用户名: 密码: 验证码:
淀粉样蛋白分子聚集的全原子分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质分子是组成生物体结构、行使生物学功能的主要生物大分子。通常情况下,蛋白质需要折叠到特定的三维立体结构才能正确行使其生物学功能,而错误的折叠则会导致功能的丧失,并可能引起疾病。例如,阿尔茨海默症、帕金森症、疯牛病等一系列神经退行性疾病就是由于相关蛋白质的错误折叠和病理性聚集所致。因此,理解蛋白质的错误折叠和病理性聚集的分子机制是抑制和治疗相关疾病的关键,是分子生物物理领域人们关注的焦点问题之一
     Amyloid-β (Aβ)是链长为37-43个残基的多肽。在阿尔茨海默症的致病过程中,Aβ由可溶性单体聚集为寡聚体,并进而聚集成淀粉样纤维沉淀物。在这种淀粉样纤维聚集体中,以β片为主要构象的Aβ通过链间氢键以及输水相互作用自组装成有序的聚集体。而这种寡聚体/淀粉样纤维聚集体会对神经元细胞产生毒性,从而引起脑损害,并引起疾病。Aβ的聚集过程受到一系列复杂物理化学因素的调控。本论文中,作者从原子层次的物理相互作用出发,通过大量的全原子分子模拟,探索了与阿尔茨海默症密切相关的Amyloid-β (Aβ)的聚集机制,并着重探讨了一些常规的物理化学因素、如结构模板、pH环境等对Aβ病理性聚集的可能调控机制。主要研究内容和结果包括:
     一、最近的实验研究表明,溶液中预先存在的Aβ聚集物会促进可溶性Aβ单体的进一步聚集,即所谓的模板效应。基于副本交换全原子分子模拟,我们研究了Aβ聚集过程模板效应的分子机制。计算结果表明,预先形成的Aβ聚集体结构模板对靠近的Aβ单体构象具有明显的调控作用。特别是Aβ聚集体结构模板能够显著地破坏Aβ单体的链内相互作用,从而使得Aβ单体更易于与模板发生相互作用。这一结果也表明,Aβ聚集体结构模板在聚集的初始阶段就开始对Aβ单体进行调控,降低聚集过程中的能量阻挫。另外,我们的计算发现,这种模板效应是通过非特异相互作用进行的,其中,疏水残基起到了更重要的作用。
     二、通过计算机模拟发现,不仅Aβ聚集体结构模板能够促进Aβ单体的聚集倾向性,工工-型糖尿病致病蛋白hIAPP聚集体结构模板也能够显著促进Ap单体的聚集倾向性。这和最近实验上发现的cross-seeding现象是自洽的。特别是,我们的计算结果表明,这种模板效应对模板二级结构的敏感性远强于对模板序列的敏感性。另外,我们发现Aβ单体与Aβ聚集体结构模板两端的相互作用几率存在非对称性,并且这种非对称性是由于模板中β片的扭曲而导致的结构非对称性所引起。这种相互作用的非对称性预示着Aβ的聚集生长过程可能存在方向性,这和最近的实验结果是符合的。
     三、目前,人们已经了解到Aβ的聚集过程和聚集体形貌受到pH、金属离子等因素的调控。固相核磁实验数据表明,Aβ42的1-16号残基在纤维聚集体中是处于无规柔性结构的。但是,Aβ1-16片段富含带电残基和组氨酸,因此是金属离子的主要结合位点以及pH的主要调控位点。本论文中,我们模拟了不同组氨酸质子化状态下Aβ的单体构象分布,进而理解pH等对Aβ聚集倾向性的调控。结果显示Aβ1-16片段会影响Aβ17-42片段的构象,并调控Aβ的聚集倾向性。这种作用是通过影响链内非特异相互作用和盐桥来实现的。该结果有助于理解pH等静电环境对Aβ聚集的调控机制。
The misfolding of protein or peptide will lead to amyloid aggregation. The amyloid fibril consists of cross-β conformer and is related to a series of diseases. Aβ is a short peptide with37-43residues. Its accumulation in the brain is the key pathological feature of the Alzheimer's disease. The aggregation process of Aβ is very complicated and modulated by many factors. This thesis reports our studies on the mechanism of some relevant effects.
