用户名: 密码: 验证码:
ZrTiN梯度涂层刀具的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用脉冲偏压辅助沉积多弧离子镀与离子轰击相结合的工艺制备了以硬质合金为基体的ZrTiN梯度涂层刀具,并对其设计理论、涂层结构、涂层工艺、性能、微观结构、摩擦磨损性能及切削性能进行了系统深入的研究。
     对三元氮化物TiAlN、ZrTiN和TiCrN的固溶强化机制进行分析,并采用物质吉布斯自由能函数法,分析计算ZrTiN涂层、基体及过渡层各组分间的化学反应,结果表明:ZrTiN涂层是以ZrN为基础相的稳定固溶体;涂层与基体不发生化学反应,而Ti过渡层与基体的化学反应能够在膜-基界面形成以化合物结合的界面。对ZrTiN涂层与基体材料的物理相容性进行了研究,详细分析了涂层残余热应力分布规律,结果表明YT15基体与ZrTiN涂层的匹配性较好;涂层残余热应力随温度的升高而增大,随涂层厚度的增加而减小;TiZr过渡层的加入可以有效减小界面处的残余热应力,尤其是剪应力。
     基于膜-基界面结合类型以及涂层附着机理,分析了涂层结合力的影响因素;以提高结合力为目标,设计出四种不同结构的ZrTiN涂层:单层ZrTiN涂层(SZT),带有成分梯度过渡层的涂层(TGC),热膨胀系数梯度分布的涂层(EGC)以及结合力-硬度梯度分布的涂层(ZGC)。
     采用脉冲偏压辅助沉积多弧离子镀与离子轰击相结合的工艺,在硬质合金基体上进行ZrTiN涂层,全面系统地研究了靶电流、氮气流量、沉积温度、沉积时间、基体负偏压等沉积参数对涂层微观结构及性能的影响规律。结果表明,靶电流对涂层中Zr/Ti的原子百分比及晶胞参数影响明显;氮气流量增大或沉积温度升高均会导致ZrTiN晶体的择优取向从(111)变为(200),并伴随着晶粒尺寸的增大;基体负偏压对涂层晶粒取向影响最明显:基体负偏压升高,ZrTiN晶体的择优取向从(111)变为(200),最终变为(220),同时涂层表面质量明显下降。YT15基体上的ZrTiN涂层结构致密,元素分布均匀,界面结合紧密,其性能明显优于YG8基体上的涂层。YT15基体上的ZrTiN涂层的最佳沉积参数为:基体负偏压250V;Zr靶电流110A,Ti靶电流70A;氮气流量140seem:沉积时间60-90min之间;沉积温度200℃。
     以YT15为基体,制备出SZT、TGC、EGC(?)ZGC四种ZrTiN涂层刀具,并分析其性能及微观结构。SZT涂层刀具的硬度最高,为32.6GPa; EGC涂层刀具的结合力最大,为84.6N;四种涂层的厚度在2.62-2.73μm之间;涂层晶体结构均呈(111)择优取向;涂层元素向基体发生较为明显的扩散,基体向涂层的扩散比较轻微;涂层与基体的界面结合为机械啮合、元素扩散和形成化合物的形式共存。
     系统研究了ZrTiN涂层的摩擦磨损特性,结果表明:ZrTiN涂层与淬火40Cr的摩擦系数及磨损率均随Zr与Ti原子比的增大而减小,N元素含量对摩擦磨损性能影响不明显。载荷增加,涂层的摩擦系数增大而磨损率减小;滑动速度增大,摩擦系数和磨损率均减小。轻载时ZrTiN涂层的磨损形式是轻微的磨粒磨损及剥落,表面硬度高的SZT、ZGC涂层耐磨性较优;重载时涂层的磨损形式是磨粒磨损、脆性断裂及剥落,韧性较好、层-基结合力较高的TGC、EGC涂层耐磨性能较优。低速下涂层的磨损形式是工件粘结及涂层剥落,韧性及结合力较好的TGC、EGC涂层耐磨性能较优;高速下涂层的磨损形式是轻微的磨粒磨损,EGC涂层的热胀系数梯度分布结构使其热应力较小,热损伤轻微,磨损率最低。
     对制备的ZrTiN涂层刀具以及YT15传统刀具进行干切削40Cr淬火钢的对比试验。结果表明:ZrTiN涂层刀具对切削力的影响较小,但可以显著降低切削温度,尤其是高速时ZrTiN涂层的热障作用明显。切削距离3600m时,使用涂层刀具已加工表面粗糙度明显低于YT15,表面粗糙度一致性较好。后刀面磨损为磨粒磨损、边界磨损的形式;ZGC涂层表层硬度最高、结合力较大,其多层结构可以有效抑制裂纹的扩展,后刀面磨损量最小;后刀面磨损量由小到大依次为:ZGCZrTiN gradient coated tools were developed on cemented carbide substrates by pulsed bias assisted deposition of multi arc ion plating combined with ion beam assisted deposition technique. Friction and wear behavior, cutting performance and wear mechanism were proceed to the further and systematic research, as well as the design theory, gradient structure, deposition parameters, mechanical properties and micro-structures of the coatings.
