用户名: 密码: 验证码:
时空二维时频峰值滤波方法压制地震勘探随机噪声的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震勘探是油气、矿藏资源开发的一种重要的物探方法。它利用人工方法(用炸药或非炸药震源)激发地震波,根据岩石的弹性来研究地震波在地层中的传播规律以查明地下地质构造。在地震勘探时,由于人为、环境、仪器等各种因素的影响,会使采集到的地震资料中包含有大量的噪声。这些噪声与有关地下构造和岩性的信息之间互相交织在一起,对有用信息造成了不同程度上的干扰。因此,这些资料不宜被直接用来做地质解释,需要对其进行数字处理,从中提取出相关有用信息然后再进行一系列的后续处理。地震勘探中的“三高”(即高信噪比(high signal-to-noiseratio,SNR)、高分辨率(high resolution)和高保真度(high fidelity))及“一准”(准确成像)资料处理手段对于有用信息的获取具有重要作用。地震信号降噪是地震资料数字处理的关键步骤之一。有效地压制地震勘探资料中的噪声,提高地震资料的信噪比、分辨率和保真度对于地质构造的解释及油气、矿藏资源的开发具有重要的意义。
     本文主要研究地震信号降噪中的随机噪声压制,目前已有很多行之有效的方法用来消减地震勘探随机噪声,而时频域方法是近些年来被验证和广泛应用的一类方法。本文主要介绍了三种时频域滤波方法,它们是线调频小波(Chirplet)、经验模态分解(Empirical Mode Decomposition, EMD)和时频峰值滤波(Time-Frequency PeakFiltering, TFPF)方法。在众多的时频域方法中,TFPF方法表现得尤为突出。TFPF是一种非常有效的随机噪声消减方法,起初被应用于生物医学中新生儿脑电信号的增强中。近年来,该方法已经被吉林大学现代信号处理实验室深入研究并应用于地震勘探随机噪声的消减方面。
     本文针对传统的一维TFPF方法在滤波方面存在的不足进行改进,提出了三种改进方案。首先针对TFPF方法本身存在的一对矛盾:长窗长能更有效地压制随机噪声,但是对有效信号的幅值损失很大;反之,短窗长对有效信号的幅值保护很好,但在随机噪声压制方面表现得有些能力不足。也就是说窗长的选择对TFPF方法的限制较大,如果能在选择窗长方面具有灵活性,那么将会取得更好的滤波效果,从而我们需要在压制随机噪声和保护有效信号这两方面达到一个很好的权衡。本文采用EMD方法来辅助TFPF以取得在噪声压制和幅值保持方面的一个很好的权衡,具体方案为利用EMD方法的分解特性,即它能够将原始含噪信号按照频率从高到低分解成一系列本征模态函数(Intrinsic Mode Functions, IMFs),这些模态都是组成原始信号的各个分量,然后通过计算各个模态间的互相关程度大小来判断需要进行滤波的模态,进而选择不同窗长的TFPF进行处理,最后将滤波后的模态和剩余模态相加得到最终的滤波信号。此方法为TFPF的窗长选择提供了很大的灵活性,能够对原信号中不同的频率分量有针对性地选择窗长,即对于噪声主导的模态分量选择长窗长进行滤波,反之,对于信号主导的模态分量选择短窗长进行滤波,对于纯信号模态不进行滤波,这样不但能够有效地消减随机噪声而且能够很好地保护有效信号的幅值。通过对模拟地震信号和实际地震数据的处理实验,我们取得了较为理想的效果,从而验证了该方法的优势。
     接着本文将传统的一维TFPF方法发展为时空二维TFPF方法,这样对于更有效地压制地震勘探随机噪声,恢复有效同相轴以及减小滤波偏差方面具有很大的改善。我们所研究和处理的地震资料表现为时间和空间上的二维特性,那么选择符合其时空二维特性的滤波方法一定会取得较为理想的效果。本文所研究的时空二维TFPF方法是利用地震同相轴的横向相关性,借助Radon变换来实现时空域滤波。Radon变换是一种沿着预先定义好的路径,如直线、抛物线或者双曲线等路径将原始数据进行叠加的方法。鉴于Radon变换能将原始地震记录中的同相轴识别出来,表现为在Radon域中同相轴被聚焦为不同位置的能量子波,这样其实是对各同相轴的走向起到一个表征作用,也就是为TFPF处理提供方向性,即达到我们想要沿着有效同相轴方向进行TFPF处理的目的。这种做法打破了传统TFPF方法沿着地震道滤波的局限,为地震勘探随机噪声的压制提供了新的途径。我们通过对模拟地震信号和实际地震资料进行实验,验证了该方法的实用性和有效性并将其适用性进行了推广,提出了局部时空二维TFPF方法。
     本文最后介绍了局部时空二维TFPF方法的原理和应用。局部方法比全局方法适用性更广,对于处理同相轴情况较为复杂的地震资料更加有效。全局Radon变换对于具有规则几何形状同相轴的地震资料是非常适用的,但是对于含有不规则几何形状的同相轴或者是相交在一起的、其倾斜或弯曲程度差异很大的同相轴的地震资料,全局Radon变换已显得能力不足了,需要采用局部方法来跟踪同相轴的特征变化趋势。局部Radon变换其实是全局Radon变换加时空窗的形式。加窗后的Radon变换使得局部区域内的同相轴情况简单化,便于采用简单的叠加路径进行计算。我们先采用局部Radon变换对原始地震记录中的同相轴进行跟踪识别,然后在局部Radon域内进行TFPF处理。这种方法是对基于Radon变换的时空二维TFPF方法的进一步推广,增加了其在地震勘探随机噪声压制方面的普适性和灵活性,为处理较复杂的地震资料提供了新的途径。
Seismic prospecting is an important kind of geophysical method for oil, gas and mineralresources. It utilizes manual methods (using explosive or non-explosive hypocenters) tostimulate seismic waves and study the propagation law of seismic waves in strata toascertain the underground geological structure according to rock elasticity. In seismicprospecting, there are lots of noises in collected seismic data because of the influencescaused by the behaviors of people, environments, and instruments and so on. These noisesare interlaced with the related information of underground structure and lithology, andcause interference for the valid information to varying degrees. So this kind of seismicdata could not be used to do geological explanation directly. It must be conducted digitalprocessing and extracted related useful information, and then taken a series of subsequentprocessings. The data processing means of “three highs”(high signal-to-noise ratio (SNR),high resolution and high fidelity) and “one accuracy”(accurate imaging) are important forthe acquisition of valid information. The seismic noise reduction is one of the keyprocedures of seismic data processing. To suppress the seismic noise effectively andimprove the SNR, resolution and fidelity of seismic data are of great importance for theinterpretation of geological structure and exploitation of oil, gas and mineral resources.