     The Aβ is unstructured in aqueous solvent but rich of β-strands in aggregation conformation. Therefore, the monomeric Aβ undergoes a conformational transformation during the formation of fibrillar. The preformed aggregation-prone conformation can evidently speed up the elongation of the fibrils as if it could be provided as templates of β-strand structure. Using atomistic molecular simulations, we studied the template effects of the preformed structure. The analysis of secondary structure propensity implies that the template with the cross-β structure could induce the formation of β-strand conformations for the monomeric Aβ while the helix template has no such effect. When the template is changed into hIAPP or polyalanine, the enhancement could still be observed. This result shows that this effect strongly depends on the secondary structure of the template peptides but is insensitive to the sequence details. Further analysis shows that the template tends to disrupt the intrapeptide interactions of the monomeric Aβ and reduces the energy frustration, therefore promoting the fibrillar aggregation.. These results uggest that the hydrophobic interactions play a crucial role, providing a better understanding on the molecular mechanism of the docking stage of aggregation.
     The conformational distribution of the Aβ monomer and aggregation process could be affected by many physical and chemical factors, such as pH environment and metal ions. N-terminal segment, which includes residues1-16, is disordered in the fibrillar aggregates. Previous simulation works usually overlooked the effect of N-terminal disordered parts on the aggregation and removed it directly in the simulations. Noticeably there are three histidines in the N-terminal disordered region. These histidines are sensitive to pH and metal ions. We perform replica exchange molecular dynamics simulation with different charge states of histidines. Our simulation results demonstrated that the N-terminal disordered part can affect the conformational distributions of the residues17-42. The non-specific contacts and salt bridge could be modulated by the charge states of the histidines. These results are important in understanding the mechanism of the pH value and metal ion regulated A (3fibrillar aggregation.
引文
[1]Selkoe DJ:Folding proteins in fatal ways. Nature 2003,426:900-904.
    [2]Chiti F, Dobson CM:Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry 2006,75:333-366.
    [3]Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Doeli H, Schubert D, Riek R:3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proceedings of the National Academy of Sciences of the United States of America 2005, 102:17342-17347.
    [4]Tycko R:Solid-State NMR Studies of Amyloid Fibril Structure. Annual Review of Physical Chemistry, Vol 62 2011,62:279-299.
    [5]Benzinger TLS, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC:Propagating structure of Alzheimer's beta-amyloid((10-35)) is parallel beta-sheet with residues in exact register. Proceedings of the National Academy of Sciences of the United States of America 1998, 95:13407-13412.
    [6]Rauk A:The chemistry of Alzheimer's disease. Chemical Society Reviews 2009,38:2698-2715.
    [7]Masters CL, Simms G, Weinman NA, Multhaup G, Mcdonald BL, Beyreuther K: Amyloid Plaque Core Protein in Alzheimer-Disease and down Syndrome. Proceedings of the National Academy of Sciences of the United States of America 1985,82:4245-4249.
    [8]Selkoe DJ:Alzheimer's disease:Genes, proteins, and therapy. Physiological Reviews 2001,81:741-766.
    [9]Breathnach SM:Amyloid and Amyloidosis. Journal of the American Academy of Dermatology 1988,18:1-16.
    [10]Kisilevsky R, Fraser PE:A beta amyloidogenesis:Unique, or variation on a systemic theme? Critical Reviews in Biochemistry and Molecular Biology 1997, 32:361-404.
    [11]Rochet JC, Lansbury PT:Amyloid fibrillogenesis:themes and variations. Current Opinion in Structural Biology 2000,10:60-68.
    [12]Karplus M:Molecular dynamics of biological macromolecules:A brief history and perspective. Biopolymers 2003,68:350-358.
    [13]Gruebele M:Protein folding Introduction. Methods 2010,52:1-2.
    [14]Dobson CM:Protein folding and misfolding. Nature 2003,426:884-890.
    [15]Soto C:Protein misfolding and disease; protein refolding and therapy. Febs Letters 2001,498:204-207.
    [16]Harrison RS, Sharpe PC, Singh Y, Fairlie DP:Amyloid peptides and proteins in review. Reviews of Physiology, Biochemistry and Pharmacology, Vol 159 2007,159:1-77.
    [17]Teplow DB:Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid-Journal of Protein Folding Disorders 1998,5:121-142.
    [18]Sunde M, Blake C:The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Advances in Protein Chemistry, Vol 50 1997, 50:123-159.
    [19]Makin OS, Serpell LC:Structures for amyloid fibrils. Febs Journal 2005, 272:5950-5961.
    [20]Gething MJ, Sambrook J:PROTEIN FOLDING IN THE CELL. Nature 1992, 355:33-45.
    [21]Jones DT:Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology 1999,292:195-202.
    [22]Nicholls A, Sharp KA, Honig B:PROTEIN FOLDING AND ASSOCIATION-INSIGHTS FROM THE INTERFACIAL AND THERMODYNAMIC PROPERTIES OF HYDROCARBONS. Proteins-Structure Function and Genetics 1991,11:281-296.