     Solid solution strengthening mechanism of ternary nitride like TiAlN, ZrTiN and TiCrN were analyzed. Chemical reactions among ZrTiN coating, cemented carbide substrate and metal adhesion layer were analyzed and calculated by Gibbs free energy change of reaction. The results show that ZrTiN is a stable solid solution based on ZrN; there is no chemical reaction between coating and substrate; chemical reaction of Ti adhesion layer and substrate forms the combination of compounds at the interface. Physical compatibility of ZrTiN coating and substrate are investigated, and the distribution of thermal residual stress of coating is analyzed detailedly. The results indicate that the optimum substrate material matched with ZrTiN coating is YT15; thermal residual stress of the coating increases with increasing depositing temperature, while decreases with increasing coating thickness; TiZr adhesion layer can effectively reduce the thermal residual stress, especially shear stress.
     Based on the type of coating-substrate interface and adhesion mechanism, the factors affecting adhesive strength were analyzed. In order to improve the binding strength, different structures of ZrTiN coatings are designed:single layer ZrTiN coating (SZT); composition gradient adhesion layer coating (TGC); coating with gradient distribution of the coefficient of thermal expansion (EGC); coating with gradient distribution of adhesive strength&hardness (ZGC).
     ZrTiN coatings were deposited on cemented carbide substrates by pulsed bias assisted deposition of multi arc ion plating combined with ion beam assisted deposition technique. During the depositing, the basic parameters were target current, nitrogen flow rate, deposition temperature, deposition time and negative bias voltage. The effects and laws of these parameters on microscopic structures and properties of the coatings were investigated systematically. The results reveal:the target current shows obvious impact on the atomic percent of Zr/Ti and crystallographic lattice constant of ZrTiN coatings; the nitrogen flow rate increases or the deposition temperature raises will lead to the preferred orientation of ZrTiN changing from (111) to (200), accompanied with the increase of grain sizes; the negative bias voltage shows the most obvious impact on the preferred orientation of ZrTiN:as the negative bias voltage increases, the preferred orientation of ZrTiN changes from (111) to (200), ultimately (220), at the same time, the quality of the coating surface decreases. The film on YT15substrate exhibits a dense and fine grained structure with the elements distributing quite evenly, and the combination of film and substrate is compact. The properties of the films on YT15substrate are much better than YG8substrate. The suitable deposition parameters for coating on YT15substrate are:negative bias voltage250V, Zr target current110A, Ti target current70A, nitrogen flow rate140seem, deposition time60-90min, deposition temperature200℃。
     Based on YT15cemented carbides, SZT, TGC, EGC and ZGC coated tools were prepared, and then properties and microstructures of these four kinds of coated tools were analyzed. The results indicate that SZT coated tools show the highest surface hardness of32.6GPa, and EGC coated tools with the highest adhesive strength of84.6N; the coating thickness is among2.62-2.73μm; all the crystal structures of the four show (111) preferred orientation. The element diffusion of the coating to the substrate is obvious, while the element diffusion of the substrate to the coating is relatively slight; the interfacial bonding of ZrTiN and YT15substrate is combining effect of mechanical toothing, element diffusion and formation of compounds.
