed which can retain the bridge points during filter disturbance information. Next, a DSM is structured by point clouds. The LBP and VAR texture measures were used for analyzing DSM, whereupon the smooth and rough terrain can be distinct shown. And then the object-oriented multi-criterion division technology and the fuzzy C average value classify algorithm is taken use for differentiating the damage and the complete region. At last, according to volume change of all differential vexel in damage region, the road section damage degree (Landslide quantity or collapse quantity) can be precisely calculated, in addition according to several kind of damage models, the road section damage type (the burying damage, the bridge collapsing damage, the roadbed collapse damage) can be obtained.
引文
[1]王晓青,魏成阶,苗崇刚等.震害遥感快速提取研究—以2003年2月24日巴楚-伽师6.8级地震为例[J].地学前缘,2003,10:285-291
    [2]Rathje E M, Kyu-Seok Woo, Crawford M, et al. Neuen-schwander, A. Earthquake damage identification using multi-temporal high-resolution optical satellite imagery[C].2005, 7:5045-5048
    [3]Charles K Huyck, Beverley J Adams. Damage Detection Using Neighborhood Edge Dissimilarity in Very High-Resolution Optical Data. http://mceer-nt2.mceer. buffalo.edu/second_workshop/papers/05paper_huyck.pdf,2005
    [4]T Thuy Vu, Masashi Mat suoka, Fumio Yamazaki. Preliminary results in development of an object-based image analysis method for earthquake damage assessment[C].3rd International Workshop on Remote Sensing for Post-Disaster Response, Chiba, Japan,2005:1-8
    [5]杨喆,程家喻.澜沧-耿马地震灾情的航空遥感调查[J].国土资源遥感,1993,15:17-22
    [6]朱博勤,魏成阶,张渊智.航空遥感地震灾害信息的快速提取[J].自然灾害学报,1998,7(1):34-39
    [7]杨喆,任德凤.利用机载SAR震害影像特征快速圈定极震区[J].地震地质,1999,21(4):452-458
    [8]张景发,谢礼立,陶夏新.建筑物震害遥感图像的变化检测与震害评估[J].自然灾害学报,2002,5:59-64
    [9]柳家航.利用遥感技术进行城市建筑震害的自动识别与分类方法研究[D].北京:中国地震局地质研究所,2003.
    [10]窦爱霞.震害遥感图像变化检测技术研究[D].济南:山东科技大学,2003.
    [11]李萍.基于遥感技术的2003年2月24日新疆巴楚地震震害快速评估[D].哈尔滨:中国地震局工程力学研究所,2004.
    [12]张桂芳.基于高分辨率遥感影像的建筑物三维信息自动提取震害识别及震害预估方法研究[D].北京:中国地震局地质研究所,2004.
    [13]Masashi Matsuoka, Fumio Yamazaki. Use of SAR Intensity Imagery for Earthquake Damage Detection[C]. Newport Beach, USA,2004,:1-5
    [14]Ping Li, Xiaxin Tao. Quantitative Earthquake Damage Detection from Changes in Remote Sensing Images-A case study[J]. Geoscience and Remote Sensing Symposium,2005,3:1-4
    [15]M Turker, B T San. Detection of collapsed buildings caused by the 1999 Izmit, Turkey earthquake through digital analysis of post-event aerial photographs[J]. International Journal of Remote Sensing,2004,25(21):4701-4714
    [16]Baatz M, A Schape. Object-Oriented and Multi-Scale Image Analysis in Semantic Networks[C]. Proc. of t he 2nd International Symposium on Operationalization of Remote Sensing,1999, pp.2563-2575
    [17]Kumar, K.V., Martha. Mapping damage in the Jammu and Kashmir caused by 8 October 2005 M-w 7.3 earthquake from the Cartosat-1 and Resourcesat-1 imagery[C]. International Journal of Remote Sensing 2006,27:4449-4459
    [18]Voigt,Kemper,Riedlinger, et al. Satellite image analysis for disaster and crisis-management support[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45:1520-1528
    [19]Takaaki Kusakabe, Akihiro Sanadaet. Application of Image Processing to Detect Infrastructure Damage Caused by Earthquakes. http://www.pwri.go.jp/eng/ujnr/joint/36/paper/72kusaka.pdf,2004.