    [23]Wetzel R:Ideas of order for amyloid fibril structure. Structure 2002, 10:1031-1036.
    [24]Galzitskaya OV, Garbuzynskiy SO, Lobanov MY:Prediction of Amyloidogenic and Disordered Regions in Protein Chains. PLoS Comput Biol 2006,2:e 177.
    [25]Bemporad F, Calloni G, Campioni S, Plakoutsi G, Taddei N, Chiti F:Sequence and structural determinants of amyloid fibril formation. Accounts of Chemical Research 2006,39:620-627.
    [26]Pawar AP, DuBay KF, Zurdo J, Chiti F, Vendruscolo M, Dobson CM: Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases. Journal of Molecular Biology 2005,350:379-392.
    [27]de Groot NS, Pallares I, Aviles FX, Vendrell J, Ventura S:Prediction of "hot spots" of aggregation in disease-linked polypeptides. Bmc Structural Biology 2005,5.
    [28]Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L:Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 2004,22:1302-1306.
    [29]de la Paz ML, Serrano L:Sequence determinants of amyloid fibril formation. Proceedings of the National Academy of Sciences of the United States of America 2004,101:87-92.
    [30]Tartaglia GG, Pawar AP, Campioni S, Dobson CM, Chiti F, Vendruscolo M: Prediction of aggregation-prone regions in structured proteins. Journal of Molecular Biology 2008,380:425-436.
    [31]Rousseau F, Schymkowitz J, Serrano L:Protein aggregation and amyloidosis: confusion of the kinds? Current Opinion in Structural Biology 2006, 16:118-126.
    [32]Reumers J, Maurer-Stroh S, Schymkowitz J, Rousseau F:Protein Sequences Encode Safeguards Against Aggregation. Human Mutation 2009,30:431-437.
    [33]Uversky VN:Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads:which way to go? Cellular and Molecular Life Sciences 2003,60:1852-1871.
    [34]Zerovnik E:Amyloid-fibril formation-Proposed mechanisms and relevance to conformational disease. European Journal of Biochemistry 2002, 269:3362-3371.
    [35]Naiki H, Gejyo F:Kinetic analysis of amyloid fibril formation. Amyloid, Prions, and Other Protein Aggregates 1999,309:305-318.
    [36]Stefani M:Protein misfolding and aggregation:new examples in medicine and biology of the dark side of the protein world. Biochimica Et Biophysica Acta-Molecular Basis of Disease 2004,1739:5-25.
    [37]Westermark P:Aspects on human amyloid forms and their fibril polypeptides. Febs Journal 2005,272:5942-5949.
    [38]Frieden C:Protein aggregation processes:In search of the mechanism. Protein Science 2007,16:2334-2344.
    [39]Engel MFM:Membrane permeabilization by Islet Amyloid Polypeptide. Chemistry and Physics ofLipids 2009,160:1-10.
    [40]Engel MFM, Khemtemourian L, Kleijer CC, Meeldijk HJD, Jacobs J, Verkleij AJ, de Kruijff B, Killian JA, Hoppener JWM:Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proceedings of the National Academy of Sciences of the United States of America 2008,105:6033-6038.
    [41]Verdier Y, Zarandi M, Penke B:Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane:Binding sites and implications for Alzheimer's disease. Journal of Peptide Science 2004,10:229-248.
    [42]Sakono M, Zako T:Amyloid oligomers:formation and toxicity of A beta oligomers. Febs Journal 2010,277:1348-1358.
    [43]Ono K, Yamada M:Low-n oligomers as therapeutic targets of Alzheimer's disease. Journal of Neurochemistry 2011,117:19-28.
    [44]Haass C, Selkoe DJ:Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid beta-peptide. Nature Reviews Molecular Cell Biology 2007,8:101-112.
    [45]Walsh DM, Selkoe DJ:A beta Oligomers-a decade of discovery. Journal of Neurochemistry 2007,101:1172-1184.
    [46]Blennow K, de Leon MJ, Zetterberg H:Alzheimer's disease. Lancet 2006, 368:387-403.
    [47]Robert K, William L, Elena Y:中华精神科杂志 1998,31:195.
    [48]Cummings JL:Drug therapy in Alzheimer's disease-Reply. New England Journal of Medicine 2004,351:1912-1913.
    [49]Cummings JL:Drug therapy-Alzheimer's disease. New England Journal of Medicine 2004,351:56-67.
    [50]Cohen FE, Kelly JW:Therapeutic approaches to protein-misfolding diseases. Nature 2003,426:905-909.