     This article mainly studies the seismic random noise reduction. At present, there are somany effective methods to suppress the seismic random noise, and time-frequency domainalgorithms belong to the kind of method which has been verified and widely used. In thisarticle, we mainly introduce three algorithms of time-frequency domain, Chirplet,empirical mode decomposition (EMD) and time-frequency peak filtering (TFPF). Amongnumerous time-frequency domain methods, TFPF is especially prominent. TFPF is ahighly effective method in random noise reduction, and the conventional1-D TFPF wasapplied to the enhancement of newborn electroencephalogram signals originally and hasbeen applied in the seismic random noise reduction by the modern signal processinglaboratory of Jilin University.
     This article aims at the shortage in filtering aspect of the conventional1-D TFPF andtakes improvement measures by proposing three improved approaches. First, it aims at apair of contradiction in TFPF itself that is long window length can suppress random noise effectively but produces large attenuation for the amplitude of valid signal, on the contrary,short window length can preserve the amplitude of valid signal well but presents lack ofcapability in random noise reduction. That is to say, there is a large restriction to TFPF bythe selection of window length. If it can be flexible in the window length selection, it willget better filtering results and we need to obtain a good trade-off between the randomnoise reduction and the valid signal preservation. This article adopts EMD method toassist TFPF to obtain the good trade-off between noise suppression and amplitudepreservation. The concrete scheme is that it utilizes the decomposition characteristic ofEMD which can decompose a signal to a series of intrinsic mode functions (IMFs) fromhigh frequency to low frequency. These modes are components of the original signal, andwe judge and find out the modes need to be filtered by computing the correlation degree ofeach other, and then do TFPF for these modes by selecting different window length. Atlast, adding the filtered modes and the residual modes up to get the final filtering signal.This kind of method possesses great flexibility in the selection of window length for TFPF,that is to say, it could select window length for different frequency componentsdiscriminatingly: for the noise dominant components, it selects long window length tofilter, conversely, for the signal dominant components, it selects short window length tofilter, and for the pure signal mode, it doesn’t need to filter. By doing this, it not only cansuppress the random noise effectively, but also can preserve the amplitudes of validsignals. Through experiments on synthetic seismic signals and field seismic data, we haveobtained some comparatively ideal results thereby testified the superiority of this method.