    [20]刘亚岚,张勇.汶川地震公路损毁遥感监测评估与信息集成[J].遥感学报,2008,12(6):933-940
    [21]任玉环,刘亚岚.汶川地震道路震害高分辨率遥感信息提取方法讨论[J].遥感技术与应用,2009,24(1):52-58
    [22]中华人民共和国行业标准.公路工程技术标准(JTG B01-2003)[S].北京:中华人民共和国交通部发布,2004.
    [23]ADS80 Airborne Digital Sensor, Leica, http://www.leica-geosystems.us/en/Leica-ADS80-Airborne-Digital-Sensor_57627.htm.
    [24]ALS60 Airborne Laser Scanner, Leica, http://www.leica-geosystems.us/en/Leica-ALS60-Airborne-Laser-Scanner 57629.htm.
    [25]LMS-Q280i Laser Scanner datasheet,2005, Riegl, http://www.3dlasermapping.com/uk/ airborne/hardware/datasheet_lmsq280i.pdf.
    [26]Lindi J. Quackenbush. A Review of Techniques for Extracting Linear Features from Imagery[J]. Photogrammetric Engineering & Remote Sensing,2004,70(12):1383-1392
    [27]J. B. Mena. State of the art on automatic road extraction for GIS update:a novel classification[J]. Pattern Recognition Letters,2003,24:3037-3058
    [28]Jin, X., Davis, C. H. An integrated system for automatic road mapping from high-resolution multi-spectral satellite imagery by information fusion[J]. Elsevier Science Information Fusion, 2004.
    [29]L. Quam. Road tracking and anomaly detection in aerial imagery, Process Of Image Understanding Workshop,1978, pp.51-55.
    [30]史文中,朱长青等.从遥感影像提取道路特征的方法综述与展望[J].测绘学报,2001,.3:257-261
    [31]林宗坚,刘政荣.从遥感影像提取道路信息的方法评述[J].武汉大学学报·信息科学版,2003,1:90
    [32]Fortier, D. Ziou, C. Armenakis et al. Survey of Work on Road Extraction in Aerial and Satellite Images. http://www-12ti.univ-parisl3. fr/-auclair/public/Auclair-TR247.pdf,2003.
    [33]Mokhtarzade M, Valadanz Zoej M J. Road detection from high-resolution satellite images using artificial neural nerworks[J]. International Journal of Applied Earth Observation and Geoinformation,2007,9:32-40
    [34]J. Amini, C. Lucas, et al. Fuzzy logic system for road identification using Ikonos images[J]. Photogrammetric Record,2002,17(99):493-503
    [35]Ali Mohammadzadeh, Ahad Tavakoli. Road Extraction Based on Fuzzy Logic and Mathematical Morphology from Pan-shprpened Ikonos Images[J]. The Photogrammetric Record,2006,21(113):44-60
    [36]Sette,S., Boullart, L.. Genetic Programming:principles and applications[J]. Engineering Applications of Artifical Intelligence,2001,14(6):727-736
    [37]Dal Poz P, Zanin R B, Vale G M. Automated extraction of road network from medium and high-resolution images[J]. Pattern Recognition and Image Analysis,2006,16(2):239-248
    [38]Zheng S, Liu J. Road central contour extraction from high resolution satellite image using tensor voting framework[C]. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics,2006, pp.3248-3253
    [39]Mena JB, Malpica JA. An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery[J]. Pattern Recognition Letters,2005,26: 1201-1220
    [40]Zhang Q, Couloigner I. A wavelet approach to road extraction from high spatial remotely-sensed imagery[J]. GEOMATICA-Special Issue "Remote Sensing of Urban Areas", 2004,58(1):411-441
    [41]T. Geraud. Segmentation of Curvilinear Objects using a Watershed-Based Curve Adjacency Graph[C]. Proceedings of the 1st Iberian Conference on Pattern Recognition and Image Analysis,2003, pp.279-286
    [42]Descombes X, Zerubia J. Marked point process in image analysis[J]. IEEE Signal Processing Magazine,2002,9:77-84
    [43]Amo M, Martinez F, Torre M. Road extraction from aerial images using a region competition algorithm[J]. IEEE Transactions on Image Processing,2006,15(5):1192-1201
    [44]王天鹏,姜挺.基于模糊算子理论的道路半自动提取[J].测绘学院学报,2004,21(3).187-189
    [45]Poz D, Vale A P. Dynamic programming for semi-automated road extraction from medium-and high-resolution images, international archives of the photogrammetry [J]. Remote Sensing and Spatial Information Sciences, vol.34, Part3/W8, Munich,2003
    [46]Renaud P, Julien C. Detection and extraction of road networks from high resolution satellite[C]. Proceedings of the IEEE International Conference on Image Processing,2003, pp. 301-304.