    [51]Lustig C, Snyder AZ, Bhakta M, O'Brien KC, McAvoy M, Raichle ME, Morris JC, Buckner RL:Functional deactivations:Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America 2003,100:14504-14509.
    [52]Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I, Winblad B, Helkala EL, Tuomilehto J, Soininen H, Nissinen A:Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Archives of Neurology 2005,62:1556-1560.
    [53]Goedert M, Spillantini MG:A century of Alzheimer's disease. Science 2006, 314:777-781.
    [54]LaFerla FM, Green KN, Oddo S:Intracellular amyloid-beta in Alzheimer's disease. Nature Reviews Neuroscience 2007',8:499-509.
    [55]Mattson MP:Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiological Reviews 1997, 77:1081-1132.
    [56]Canevari L, Abramov AY, Duchen MR:Toxicity of amyloid beta peptide: Tales of calcium, mitochondria, and oxidative stress. Neurochemical Research 2004,29:637-650.
    [57]Roychaudhuri R, Yang M, Hoshi MM, Teplow DB:Amyloid beta-Protein Assembly and Alzheimer Disease. Journal of Biological Chemistry 2009, 284:4749-4753.
    [58]Lazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB:On the nucleation of amyloid beta-protein monomer folding. Protein Science 2005, 14:1581-1596.
    [59]Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM:Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proceedings of the National Academy of Sciences of the United States of America 2002,99:16419-16426.
    [60]Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM:Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 2003, 424:805-808.
    [61]Baumketner A, Krone MG, Shea JE:Role of the familial Dutch mutation E22Q in the folding and aggregation of the 15-28 fragment of the Alzheimer amyloid-beta protein. Proceedings of the National Academy of Sciences of the United States of America 2008,105:6027-6032.
    [62]Stellato F, Menestrina G, Dalla Serra M, Potrich C, Tomazzolli R, Meyer-Klaucke W, Morante S:Metal binding in amyloid beta-peptides shows intra-and inter-peptide coordination modes. European Biophysics Journal with Biophysics Letters 2006,35:340-351.
    [63]Drago D, Bolognin S, Zatta P:Role of Metal Ions in the A beta Oligomerization in Alzheimer's Disease and in Other Neurological Disorders. Current Alzheimer Research 2008,5:500-507.
    [64]Miller Y, Ma BY, Nussinov R:Zinc ions promote Alzheimer A beta aggregation via population shift of polymorphic states. Proceedings of the National Academy of Sciences of the United States of America 2010, 107:9490-9495.
    [65]Tougu V, Tiiman A, Palumaa P:Interactions of Zn(II) and Cu(II) ions with Alzheimer's amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 2011,3:250-261.
    [66]Ma K, Clancy EL, Zhang YB, Ray DG, Wollenberg K, Zagorski MG: Residue-specific pK(a) measurements of the beta-peptide and mechanism of pH-induced amyloid formation. Journal of the American Chemical Society 1999,121:8698-8706.
    [67]Yashiro H, White RC, Yurkovskaya AV, Forbes MDE:Methionine radical cation:Structural studies as a function of pH using X-and Q-band time-resolved electron paramagnetic resonance spectroscopy. Journal of Physical Chemistry A 2005,109:5855-5864.
    [68]Peralvarez-Marin A, Barth A, Graslund A:Time-resolved infrared spectroscopy of pH-induced aggregation of the Alzheimer A beta(1-28) peptide. Journal of Molecular Biology 2008,379:589-596.
    [69]Irie K, Murakami K, Masuda Y, Morimoto A, Ohigashi H, Hara H, Ohashi R, Takegoshi K, Fukuda H, Naga M, et al:The toxic conformation of the 42-residue amyloid beta peptide and its relevance to oxidative stress in Alzheimer's disease. Mini-Reviews in Medicinal Chemistry 2007,7:1001-1008.
    [70]Sultana R, Perluigi M, Butterfield DA:Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD:role of Abeta in pathogenesis. Acta Neuropathologica 2009, 118:131-150.
    [71]Butterfield DA, Galvan V, Lange MB, Tang HD, Sowell RA, Spilman P, Fombonne J, Gorostiza O, Zhang JL, Sultana R, Bredesen DE:In vivo oxidative stress in brain of Alzheimer disease transgenic mice:Requirement for methionine 35 in amyloid beta-peptide of APP. Free Radical Biology and Medicine 2010,48:136-144.
    [72]Kahn SE, Andrikopoulos S, Verchere CB:Islet amyloid:A long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 1999, 48:241-253.
    [73]Jaikaran E, Clark A:Islet amyloid and type 2 diabetes:from molecular misfolding to islet pathophysiology. Biochimica Et Biophysica Acta-Molecular Basis of Disease 2001,1537:179-203.