     Next, this article develops the conventional1-D TFPF to be spatiotemporal2-D TFPF.Thus, it is a big improvement for suppressing seismic random noise, recovering reflectionevents and reducing filtering bias more effectively. The seismic data shows2-D features oftime and space, so we should adopt the filtering methods confirmed to the spatiotemporal2-D features of seismic data and this will bring very good results. In this article, the2-DTFPF method we studied utilizes the time-space correlation of seismic events andimplements spatiotemporal filtering by virtue of Radon transform. Radon transform is amethod which adds the original data up along predefined path, such as line, parabola orhyperbola et al. In view of Radon transform can identify the reflection events of theoriginal seismic records by presenting that these events are focused as energy waveletswith different locations in Radon domain, so it plays a role in representing the direction ofreflection events. Thus, it provides direction for TFPF processing and achieves thepurpose of filtering along the direction of valid reflection events. It breaks the limitation ofthe conventional TFPF which implements filtering along the channel direction and provides a new way for seismic random noise suppression. We demonstrate the validityand practicability of this method through experiments on synthetic seismic signals andfield seismic data, and extend the applicability to a wide range by proposing localspatiotemporal2-D TFPF method.
     At last, this article introduces the local spatiotemporal2-D TFPF method. Theapplicability of the local method is broader than the global method, so it is more effectivein processing the seismic data with relatively complicated situations of reflection events.The global Radon transform is very applicable to the seismic data with regular geometriesevents but incapable to the seismic data with irregular geometries events or interlacedevents with different slope or curvature parameter. At this time, we need to adopt localmethods to track the characteristic variation trend of the reflection events. The local Radontransform is the form of global Radon with spatiotemporal window actually. Thewindowed Radon transform could provide simplification for the situation of the seismicevents in local areas so that it is convenient to compute by adopting simple superpositionpaths. So, we adopt local Radon transform to identify the reflection events of the originalseismic record firstly, and then do TFPF in local Radon domain. This method is apopularizing way of the spatiotemporal TFPF and increases its universality and flexibilityin seismic random noise suppression. Therefore, it provides a new way for the processingof more complicated seismic data.
引文
[1]何樵登.地震勘探——原理和方法[M].北京:地质出版社,1980.
    [2]牟永光.地震勘探资料数字处理方法[M].北京:石油工业出版社,1981.
    [3]陆基孟.地震勘探原理[M].北京:石油工业出版社,1982.
    [4]杨宝俊.勘探地震学导论[上册][M].长春:吉林科学技术出版社,1990.
    [5]熊翥.地震数据数字处理应用技术[M].北京:石油工业出版社,1993.
    [6]李庆忠.走向精确勘探的道路——高分辨率地震勘探系统工程剖析[M].北京:石油工业出版社,1994.
    [7]渥·伊尔马滋著,黄绪德译.地震数据处理.石油工业出版社,1994.
    [8]董敏煜.地震勘探.石油大学出版社,2000.
    [9] D.C. Hagen. The application of principal components analysis to seismic data sets[J].Geoexploration,1982,20(1-2):93-111.
    [10]俞寿朋,蔡希玲,苏永昌.用地震信号多项式拟合提高叠加剖面信噪比[J].石油地球物理勘探,1988,23(2):131-139.
    [11]田小平,丁玉美.利用多项式拟合模板法消除地震数据中的低频随机干扰[J].地球物理学报,1996,39(sup):1245-1251.
    [12] Liu G. C., Chen X. H., Li J. Y., et al. Seismic noise attenuation using nonstationarypolynomial fitting[J]. Applied Geophysics,2011,8(1):18-26.
    [13] J. B. Bednar. Applications of median filtering to deconvolution, pulse estimation,and statistical editing of seismic data[J]. Geophysics,1983,48(12):1598-1610.
    [14] Y. Liu, C. Liu and D. Wang. A1D time-varying median filter for seismic random,spike-like noise elimination[J]. Geophysics,2009,74(1): V17-V24.
    [15] L. L. Canales. Random noise reduction.54th Annu. Int. Meeting, SEG, ExpandedAbstracts, Dec.2-6,1984, pp:525-7.
    [16] B. Ursin, Y. Zheng. Identification of seismic reflections using singular valuedecomposition[J]. Geophys. Prospect.,1985,33(6):773-799.
    [17] W. Lu. Adaptive noise attenuation of seismic images based on singular valuedecomposition and texture direction detection[J]. Journal of Geophysics andEngineering,2006,3(1):28-34.
    [18] M. Bekara and M. van der Baan. Local singular value decomposition for signalenhancement of seismic data[J]. Geophysics,2007,72(2): V59-V65.