     A further research which regarded to the friction and wear behavior of the ZrTiN coatings displays that both the friction coefficient and the wear rate of ZrTiN coatings against40Cr hardened steel decrease with the increase of atomic ratio of Zr:Ti, and the influence of N element content is not distinct. If the applied load increases, the friction coefficient of the coating increases while the wear rate decreases; if the sliding speed increases, both the friction coefficient and the wear rate decrease. When at a low applied loads of friction, the form of the wear mechanism of the coatings performs a mild abrasive wear and flake, at the same time SZT and EGC coatings with high surface hardness show better wear resistance; when at a heavy applied loads of friction, the wear mechanism displays a state of abrasive wear, and the form of this performs brittle fracture and flake, meanwhile TGC and EGC coatings with better toughness and adhesive strength show better wear resistance. The form of wear mechanism of the coatings at low sliding speed performs adhesive wear and brittle fracture, moreover TGC and EGC coatings with higher toughness and adhesive strength show better wear resistance; the wear mechanism is mild abrasive wear at high sliding speed, and EGC coating with the gradient distribution of the coefficient of thermal expansion shows the best wear resistance, as the thermal stress of the coating is small and the thermal injury is mild.
     Experiments which used the ZrTiN coated tools of dry cutting of40Cr hardened steel were carried out, compared with YT15tools. The results indicate that the effect of ZrTiN coated tool on cutting force is not obvious, while the coating can significantly reduce the cutting temperature; the thermal barrier effect of ZrTiN coating is obvious, especially in high speed cutting. When the cutting distance is3600m, the machined surface roughness of coated tools is significantly lower than YT15, while the machined surface roughness has more consistencies. Flank wear of the tool is the form of abrasive wear and boundary wear; ZGC coating has high surface hardness and adhesive strength, and the multilayer structure can effectively suppress the crack diffusion, so the amount of flank wear is the smallest. The order of ascending the flank wear is ZGC
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2004.
    [2]Klocke F, Krieg T. Coated tools for metal cutting-features and applications [J]. Annals of the CIRP,1999,48(2):515-525.
    [3]王西彬,解丽静.超高速切削技术及其新进展[J].中国机械工程,2000,11(1):190-194.
    [4]艾兴,刘战强,赵军,等.高速切削刀具材料的进展和未来[J].制造技术与机床,2001,8:21-25.
    [5]Liu Z Q, Wan Y, Ai X. Recent developments in tool materials for high speed machining [J]. Materials Science Forum,2004,471-472:438-442.
    [6]刘战强,万熠,周军.高速切削刀具材料及其应用[J].机械工程材料,2006,30(5):1-4.
    [7]姚福新,李长河.高速切削加工刀具材料[J].精密制造与自动化.2010,1:5-8.
    [8]王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械,2002,29(4):63-65.
    [9]Kalss W, Reiter A, Derflinger V, et al. Modern coatings in high performance cutting applications [J]. International Journal of Refractory Metals and Hard Materials,2006,24(5): 399-404.
    [10]Klocke F, Krieg T, Gerschwiler K, et al. Improved cutting processes with adapted coating systems [J]. Annals of the CIRP,1998,47(1):65-68.
    [11]Hedenqvist P, Olsson M, Wallen P, et al. How TiN coatings improve the performance of high speed steel cutting tools [J]. Surface and Coatings Technology,1990,41(2):243-256.
    [12]Chen L, Du Y, Xiong X, et al. Improved properties of Ti-Al-N coating by multilayer structure [J]. International Journal of Refractory Metals and Hard Materials,2011,29(6):681-685.
    [13]Antunes R A, Rodas A C D, Lima N B, et al. Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316L austenitic stainless steel for orthopedic applications [J]. Surface and Coatings Technology,2010,205(7):2074-2081.
    [14]Lee J K, Yang G S. Preparation of TiAlN/ZrN and TiCrN/ZrN multilayers by RF magnetron sputtering [J]. Transactions of Nonferrous Metals Society of China,2009,19(4):795-799.