    [74]Dekoning EJP, Morris ER, Hofhuis FMA, Posthuma G, Hoppener JWM, Morris JF, Capel PJA, Clark A, Verbeek JS:Intracellular and Extracellular Amyloid Fibrils Are Formed in Cultured Pancreatic-Islets of Transgenic Mice Expressing Human Islet Amyloid Polypeptide. Proceedings of the National Academy of Sciences of the United States of America 1994,91:8467-8471.
    [75]Yangfeng WU, Gaoqiang XIE, Ying LI, Liancheng Z, Beifan Z:The current status on the prevalence, awareness, treatment and control of diabetes mellitus in several Chinese subpopulations. Chinese Journal of Epidemiology 2005,26:564-568.
    [76]Hoppener JWM, Lips CJM:Role of islet amyloid in type 2 diabetes mellitus. International Journal of Biochemistry & Cell Biology 2006,38:726-736.
    [77]Luca S, Yau WM, Leapman R, Tycko R:Peptide conformation and supramolecular organization in amylin fibrils:Constraints from solid-state NMR. Biochemistry 2007,46:13505-13522.
    [78]Sciacca MFM, Pappalardo M, Attanasio F, Milardi D, La Rosa C, Grasso DM: Are fibril growth and membrane damage linked processes? An experimental and computational study of IAPP(12-18) and IAPP(21-27) peptides. New Journal of Chemistry 2010,34:200-207.
    [79]Selkoe DJ:The origins of Alzheimer disease-A is for amyloid. Jama-Journal of the American Medical Association 2000,283:1615-1617.
    [80]Hardy J, Selkoe DJ:Medicine-The amyloid hypothesis of Alzheimer's disease:Progress and problems on the road to therapeutics. Science 2002, 297:353-356.
    [81]Fandrich M, Fletcher MA, Dobson CM:Amyloid fibrils from muscle myoglobin. Nature 2001,410:165-166.
    [82]Fandrich M, Dobson CM:The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. Embo Journal 2002, 21:5682-5690.
    [83]Petkova AT, Yau W-M, Tycko R:Experimental Constraints on Quaternary Structure in Alzheimer's β-Amyloid Fibrils?. Biochemistry 2005,45:498-512.
    [84]Nelson R, Eisenberg D:Recent atomic models of amyloid fibril structure. Current Opinion in Structural Biology 2006,16:260-265.
    [85]Tycko R:Molecular structure of amyloid fibrils:insights from solid-state NMR. Quarterly Reviews of Biophysics 2006,39:1-55.
    [86]Nelson R, Eisenberg D:Structural models of amyloid-like fibrils. Fibrous Proteins:Amyloids, Prions and Beta Proteins 2006,73:235-
    [87]Fandrich M:On the structural definition of amyloid fibrils and other polypeptide aggregates. Cellular and Molecular Life Sciences 2007, 64:2066-2078.
    [88]Morris AM, Watzky MA, Finke RG:Protein aggregation kinetics, mechanism, and curve-fitting:A review of the literature. Biochimica Et Biophysica Acta-Proteins and Proteomics 2009,1794:375-397.
    [89]Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM:An Analytical Solution to the Kinetics of Breakable Filament Assembly. Science 2009,326:1533-1537.
    [90]Bush AI, Pettingell WH, Multhaup G, Paradis MD, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE:RAPID INDUCTION OF ALZHEIMER A-BETA AMYLOID FORMATION BY ZINC. Science 1994, 265:1464-1467.
    [91]Masad A, Hayes L, Tabner BJ, Turnbull S, Cooper LJ, Fullwood NJ, German MJ, Kametani F, E1-Agnaf OMA, Allsop D:Copper-mediated formation of hydrogen peroxide from the amylin peptide:A novel mechanism for degeneration of islet cells in type-2 diabetes mellitus? Febs Letters 2007, 581:3489-3493.
    [92]Brender JR, Hartman K, Nanga RPR, Popovych N, Bea RD, Vivekanandan S, Marsh ENG, Ramamoorthy A:Role of Zinc in Human Islet Amyloid Polypeptide Aggregation. Journal of the American Chemical Society 2010, 132:8973-8983.
    [93]Croke RL, Patil SM, Quevreaux J, Kendall DA, Alexandrescu AT:NMR determination of pK(a) values in alpha-synuclein. Protein Science 2011, 20:256-269.