    [47]Renaud P, Thierry R. Multi-resolution snakes for urban road extraction from Ikonos and Quickbird Images[C]. Proceedings of the 23rd EARSeL Symposium,2003, pp.69-76.
    [48]Zhao H, Kumagai J, Nakagwa M, et al. Semi automatic road extraction from high resolution satellite image[C]. Proceedings of Photogrammetric Computer Vision, Graz, Austria,2002, pp. 406-411.
    [49]Baumgartner A, Hinz S, Wiedemann C. Efficient methods and interfaces for road tracking[C]. International Archives of Photogrammetry and Remote Sensing,2002,34(3B):309-312
    [50]Vosselman, G, Knecht J D. Road tracing by profile matching and kalman filtering, Automatic Extraction of Man-Made Objects from Aerial and Space Images[C]. Birkhauser Verlag,1995: 255-264
    [51]Hu,X., Zhang,Z., Tao,C.V. A robust method for semi-automatic extraction of road centerlines using a piecewise parabolic model and least square template matching[J]. Photogrammetric Engineering & Remote Sensing,2004,70(12):1393-1398
    [52]Perez P, Blake A. Probabilistic contour extraction with particles[C]. Proceedings of International Conference on Computer Vision,2001:524-531
    [53]Chen,C.M., Hepener,G.F, Forster,R.R.. Fusion of hyperspectral and radar data using the HIS transformation to enhance urban surface features[J]. ISPRS Journal of Photogrammetry & Remote Sensing,2003,58(1/2):19-30
    [54]Jin,X., Davis,C.H.. An integrated system for automatic road mapping from high-resolution multi-spectral satellite imagery by information fusion[J]. Information Fusion,2005,6(4): 257-273
    [55]Hihz S, Baumgartner A. Automatic extraction of urban road networks from multi-view aerial imagery[J]. Photogrammetry and Remote Sensing,2003,58:83-98
    [56]J.S.Park, R.A. Saleh. Comprehensive Survey of Extraction Techniques of Linear Features from Remote Sensing Imagery for Updating Road Spatial Databases[C], CLEM,2001.
    [57]A.Dubi.蒙特卡洛方法在系统工程中的应用[M].西安:西安交通大学出版社,2007.
    [58]王文龙,李清泉.基于蒙特卡罗算法的车辆跟踪方法[J].测绘学报,2010,vol(5):
    [59]S.S. Ganugapati, C.R. Moloney. A Ratio Edge Detector for Speckled Images Based on Maximum Strength Edge Pruning[J]. IEEE Trans. Image Processing,1995,2:165-168
    [60]Florence Tupin, Henri Maitre, Jean-Francois Mangin, et al. Detection of Linear Features in SAR Images:Application to Road Network Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(2):434-453
    [61]M.Berger. The framework of least squares template matching[R]. Switzerland: Swiss Federal Institute of Technology Communication Technology Lab,1998.