    [19] I. F. Jones and S. Levy. Signal-to-noise ratio enhancement in multichannel seismicdata via the Karhunen-Loéve transform[J]. Geophys. Prospect.,1987,35(1):12-32.
    [20] K.M. Al-Yahya. Application of the partial Karhunen-Loève transform to suppressrandom noise in seismic sections[J]. Geophys. Prospect.,1991,39(1):77-93.
    [21]彭才,朱仕军,孙建库等.基于独立成分分析的地震数据去噪[J].勘探地球物理进展,2007,30(1):30-32.
    [22]杨威.基于独立分量分析的地震信号随机噪声盲分离方法应用研究[D].成都:成都理工大学,2009
    [23]张银雪,田学民.基于改进PSO-ICA的地震信号去噪方法[J].石油地球物理勘探,2012,47(1):56-62.
    [24] Tian Yanan, Li Yue, Wang Bo, et al. A novel convolutive ICA for seismic datadenoising. Lecture Notes in Electrical Engineering,2012,5:95-101.
    [25] M. K. Chase. Random noise reduction by FXY prediction filtering[J]. Explor.Geophys.,1992,23(2):51-56.
    [26] R. Abma and J. Claerbout. Lateral prediction for noise attenuation by t-x and f-xtechniques[J]. Geophysics,1995,60(6):1887-1896.
    [27] M. D. Sacchi and H. Kuehl. ARMA formulation of FX prediction error filters andprojection filters[J]. Journal of Seismic Exploration,2001,9:185-197.
    [28] R. Soubaras. Signal-preserving random noise attenuation by the f-x projection.64thAnnu. Int. Meeting, SEG, Expanded Abstracts, Oct.23-28,1994, pp:1576-1579.
    [29] A. K. Ozdemir, A. Ozbek, R. Ferber and K. Zerouk. F-xy projection filtering usinghelical transformation.69th Annu. Int. Meeting, SEG, Expanded Abstracts, Oct.31-Nov.5,1999, pp:1231-1234.
    [30] R. Abma and J. Claerbout. Lateral prediction for noise attenuation by t-x and f-xtechniques[J]. Geophysics,1995,60(6):1887-1896.
    [31] J. W. Ioup and G. E. Ioup. Noise removal and compression using a wavelet transform.68th Annu. Int. Meeting, SEG, Expanded Abstracts, Sep.13-18,1998, pp:1076-1079.
    [32] A. Droujinine. Theory and seismic applications of the eigenimage discrete wavelettransform[J]. Geophys. Prospect.,2006,54(4):441-461.
    [33] J. Ma, G. Plonka, and H. Chauris. A new sparse representation of seismic data usingadaptive easy-path wavelet transform[J]. IEEE Geosci. Remote Sens. Lett.,2010,7(3):540-544.
    [34]郑桂娟,王润秋.数学形态学在地震资料处理中的应用探索[J].勘探地球物理进展,2003,26(4):277-281.
    [35]王润秋,郑桂娟,付洪洲,李青.地震资料处理中的形态滤波去噪方法[J].石油地球物理勘探,2005,40(3):277-282.
    [36]段中钰,王润秋.多尺度形态学在地震资料处理中的应用研究[J].勘探地球物理进展,2010,33(2):135-140.
    [37] J. P. Ristau and W. M. Moon. Adaptive filtering of random noise in2-D geophysicaldata[J]. Geophysics,2001,66(1):342-349.
    [38] Y. Jeng, Y.-W. Li, C.-S. Chen, H.-Y. Chien. Adaptive filtering of random noise innear-surface seismic and ground-penetrating radar data[J]. J. Appl. Geophys.,2009,68(1):36-46.
    [39] E. Baziw. Real-time seismic signal enhancement utilizing a hybridRao-Blackwellized particle filter and hidden Markov model filter[J]. IEEE Geosci.Remote Sens. Lett.,2005,2(4):418-422.
    [40] H. Karsli, D. Dondurur and G. if i. Application of complex-trace analysis toseismic data for random-noise suppression and temporal resolution improvement[J].Geophysics,2006,71(3): V79-V86.
    [41] N. M. AlBinHassan, Y. Luo and M. N. Al-Faraj.3D edge-preserving smoothing andapplications[J]. Geophysics,2006,71(4):5-11.
    [42] A. Y. Anagaw and M. D. Sacchi. Edge-preserving seismic imaging using the totalvariation method[J]. J. Geophys. Eng.,2012,9(2):138-146.
    [43] S. Trickett. F-xy Cadzow noise suppression,”78th Annu. Int. Meeting, SEG,Expanded Abstracts, Nov.9-14,2008, pp:2586-2590.