    [94]Hou LM, Shao HY, Zhang YB, Li H, Menon NK, Neuhaus EB, Brewer JM, Byeon IJL, Ray DG, Vitek MP, et al:Solution NMR studies of the A beta(1-40) and A beta(1-42) peptides establish that the met35 oxidation state affects the mechanism of amyloid formation. Journal of the American Chemical Society 2004,126:1992-2005.
    [95]Wood CM, Kadim HJ:A study of protein secondary structure hydrogen bonds under oxidizing conditions. Proceedings of the Frontiers in the Convergence of Bioscience and Information Technologies 2007:125-128.
    [96]Sultana R, Butterfield DA:Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer's disease:Insight into the role of oxidative stress. Proteomics Clinical Applications 2008,2:685-696.
    [97]Roher AE, Baudry J, Chaney MO, Kuo YM, Stine WB, Emmerling MR: Oligomerization and fibril assembly of the amyloid-beta protein. Biochimica Et Biophysica Acta-Molecular Basis of Disease 2000,1502:31-43.
    [98]Orte A, Birkett NR, Clarke RW, Devlin GL, Dobson CM, Klenerman D:Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proceedings of the National Academy of Sciences of the United States of America 2008,105:14424-14429.
    [99]Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, Teplow DB, Shea JE, Ruotolo BT, Robinson CV, Bowers MT:Amyloid-beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chemistry 2009,1:326-331.
    [100]Zhang JN, Muthukumar M:Simulations of nucleation and elongation of amyloid fibrils. Journal of Chemical Physics 2009,130.
    [101]Li MS, Klimov DK, Straub JE, Thirumalai D:Probing the mechanisms of fibril formation using lattice models. Journal of Chemical Physics 2008,129.
    [102]Auer S, Dobson CM, Vendruscolo M, Maritan A:Self-Templated Nucleation in Peptide and Protein Aggregation. Physical Review Letters 2008, 101.
    [103]Pellarin R, Guarnera E, Caflisch A:Pathways and intermediates of amyloid fibril formation. Journal of Molecular Biology 2007,374:917-924.
    [104]Bellesia G, Shea JE:Effect of beta-sheet propensity on peptide aggregation. Journal of Chemical Physics 2009,130.
    [105]Cheon M, Chang I, Hall CK:Extending the PRIME model for protein aggregation to all 20 amino acids. Proteins-Structure Function and Bioinformatics 2010,78:2950-2960.
    [106]Wu C, Murray MM, Bernstein SL, Condron MM, Bitan G, Shea JE, Bowers MT:The structure of Abeta42 C-terminal fragments probed by a combined experimental and theoretical study. Journal of Molecular Biology 2009, 387:492-501.
    [107]Thirumalai D, Klimov DK, Dima RI:Emerging ideas on the molecular basis of protein and peptide aggregation. Current Opinion in Structural Biology 2003,13:146-159.
    [108]Dima RI, Thirumalai D:Exploring the propensities of helices in PrPc to form beta sheet using NMR structures and sequence alignments. Biophysical Journal 2002,83:1268-1280.
    [109]Dima RI, Thirumalai D:Probing the instabilities in the dynamics of helical fragments from mouse PrPc. Proceedings of the National Academy of Sciences of the United States of America 2004,101:15335-15340.
    [110]Straub JE, Thirumalai D:Toward a Molecular Theory of Early and Late Events in Monomer to Amyloid Fibril Formation. Annual Review of Physical Chemistry, Vol 62 2011,62:437-463.
    [111]Baumketner A, Bernstein SL, Wyttenbach T, Lazo ND, Teplow DB, Bowers MT, Shea JE:Structure of the 21-30 fragment of amyloid beta-protein. Protein Science 2006,15:1239-1247.
    [112]Baumketner A, Bernstein SL, Wyttenbach T, Bitan G, Teplow DB, Bowers MT, Shea JE:Amyloid beta-protein monomer structure:A computational and experimental study. Protein Science 2006,15:420-428.
    [113]Baumketner A, Shea JE. The structure of the Alzheimer amyloid beta 10-35 peptide probed through replica-exchange molecular dynamics simulations in explicit solvent. Journal of Molecular Biology 2007, 366:275-285.
    [114]Wei GH, Shea JE:Effects of solvent on the structure of the Alzheimer amyloid-beta(25-35) peptide. Biophysical Journal 2006,91:1638-1647.
    [115]Takeda T, Klimov DK:Side Chain Interactions Can Impede Amyloid Fibril Growth:Replica Exchange Simulations of A beta Peptide Mutant. Journal of Physical Chemistry B 2009,113:11848-11857.
    [116]Takeda T, Klimov DK:Replica Exchange Simulations of the Thermodynamics of A beta Fibril Growth. Biophysical Journal 2009, 96:442-452.