    [62]Xiangyun Hu, Zuxun Zhang, C. Vincent Tao. A Robust Method for Semi-Automatic Extraction of Road Centerlines Using a Piecewise Parabolic Model and Least Square Template Matching[J]. Photogrammetric Engineering & Remote Sensing,2004,70(12) 1393-1398
    [63]Gruen A. Adaptive Least Square Correlation:a Powerful Image Matching Technique[J]. South African Journal of Photogrammetry and Remote Sensing,1985,3(14):175-187
    [64]Gruen A, Stallmann D. High Accuracy Dimensional Measurement Using Non-target Object Features[C]. IAPRS, Washington,1992,29(B5):694-700
    [65]胡祥云.航空遥感影像线状地物与房屋的自动提取[D].武汉:‘武汉大学,2001.
    [66]M.Kass, A.Witkin, D.Terzopoulos. Snakes: active contour models[J], International Journal of Computer Vision,1987,1(4):321-331
    [67]H. Park, T. Schoepflin, Y. Kim. Active contour model with Gradient Directional Information: Directional Snake[J]. IEEE Trans. Circuits Syst.Video Techol.2001,11:252-256
    [68]李禹,计科锋,粟毅.基于MSP-ROA边缘检测的SAR图像分割[J].信号处理,2008,24(1):83-86
    [69]M. Jacob, T. Blu, M. Unser. Efficient and Algorithms for Parametric Snakes[J]. IEEE Trans. Image Process,2004,13(9):1231-1244
    [70]中华人民共和国行业标准.公路路线设计规范(JTJ 011-94)[S].北京:中华人民共和国交通部发布,1994.
    [71]Taejung Kim, Seung-Ran Park, Moon-Gyu Kim et al. Tracking Road Centerlines from High Resolution Remote Sensing Images by Least Squares Correlation Matching[J]. Photogramme-tric Engineering & Remote Sensing,2004,70(12):1417-1422
    [72]张睿,张继贤,李海涛.基于角度纹理特征及剖面匹配的高分辨率遥感影像带状道路半自动提取[J].遥感学报,2008,12(2):224-232
    [73]林祥国,张继贤,李海涛等.基于T型模板匹配半自动提取高分辨率遥感影像带状道路[J].武汉大学学报·信息科学版,2009,34(3):293-296
    [74]林祥国,张继贤,刘正军.用改进的剖面匹配算子提取高分辨率遥感影像上带状道路[J].测绘科学,2009,34(4):64-66
    [75]HABIB A. Automatic Surface Matching for the Registration of LiDAR Data and MR Imagery[J]. ETRI Journal,2006,28(2):162-174
    [76]L. Brown. A survey of image registration techniques[J]. ACM Computing Surveys,1992 24(4):325-376
    [77]吴波.自适应三角形约束下的立体影像[D].武汉:武汉大学,2006.
    [78]ROUX M. Registration of Airborne Laser Data with One Aerial Image[C]. ISPRS Congress, vol.35, Istanbul,2004
    [79]冯义从,岑敏仪.三维自由表面匹配及其应用[J].测绘工程,2005,14(3):36-40
    [80]邓非.LiDAR数据与数字影像的配准和地物提取研究[D].武汉:武汉大学,2006.
    [81]HABIB A. Photogrammetric and LiDAR Data Registration Using Linear Features[J]. Photo-grammetric Engineer & Remote Sensing,2005,71(6):699-707
    [82]ZHANG Z. Global Image Matching with Relaxation Method[C]. Proceedings of the International Colloquium on Photogrammetry[C]. Wuhan,1992
    [83]ZHANG Z, ZHANG J. Generalized Point Photogrammetry and ItsApplication[C]. XXth ISPRS Congress Commission[C]. Istanbul,2004.
    [84]钟成,李卉和李德仁等.利用6元组松弛法自动配准LiDAR数据与航空影像[J].武汉大学学报·信息科学版,2009,34(12):1426-1430
    [85]DIAS P. Automatic Registration of Laser Reflectance and Colour Intensity Images for 3D Reconstruction[J]. Robotics and Autonomous Systems,2002,39 (3-4):157-168
    [86]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出版社,1997.
    [87]李勇.基于机载LIDAR数据与航空影像融合的建筑物轮廓提取[D].武汉:武汉大学测绘遥感信息工程国家重点实验室,2010.