    [44] S. Yuan and S. Wang. A local f-x Cadzow method for noise reduction of seismic dataobtained in complex formations[J]. Pet. Sci.,2011,8(3):269-277.
    [45] T. Elboth, F. Geoteam, H. H. Qaisrani and T. Hertweck. De-noising seismic data inthe time-frequency domain. SEG Annual Meeting, Nov.9-14,2008.
    [46] T. Elboth, I. V. Presterud and D. Hermansen. Time-frequency seismic datade-noising[J]. Geophys. Prospect.,2010,58(3):441-453.
    [47] H.-P. Cai, Z.-H. He and D.-J. Huang. Seismic data denoising based on mixedtime-frequency methods[J]. Appl. Geophys.,2011,8(4):319-327.
    [48] L. Han, D. Bonar and M. Sacchi. Seismic denoising by time-frequencyreassignment[J]. CSEG Annual Meeting Abstract,2012.
    [49] M. Bekara and M. van der Baan. Random and coherent noise attenuation byempirical mode decomposition[J]. Geophysics,2009,74(5): V89-V98.
    [50] D.-L. Wang, Z.-F. Tong, C. Tang and H. Zhu. An iterative curvelet thresholdingalgorithm for seismic random noise attenuation[J]. Appl. Geophys.,2010,7(4):315-324.
    [51] G. Tang and J. Ma. Application of total-variation-based curvelet shrinkage forthree-dimensional seismic data denoising[J]. IEEE Geosci. Remote Sens. Lett.,2011,8(1):103-107.
    [52] J. Ferahtia, K. Baddari, N. Djarfour and A. K. Kassouri. Incorporation of anon-linear image filtering technique for noise reduction in seismic data[J]. Pure Appl.Geophys.,2010,167(11):1389-1404.
    [53] Y. Liu, S. Fomel and G. Liu. Nonlinear structure-enhancing filtering usingplane-wave prediction[J]. Geophys. Prospect.,2010,58(3):415-427.
    [54] K. Baddari, J. Ferahtia, T. A fa, and N. Djarfour. Seismic noise attenuation by meansof an anisotropic non-linear diffusion filter[J]. Comput. Geosci.,2011,37(4):456-463.
    [55] S. Yuan, S. Wang and G. Li. Random noise reduction using Bayesian inversion[J]. J.Geophys. Eng.,2012,9(1):60-68.
    [56] D. Bonar and M. Sacchi. Denoising seismic data using the nonlocal meansalgorithm[J]. Geophysics,2012,77(1): A5-A8.
    [57]吴正国,夏立,尹为民.现代信号处理技术[M].武汉:武汉大学出版社,2002.
    [58](美)多布著,李建平,杨万年译.小波十讲[M].北京:国防工业出版社,2004.
    [59]刘明才.小波分析及其应用[M].北京:清华大学出版社,2005.
    [60]葛哲学,陈仲生. Matlab时频分析技术及其应用[M].北京:人民邮电出版社,2006.
    [61]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [62]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002.
    [63]邹红星.参数化时频信号表示研究[D].北京:清华大学自动化系,2002.
    [64]王根原,保铮.一种基于自适应Chirplet分解的逆合成孔径雷达成像方法[J].电子学报,1999,27(3):29-31.
    [65]邹红,保铮.一种有效的基于Chirplet自适应信号分解算法[J].电子学报,2001,29(4):515-517.
    [66] Leopoldo Angrisani and Mauro D’Arco. A Measurement Method Based on aModified Version of the Chirplet Transform for Instantaneous FrequencyEstimation[J]. IEEE Transactions on Instrumentation and Measurement,2002,51(4):704-711.
    [67]裴承鸣,舒畅,宋叔飚等.自适应Chirplet信号展开及其在颤振信号处理中的应用[J].西北工业大学学报,2004,22(5):591-595.
    [68]尉宇,孙德宝,岑翼刚.高斯线调频小波变换及参数优化[J].电子与信息学报,2005,27(9):1398-1403.
    [69]王勇,姜义成.基于自适应Chirplet分解的舰船目标ISAR成像[J].电子与信息学报,2006,28(6):982-984.
    [70]王勇,姜义成.一种新的信号分解算法及其在机动目标ISAR成像中的应用[J].电子学报,2007,35(3):445-449.
    [71] Zeng Zhaofa, Wu Fengshou, Huang Ling, et al. The adaptive chirplet transform andits application in GPR target detection[J]. Applied Geophysics,2009,6(2):192-200.