    [117]Takeda T, Klimov DK:Probing Energetics of A beta Fibril Elongation by Molecular Dynamics Simulations. Biophysical Journal 2009,96:4428-4437.
    [118]Takeda T, Klimov DK:Interpeptide interactions induce helix to strand structural transition in A beta peptides. Proteins-Structure Function and Bioinformatics 2009,77:1-13.
    [119]Li WF, Zhang J, Su Y, Wang J, Qin M, Wang W:Effects of zinc binding on the conformational distribution of the amyloid-beta peptide based on molecular dynamics simulations. Journal of Physical Chemistry B 2007, 111:13814-13821.
    [120]Jiang P, Wei L, Pervushin K, Mu YG:pH-Dependent Interactions of Human Islet Amyloid Polypeptide Segments with Insulin Studied by Replica Exchange Molecular Dynamics Simulations. Journal of Physical Chemistry B 2010,114:10176-10183.
    [121]Campos SRR, Machuqueiro M, Baptista AM:Constant-pH Molecular Dynamics Simulations Reveal a beta-Rich Form of the Human Prion Protein. Journal of Physical Chemistry B 2010,114:12692-12700.
    [122]Khandogin J, Brooks CL:Linking folding with aggregation in Alzheimer's beta-amyloid peptides. Proceedings of the National Academy of Sciences of the United States of America 2007,104:16880-16885.
    [123]Tozzini V:Coarse-grained models for proteins. Current Opinion in Structural Biology 2005,15:144-150.
    [124]Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P:AMBER, A PACKAGE OF COMPUTER-PROGRAMS FOR APPLYING MOLECULAR MECHANICS, NORMAL-MODE ANALYSIS, MOLECULAR-DYNAMICS AND FREE-ENERGY CALCULATIONS TO SIMULATE THE STRUCTURAL AND ENERGETIC PROPERTIES OF MOLECULES. Computer Physics Communications 1995,91:1-41.
    [125]Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ:The Amber biomolecular simulation programs. Journal of Computational Chemistry 2005,26:1668-1688.
    [126]Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, et al:CHARMM:The Biomolecular Simulation Program. Journal of Computational Chemistry 2009, 30:1545-1614.
    [127]Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M:CHARMM-A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS. Journal of Computational Chemistry 1983,4:187-217.
    [128]Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF:The GROMOS biomolecular simulation program package. Journal of Physical Chemistry A 1999,103:3596-3607.
    [129]Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF:A biomolecular force field based on the free enthalpy of hydration and solvation:The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry 2004,25:1656-1676.
    [130]Sugita Y, Okamoto Y:Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 1999,314:141-151.
    [131]Zhang Z, Shi Y, Liu H:Molecular dynamics simulations of peptides and proteins with amplified collective motions. Biophysical Journal 2003, 84:3583-3593.
    [132]Mitsutake A, Sugita Y, Okamoto Y:Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers 2001,60:96-123.
    [133]Zhang J, Qin M, Wang W:Folding mechanism of beta-hairpins studied by replica exchange molecular simulations. Proteins-Structure Function and Bioinformatics 2006,62:672-685.
    [134]Liu P, Huang XH, Zhou RH, Berne BJ:Hydrophobic aided replica exchange:an efficient algorithm for protein folding in explicit solvent. Journal of Physical Chemistry B 2006,110:19018-19022.
    [135]Zhou RH:Exploring the protein folding free energy landscape:coupling replica exchange method with P3ME/RESPA algorithm. Journal of Molecular Graphics & Modelling 2004,22:451-463.
    [136]Nymeyer H, Gnanakaran S, Garcia AE:Atomic simulations of protein folding, using the replica exchange algorithm. Numerical Computer Methods, PtD 2004,383:119-+.
    [137]Cheng XL, Cui GL, Hornak V, Sinnnerling C:Modified replica exchange simulation methods for local structure refinement. Journal of Physical Chemistry B 2005,109:8220-8230.
    [138]Shen MY, Freed KF:Long time dynamics of met-enkephalin: Comparison of explicit and implicit solvent models. Biophysical Journal 2002,82:1791-1808.
    [139]Mark P, Nilsson L:Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A 2001, 105:9954-9960.
    [140]Levy RM,Gallicchio E:Computer simulations with explicit solvent: Recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. Annual Review of Physical Chemistry 1998, 49:531-567.
    [141]Still WC, Tempczyk A, Hawley RC, Hendrickson T:Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. Journal of the American Chemical Society 1990,112:6127-6129.
    [142]Qiu D, Shenkin PS, Hollinger FP, Still WC:The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. Journal of Physical Chemistry A 1997,101:3005-3014.