    [88]王文龙,唐炉亮,李清泉等.一种利用飞艇航拍视频的运动车辆检测方法[J].武汉大学学报·信息科学版,2010,35(7):786-789
    [89]Freeman H. On the encoding of arbitrary geometric configurations[J]. IRE Trans.,1961,10: 260-268
    [90]Fisehler M A, Wolf H C.Locating Perceptually salient Points on Planar curvesp[J]. IEEE Trans. PAMI,1994,16(2):113-129
    [91]Xiabi Liu, Yunde Jia. Character Stroke Extraction Based on B-spline Curve Matching by Constrained Alternating Optimization[C]. Ninth International Conference on Document Analysis and Recognition,2007.
    [92]J.Wu, J.Leou. New Polygonal approximation schemes for object shape representationp[J]. Pattern Recognition,1993,26:471-484
    [93]Witikin A P. Scale-space filtering[C]. In Proceeding of the 8th Int Joint Conference on Artificial Intelligence,1983:1019-1022
    [94]Babaud J, Witkin A,,Baudin M, et al. Uniqueness of Gaussian kenel for scale space filtering [C].IEEETrans.PAMI,1986,8:26-33
    [95]唐炉亮.基于地物相似性的空间数据变化发现[D].武汉:武汉大学,2007.
    [96]Pavlidis T. Polygonal approximations by Newton's method[J]. Computer,1978,26:800-807
    [97]邬浩,潘云鹤,庄越挺等.基于对象形状的图象查询技术[J].软件学报,1998,9(5)343-349
    [98]Yang L. A fast computation of invariant geometric moments:A new method giving correct results[C]. Process of IEEE Int Conf on Image Processing, Austin Texas,1994.
    [99]Kapur D, Lak shman Y N, Saxena T. Computing invariant using elim inition methods[C], Proc of Int'l Sysposiumn Computer Vision, Florida,1995:97-102
    [100]王亮申,欧宗瑛.矩常量—几何形状标识的新方法,机械科学与技术,2002,21(5)707-708
    [101]Luca Lucchese. Estimation of Two-Dimensional Affine Transformations Through Polar Curve Matching and Its Application to Image Mosaicking and Remote-Sensing Data Registration[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2006,15(10),3008-3019
    [102]D. J. Lee, Sameer Antani, L. Rodney Long. Similarity Measurement Using Polygon Curve Representation and Fourier Descriptors for Shape-based Vertebral Image Retrieval[C], Medical Imaging,2003,5032:1283-1291
    [103]Rucklidge, William J.. Efficiently locating objects using the Hausdorff distance[J]. Internat. J. Computer,1997,24(3),251-270
    [104]Yi, Xilin, Camps, Octavia I.. Line-based recognition using a multi- dimensional hausdorff distance[J]. IEEE Trans. Pattern Anal. Machine Intell,1999,21(9),901-916
    [105]刘爽,朱延娟,张丽艳.二维碎片轮廓曲线的匹配算法[J].电气技术与自动化,2005,34(2):60-63
    [106]Alon Efrat, Quanfu Fan. Curve Matching, Time Warping, and Light Fields:New Algorithms for Computing Similarity between Curves[J]. J Math Imaging,2007,27:203-216
    [107]朱洁,黄樟灿,彭晓琳.基于离散Frechet距离的判别曲线相似性的算法[J].武汉大学学报(理学版),2009,55(2),227-232
    [108]Ballard D H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 1981,13(2):111-122
    [109]V. Giannekou, P. Tzouveli, Y. Avrithis. AFFINE INVARIANT CURVE MATCHING USING NORMALIZATION AND CURVATURE SCALE-SPACE[C]. CBMI 2008.