    [72]方纯.时频原子分解快速算法及其在雷达信号分析中的应用[D].成都:西南交通大学,2009.
    [73]邱剑锋. Chirplet变换应用与推广[D].合肥:安徽大学,2006.
    [74]邹红星,戴琼海,李衍达. FMmlet变换的子空间[J].中国科学(E辑),2001,31(5):463-469.
    [75] Bultan A, Akansu A N. Frames in rotated time-frequency planes. Proceedings ofIEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), March15-19,1999. AZ: Phoenix,1353-1356.
    [76] Hamar D, Tarcsai G, Lichtenberger J, et al. Fine Structure of Whistlers Using DigitalMatched Filtering[J]. Ann Geophys,1982,119-128.
    [77] Boushash B, Whitehouse H J. Seismic applications of the Wigner-Ville distributin.Proc. IEEE Int. Conf. Circuits Syst.,1986,34-37.
    [78] Krishnamachari S, Williams W J. Adaptive kernel design in the generalizedmarginals domain for time-frequency analysis. Proc. IEEE ICASSP’94.1994.Australia: Adelaide,341-344.
    [79] Jones D L, Baraniuk R G. An adaptive optimal-kernel time-frequencyrepresentation[J]. IEEE Trans. Signal Processing,1995,43(10):2361-2371.
    [80] Wanchun Fan, Hongxing Zou, Yu Sun, et al. Decomposition of Seismic Signal viaChirplet Transform.6thInternational Conference on Signal Processing,2002.1778-1782.
    [81]戴琼海,邹红星,李衍达. FMmlet变换在信号分离中的应用[J].电子与信息学报,2002,24(2):198-203.
    [82]范延芳,许朝阳,范万春,孙煜.基于FMmlet变换塔形分解的地震信号滤波[J].核电子学与探测技术,2004,24(5):526-529.
    [83] Rémi Gribonval. Fast Matching Pursuit with a Multiscale Dictionary of GaussianChirps[J]. IEEE Transactions on Signal Processing,2001,49(5):994-1001.
    [84] Scott Shaobing Chen, David L. Donoho, Michael A. Saunders. AtomicDecompositon by Basis Pursuit[J]. SIAM REVIEW,2001,43(1):129-159.
    [85] Qinye Yin, Shie Qian, and Aigang Feng. A Fast Refinement for Adaptive GaussianChirplet Decomposition[J]. IEEE Transactions on Signal Processing,2002,50(6):1298-1306.
    [86] Ghofrani S., McLernon D.C., Ayatollahi A.. Comparing Gaussian and chirpletdictinaries for time-frequency anslysis using matching pursuit decomposition[J].Proceedings of the3rdIEEE International Symposium on Signal Processing andInformation Technology(ISSPIT),2003,713-716.
    [87]赵玉娟,水鹏朗,张凌霜.基于子空间匹配追踪的信号稀疏逼近[J].信号处理,2006,22(4):501-505.
    [88]赵天资,宋炜,王尚旭.基于匹配追踪算法的时频滤波去噪方法[J].石油物探,2008,47(4):367-371.
    [89] S. Ghofrani, D.C. McLernon, A. Ayatollahi. Conditional spectral moments inmatching pursuit based on the chirplet elementary function[J]. Digital SignalProcessing,2008(18):694-708.
    [90] Norden E. Huang, Zheng Shen, Steven R.Long, et al. The empirical modedecomposition and the Hilbert spectrum for nonlinear and non-stationary time seriesanalysis, Laboratory for Hydrospheric Processes/Oceans and Ice Branch, NASAGoddard Space Flight Center, Greenbelt, MD20771, USA,1998.
    [91]盖强.局域波时频分析方法的理论研究与应用[D].大连:大连理工大学,2001.
    [92]钟佑明.希尔伯特—黄变换局瞬信号分析理论的研究[D].重庆:重庆大学,2002.
    [93] Norden E.Huang, Man-Li Wu, Wendong Qu, et al. Applications of Hilbert-Huangtransform to non-stationary financial time series analysis[J]. Applied SpochasticModels in Business and Industry,2003,245-268.
    [94] Norden E.Huang, Introduction to the Hilbert-Huang Transform and Its RelatedMathematical Problems. World Scientific Publishing Co. Pte. Ltd. USA,2005.
    [95]戴桂平.基于EMD的时频分析方法研究[D].秦皇岛:燕山大学,2005.
    [96] Kais Khaldi, Abdel-Ouahab Boudraa, Abdelkhalek Bouchikhi, et al. SpeechEnhancement via EMD. EURASIP Journal on Advances in Signal Processing,Vol.2008, Article ID873204.