    [143]Dominy BN, Brooks CL:Development of a generalized born model parametrization for proteins and nucleic acids. Journal of Physical Chemistry B 1999,103:3765-3773.
    [144]Veldhuis JD, Johnson ML:CLUSTER-ANALYSIS-A SIMPLE, VERSATILE, AND ROBUST ALGORITHM FOR ENDOCRINE PULSE DETECTION. American Journal of Physiology 1986,250:E486-E493.
    [145]Sturn A, Quackenbush J, Trajanoski Z:Genesis:cluster analysis of microarray data. Bioinformatics 2002,18:207-208.
    [146]Gaboriaud C, Bissery V, Benchetrit T, Mornon JP:HYDROPHOBIC CLUSTER-ANALYSIS-AN EFFICIENT NEW WAY TO COMPARE AND ANALYZE AMINO-ACID-SEQUENCES. Febs Letters 1987, 224:149-155.
    [147]Shao JY, Tanner SW, Thompson N, Cheatham TE:Clustering molecular dynamics trajectories:1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation 2007, 3:2312-2334.
    [148]Kabsch W, Sander C:DICTIONARY OF PROTEIN SECONDARY STRUCTURE-PATTERN-RECOGNITION OF HYDROGEN-BONDED AND GEOMETRICAL FEATURES. Biopolymers 1983,22:2577-2637.
    [149]Srinivasan R, Rose GD:A physical basis for protein secondary structure. Proceedings of the National Academy of Sciences of the United States of America 1999,96:14258-14263.
    [150]Gong HP, Isom DG, Srinivasan R, Rose GD:Local secondary structure content predicts folding rates for simple, two-state proteins. Journal of Molecular Biology 2003,327:1149-1154.
    [151]Esler WP, Stimson ER, Ghilardi JR, Vinters HV, Lee JP, Mantyh PW, Maggio JE:In vitro growth of Alzheimer's disease beta-amyloid plaques displays first-order kinetics. Biochemistry 1996,35:749-757.
    [152]Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, Lee JP, Mantyh PW, Maggio JE:Alzheimer's disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 2000, 39:6288-6295.
    [153]Ban T, Yamaguchi K, Goto Y:Direct observation of amyloid fibril growth, propagation, and adaptation. Accounts of Chemical Research 2006, 39:663-670.
    [154]Harper JD, Lieber CM, Lansbury PT:Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chemistry & Biology 1997,4:951-959.
    [155]Petkova AT, Leapman RD, Guo ZH, Yau WM, Mattson MP, Tycko R: Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 2005,307:262-265.
    [156]Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W, Kapurniotu A:Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. Journal of Molecular Biology 1999, 287:781-796.
    [157]O'Nuallain B, Williams AD, Westermark P, Wetzel R:Seeding specificity in amyloid growth induced by heterologous fibrils. Journal of Biological Chemistry 2004,279:17490-17499.
    [158]Kameda T, Takada S:Secondary structure provides a template for the folding of nearby polypeptides. Proceedings of the National Academy of Sciences of the United States of America 2006,103:17765-17770.
    [159]Han M, Hansmann UHE:Replica exchange molecular dynamics of the thermodynamics of fibril growth of Alzheimer's A beta(42) peptide. Journal of Chemical Physics 2011,135.
    [160]D.A. Case TAD, T.E. Cheatham,Ⅲ, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, R.C. Walker, W. Zhang, K.M. Merz, B.P. Roberts, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvai, K.F. Wong, F. Paesani, J. Vanicek, J. Liu, X. Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D.R. Roe, D.H. Mathews, M.G. Seetin, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P.A. Kollman (2010), AMBER 11, University of California, San Francisco.
    [161]Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, et al:A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry 2003, 24:1999-2012.
    [162]Ryckaert JP, Ciccotti G, Berendsen HJC:Numerical-Integration of Cartesian Equations of Motion of a System with Constraints-Molecular-Dynamics of N-Alkanes. Journal of Computational Physics 1977, 23:327-341.
    [163]Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA:Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. Journal of the American Chemical Society 1998,120:9401-9409.
    [164]Haan MN:Therapy Insight:type 2 diabetes mellitus and the risk of late-onset Alzheimer's disease. Nature Clinical Practice Neurology 2006, 2:159-166.
    [165]Vishveshwara N, Liebman SW:Heterologous cross-seeding mimics cross-species prion conversion in a yeast model. BMC Biol 2009,7:26.
    [166]Klajnert B, Cladera J, Bryszewska M:Molecular interactions of dendrimers with amyloid peptides:pH dependence. Biomacromolecules 2006,7:2186-2191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700