    [110]M. Cui, J. Femiani and J. Hu, et al. Curve matching for open 2D curves[J]. Pattern Recognition Letters,2009,30:1-10
    [111]Naonori. Learning visual models from shape contours using multiscale convex/concave structure matching[J]. Pattern Analysis and Machine Intelligence.1993,15(4):337-352
    [112]Xiaoqian XU, D.J. LEE. A Spine X-Ray Image Retrieval System Using Partial Shape Matching[J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE,2008,12(1):100-108
    [113]P.M.Oliveira, R.S.Tavares. Algorithm of dynamic programming for optimization of the global matching between two contours defined by ordered points[J]. Computer Modeling in Engineering & Sciences,2008,31(1):1-11
    [114]P.M.Oliveira, R.S.Tavares. Matching Contours in Images through the use of Curvature, Distance to Centroid and Global Optimization with Order-Preserving Constraint[J]. Computer Modeling in Engineering & Sciences,2009,43(1):91-110
    [115]Horn, Berthold K.P. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A,1987,4:629-642
    [116]陈鑫连.地震灾害的航空遥感信息快速评估与救灾决策[M].北京:地震出版社,1992.
    [117]John R. Jensen, Dave C. Co wen. Remote Sensing of Urban/Suburban Infrastructure and Socio-Economic Attributes[J]. Photogrammetric Engineering & Remote Sensing,1999,65(5): 611-622
    [118]陈文凯,何少林,张景发等.利用遥感技术提取震害信息方法的研究进展[J].西北地震学报,2008,30(1):88-93
    [119]韩用顺,崔鹏,朱颖彦等.汶川地震危害道路交通及其遥感监测评估——以都汶公路为例[J].四川大学学报(工程科学版),2009,41(3):273-283
    [120]陈世荣,马海建,范一大等.基于高分辨率遥感影像的汶川地震道路损毁评估[J].遥感学报,2008,12(6):949-955
    [121]王治华,徐起德,徐斌等.5.12汶川地震航空遥感应急调查[J].中国科学E辑:技术科学,2009,39(7):1304-1311
    [122]孟娜.基于激光扫描点云的数据处理技术研究[D].山东:山东大学,2009.
    [123]支晓栋,林宗坚,苏国中等.基于改进四叉树的LiDAR点云数据组织研究[J].计算机工程与应用,2010,46(9):71-74
    [124]黄先锋,陶闯,江万寿等.机载激光雷达点云数据的实时渲染[J].武汉大学学报·信息科学版,2005,30(11):975-978
    [125]Bently J. L. Multidimensional binary search tree used for associative searching[J]. Communi-cations of the ACM,1975,18(9):509-517
    [126]BENTLEY, J. L. K-d Trees for Semi-dynamic PointSets[J]. SCG'90: Proc.6th Annual Symposium on Compu-tational Geometry,1990:187-197
    [127]HEMANT M. KAKED. Range Searching using Kd Tree [EB/OL]. http://www. facweb.iitkgp. ernet.in/-arijit/courses/autumn2005/kdtree.pdf,2005.
    [128]刘艳丰,王守彬,汤仲安等.基于k-d树的机载LIDAR点云滤波处理[J].测绘工程,2009,18(5):59-62
    [129]Robinson J T. The K-D-B tree:A search structure for large multi—dimensional dynamic indexes[C].Proceeding of ACM-SIGMOD'81,1981.
    [130]Hjaltason G R. Ranking in spatial database[C]. Proceedings of the 4th Symposium on Spatial Database,1995.
    [131]Chyscmthou Y, Slater M. Computing dynamic changes to BSP trees[C]. Computer Graphics Forum(Euro graphics'92 Proceedings),1992,11(3):321-332
    [132]邓红艳,武芳,翟仁健等.一种用于空间数据多尺度表达的R树索引结构[J].计算机学报,2009,32(1):177-184
    [133]路明月,何永.三维海量点云数据的组织与索引方法[J].地球信息科学,2008,10(2)190-194
    [134]G Sithole and G. Vosselman. The full Report:ISPRS Comparison of Filters[R].2003.