    [97] Yannis Kopsinis and Stephen McLaughlin. Development of EMD-Based DenoisingMethods Inspired by Wavelet Thresholding[J]. IEEE Transactions on SignalProcessing,2009,57(4):1351-1362.
    [98]羊初发.基于EMD的时频分析与滤波研究[D].成都:电子科技大学,2009.
    [99] Qiang Wang, Qin Jiang. Simulation of Matched Field Processing Localization Basedon Empirical Mode Decomposition and Karhunen-Loève Expansion in UnderwaterWaveguide Environment. EURASIP Journal on Advances in Signal Processing,vol.2010, Article ID483524.
    [100] YiKun Zhang, XiaoChang Ma, DengXin Hua, et al. An EMD-based DenoisingMethod for Lidar Signal.20103rd International Congress on Image and SignalProcessing (CISP2010),4016-4019.
    [101]曲从善,路廷镇,谭营.一种改进型经验模态分解及其在信号消噪中的应用[J].自动化学报,2010,36(1):67-73.
    [102] YANG DeChang, REHTANZ C., LI Yong&TANG Wei. A novel method foranalyzing dominant oscillation mode based on improved EMD and signal energyalgorithm[J]. SCIENCE CHINA(Technological Sciences),2011,54(9):2493-2500.
    [103]武安绪,吴培稚,兰从欣等. Hilbert-Huang变换与地震信号的时频分析[J].中国地震,2005,21(2):207-215.
    [104]吴琛,周瑞忠. Hilbert-Huang变换在提取地震信号动力特性中的应用[J].地震工程与工程振动,2006,26(5):41-46.
    [105]李琳. HHT时频分析方法的研究与应用[D].长春:吉林大学,2006.
    [106] Bradley Matthew Battista, Camelia Knapp, Tom McGee et al. Application of theempirical mode decomposition and Hilbert-Huang transform to Seismic reflectiondata[J]. Geophysics,2007,72(2): H29-H37.
    [107]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [108]张淑艳.基于平移不变量的摩擦焊检测信号降噪方法[J].系统仿真学报,2005,17(11):2721-2723.
    [109]王玉英.地震勘探信号降噪处理技术研究[D].大庆:大庆石油学院,2006.
    [110] Sun Hailiang, Zi Yanyang, He Zhengjia, et al. Translation-invariant multivaveletdenoising using improved neibouring coefficients and its application on rollingbearing fault diagnosis[J].9thInternational Conference on Damage Assessment ofStructures(DAMAS), Jul.11-13,2011.
    [111]陈勇,贺明玲,刘焕淋.利用改进阈值的平移不变量小波处理FBG传感信号[J].光电子·激光,2013,24(2):246-252.
    [112]颜军.改进的维纳滤波在地震资料处理中的应用[D].长春:吉林大学,2007.
    [113]聂鹏飞,曾谦,马海涛等.消减地震勘探随机噪声:导数算子约束下的维纳滤波[J].吉林大学学报(地球科学版),2010,40(6):1471-1478.
    [114]聂鹏飞.地震勘探噪声压制方法研究与应用——正则化约束下的维纳滤波与方向导数迹变换[D].长春,吉林大学,2012.
    [115] M. Roessgen and B. Boashash. Time-frequency peak filtering applied to FSKsignals[J]. Proceedings of the IEEE-SP International Symposium onTime-Frequency and Time-Scale Analysis, Oct.1994.
    [116] B. Boashash and M. Mesbah. Signal enhancement by time-frequency peakfiltering[J]. IEEE Trans. Signal Process.,2004,52(4):929–937.
    [117]金雷,李月,杨宝俊.用时频峰值滤波方法消减地震勘探资料中随机噪声的初步研究[J].地球物理学进展,2005,20(3):724-728.
    [118]金雷.时频峰值滤波在地震勘探资料中随机噪声压制的研究[D].长春:吉林大学,2006.
    [119] H. B. Lin, Y. Li, and B. J. Yang. Recovery of seismic events by time-frequency peakfiltering. In Proc. IEEE Int. Conf. Image Process.,2007, vol.5, pp.2693–2696.
    [120]林红波.时频峰值滤波随机噪声消减技术及其在地震勘探中的应用[D].长春:吉林大学,2007.
    [121]吴宁.基于时频峰值滤波的勘探地震资料消噪方法的研究[D].长春:吉林大学,2007.
    [122]林红波,李月,叶文海等.时频峰值滤波去噪技术及其应用[J].地球物理学进展,2008,23(6):1953-1957.