    [135]C. Briese, N. Pfeifer. Airborne laser scanning and derivation of digital terrain models[C]. Proceedings of the 5th conference on optical 3D measurement techniques, Vienna, Austria, 2001:80-87
    [136]P. Axelsson. Processing of laser scanner data—algorithms and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing,1999,54(2-3):138-147
    [137]P. Axelsson. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2000,33(B4):110-117
    [138]G. Vosselman. Slope based filtering of laser altimetry data. International Archives of the Photogrammetry[J]. Remote Sensing and Spatial Information Sciences,2000,33(B3) 935-942
    [139]G. Vosselman, H. Maas. Adjustment and filtering of raw laser altimetry data. Proceedings of OEEPE workshop on Airborne Laser Scanning and interferometric SAR for Detailed Digital Elevation Models,2001:62-73
    [140]K. Zhang, S. Chen, D. Whitman et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):872-882
    [141]M, Roggero. Airborne laser scanning:clustering in raw data[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2001,34(B3):227-232
    [142]G. Sithole. Filtering of laser altimetry data using a slope adaptive filter[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2001, 34(B3):203-210
    [143]李勇,吴华意.基于形态学梯度的机载激光扫描数据滤波方法[J].遥感学报,2008,12(4):633-639
    [144]George Sithole,George Vosselman.ISPRS Comparison of Filters[R]. Netherlands:ISPRS Commission III, Working Group 3,2003.
    [145]ISPRS. Test Data[DB/OL].http://www.itc.nl/isprswgIII-3/filtertest/Download Sites.htm
    [146]Martin Isenburg, Jonathan Shewchuk. LAStools software[CP/OL]. http://www.cs.unc.edu /-isenburg/lastools/
    [147]T. Randen, J. H. Husoy. Filtering for Texture Classification:A Comparative Study[J]. Pattern Analysis and Machine Intelligence,1999,21:291-310
    [148]Haralick, R. M., Shanmugam, K., Dinstein, I.. Textural features for image classification[J]. Systems Man Cybernetics,1973,2:610-621
    [149]Bouman C. A, Shapiro M. A Multistage Random Field Model for Bayesian Image Segmentation[J]. Image Processing,1994(3):162-177
    [150]郑肇葆.图像分析的马尔科夫随机场方法[M].武汉:武汉大学出版社,2000.
    [151]Clausi D A, Jernigan M. Designing Gabor filters for optimal texture separability [J]. Pattern Recognition,2000,33(11):1835-1849
    [152]Bigun J, du Buf J M H. N-folded Symmetries by Complex Moments in Gabor Space and their Application to Unsupervised Texture Segmentation [J]. Pattern Analysis and Machine Intelligence,1994,16(1):80-87
    [153]L.Wang, G Healey. Using Zernike Moments for the Illumination and Geometry Invariant Classification of Multi-Spectral Texture[J]. Image Processing,1998,7:196-203
    [154]Ojala, T., Pietikainen, M.,Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. Pattern Anal. Machine Intell.2002,24(7): 971-987
    [155]Lucieer, A., Stein. Texture-based landform segmentation of LiDAR imagery[J]. International Journal of Applied Earth Observation and Geoinformation,2005,6:261-270
    [156]Lucieer, A., Fisher, P., Stein, A.. Texture-based Segmentation of High-Resolution Remotely Sensed Imagery for Identification of Fuzzy Objects[C]. Proceedings of the GeoComputation 2003, Southampton, UK(CDROM).
    [157]Lucieer, A. Uncertainties in Segmentation and their Visualisation[D]. Netherlands:Internatio-nal Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands (ITC),2004.
    [158]Tamura H, Mori S, Yamawaki T. Texture features corresponding to visual perception[J]. IEEE Trans On Systems, Man and Cybernetics,1978, Smc-8(6):460-473
    [159]Pietikainen, M., Ojala, T., Xu, Z.. Rotation-invariant texture classification using feature distributions[J]. attern Recognition,2000,33:43-52
    [160]Baatz M., Schape A. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation[J]. Angewandte Geographische Informations verarbeitung, 2000,12:12-23
    [161]J. C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters[J]. Journal of Cybernetics,1973,3:32-57
    [162]J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algoritms[C]. Plenum Press, 1981, New York.
    [163]公路交通突发时间应急预案[S].北京:中华人民共和国交通运输部发布,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700