    [123]李月,林红波,杨宝俊等.强随机噪声条件下时窗类型局部线性化对TFPF技术的影响[J].地球物理学报,2009,52(7):1899-1906.
    [124]李诗宽.基于自适应时频峰值滤波的地震信号去噪研究[D].长春:吉林大学,2009.
    [125] N. Wu, Y. Li, and B.J. Yang. Noise attenuation for2-D seismic data by radial-tracetime-frequency peak filtering[J]. IEEE Geosci. And Remote Sens. Letters,2011,8(5):874-878.
    [126] Y. P. Liu, Y. Li, P. F. Nie, and Q. Zeng. Spatiotemporal time-frequency peak filteringmethod for seismic random noise reduction[J]. IEEE Geosci. Remote Sens. Lett.,2013,10(4):756-760.
    [127] O.E. Naess, L. Bruland. Stacking methods other than simple summation[M]. In:Fitch, A.A.(Ed.), Developments in Geophysical Exploration Methods,6. ElsevierApplied Science Publishers, London, pp.189-223,1985.
    [128] Yanghua Wang. Antialiasing conditions in the delay-time Radon transform[J].Geophysical Prospecting,2002,50:665-672.
    [129] Yexin Liu and Mauricio D. Sacchi. De-multiple via a Fast Least Squares HyperbolicRadon Transform. SEG Int’l Exposition and72ndAnnual Meeting, October6-11,2002.
    [130] Luigia Nuzzo. Coherent noise attenuation in GPR data by linear and parabolicRadon Transform techniques[J]. Annals of Geophysics,2003,46(3):533-547.
    [131] Zhihong Cao. Analysis and application of the Radon transform[D]. Department ofGeology and Geophysics, Calgary, Alberta,2006.
    [132]曾有良. Radon变换波场分离技术研究[D].北京:中国石油大学,2007.
    [133] Yu Jeffrey Gu, Mauricio Sacchi. Radon Transform Methods and Their Applicatiojnsin Mapping Mantle Reflectivity Structure[J]. Surv Geophys,2009,30:327-354.
    [134]巩向博.金属矿地震高精度成像与数据处理方法研究[D].长春:吉林大学,2011.
    [135]王维红,崔宝文.双曲Radon变换法多次波衰减[J].新疆石油地质,2007,28(3):363-365.
    [136]孔祥琦.基于双曲Radon变换表面多次波衰减方法研究[D].黑龙江:东北石油大学,2012.
    [137] M. D. Sacchi and T. J. Ulrych. High-resolution velocity gathers and offset spacereconstruction[J]. Geophysics,1995,60(4):1169-1177.
    [138] Neil Hargreaves, Nick Cooper, Peter Whiting. High-Resolution Radon Demultiple.ASEG15thGeophysical Conference and Exhibition, August,2001, Brisbane.
    [139]刘喜武,刘洪,李幼铭.高分辨率Radon变换方法及其在地震信号处理中的应用[J].地球物理学进展,2004,19(1):8-15.
    [140]熊登,赵伟,张剑锋.混合域高分辨率抛物Radon变换及在衰减多次波中的应用[J].地球物理学报,2009,52(4):1068-1077.
    [141]刘保童,朱光明.一种频率域提高Radon变换分辨率的方法[J].西安科技大学学报,2006,26(1):112-116.
    [142]袁修贵,宋守根,侯木舟. Ridgelet变换在地震数据处理中的应用[J].物探化探计算技术,2003,25(2):140-144.
    [143] Zhang Henglei, Song Shuang, and Liu Tianyou. The ridgelet transform withnon-linear threshold for seismic noise attenuation in marine carbonates[J]. AppliedGeophysics,2007,4(4):271-275.
    [144]闫敬文,屈小波.超小波分析及应用[M].北京:国防工业出版社,2008.
    [145] M. D. Sacchi. Data Reconstruction by Generalized Deconvolution. SEG Int’lExposition and74thAnnual Meeting, Denver, Colorado, Oct.10-15,2004.
    [146] U. Theune, M. D. Sacchi, D. R. Schmitt. Least-squares local Radon transforms fordip-dependent GPR image decomposition[J]. J. Appl. Geophys.,2006,59(3):224-235.
    [147] M. D. Sacchi, S. Kaplan, and U. Theune. Local Wave Fields Operators, RadonTransform and Sparsity. Signal analysis and imaging group, department of physics,university of Alberta. EAGE, Workshop Proceedings,2007.
    [148] J. Wang, M. Ng, and M. Perz. Seismic data interpolation by greedy local Radontransform[J]. Geophysics,2010,75(6): WB225-WB234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700