    [15]Chen L, Du Y, Yin F, et al. Mechanical properties of (Ti,Al)N monolayer and TiN/(Ti,Al)N multilayer coatings [J]. International Journal of Refractory Metals and Hard Materials,2007, 25(1):72-76.
    [16]方斌,黄传真,许崇海,等.涂层刀具的研究现状[J].机械工程师,2005,(10):21-24.
    [17]赵海波,周彤,梁红樱,等.刀具涂层的分类与应用[J].工具技术,2005,39(12):14-17.
    [18]刘毅,董英武.涂层刀具的分类及特点[J].机械工程师,2007,(6):142.
    [19]余东海,王成勇,张凤林.刀具涂层材料研究进展[J].工具技术,2007,41(6):25-32.
    [20]张文毓.硬质合金涂层刀具研究进展[J].稀有金属与硬质合金,2008,36(1):59-63.
    [21]沈中,刘钢,陈明.新型AlTiN涂层钻头高效干式钻削40Cr的开发与试验[J].南京航空航天大学学报(英文版),2007,24(2):106-111.
    [22]郭幼丹.TiAlN涂层刀具高速铣削淬硬模具钢时磨损规律与寿命的研究[J].工具技术,2009,43(8):20-24.
    [23]祝新发,张晶晶,周颐辛,等.离子镀TiAlN工具涂层的微结构与切削性能[J].工具技术,2010,44(12):31-34.
    [24]Arias D, Devia A, Velez J. Study of TiN/ZrN/TiN/ZrN multilayers coatings grown by cathodic arc technique [J]. Surface and Coatings Technology,2010,204(18-19):2999-3003.
    [25]Atar E, Kayali E S, Cimenoglu H. Sliding wear behaviour of ZrN and (Zr,12wt% Hf)N coatings [J]. Tribology International,2006,39(4):297-302.
    [26]Huang M D, Lee Y P, Dong C, et al. Preparation of TiN films by arc ion plating using dc and pulsed biases [J]. Journal of Vacuum Science & Technology A,2004,22(2):250-254.
    [27]Hainsworth S V, Soh W C. The effect of the substrate on the mechanical properties of TiN coatings [J]. Surface and Coatings Technology,2003,163-164:515-520.
    [28]刘建华,邓建新,赵金龙,等.ZrN/TiN复合涂层刀具的制备及其磨损性能研究[J].制造技术与机床,2006,(11):25-27.
    [29]刘建华,张卧波,邓建新,等.ZrN/TiN复合涂层刀具的制备及切削性能[J].山东大学学报(工学版),2006,36(6):14-18.
    [30]邓建新,钮平章,王景海,等.“软”涂层刀具的发展与应用[J].工具技术,2005,39(3): 10-12.
    [31]赵金龙,邓建新,宋文龙.MoS2软涂层刀具的基体材料优选及涂层制备[J].材料工程,2007,(12):30-34.
    [32]赵金龙,邓建新,颜培MoS2/Zr复合涂层高速钢刀具的切削性能研究[J].中国机械工程,2008,19(21):2524-2527.
    [33]李劲夫.涂层刀具推动数控加工发展[J].新技术新工艺,2009,(4):17-19.
    [34]Okada M, Hosokawa A, Tanaka R, et al. Cutting performance of PVD-coated carbide and CBN tools in hardmilling [J]. International Journal of Machine Tools and Manufacture,2011, 51(2):127-132.
    [35]Devillez A, Schneider F, Dominiak S, et al. Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools [J]. Wear,2007,262(7-8):931-942.
    [36]Schulz H, Dorr J, Rass I J, et al. Performance of oxide PVD-coatings in dry cutting operations [J]. Surface and Coatings Technology,2001,146-147:480-485.
    [37]张迎光,白雪峰,张洪林,等.化学气相沉积技术的进展[J].中国科技信息,2005,(12):82-84.
    [38]杨西,杨玉华.化学气相沉积技术的研究与应用进展[J].甘肃水利水电技术,2008,44(3):211-213.
    [39]黎宪宽,陈力,蔡宏中,等.化学气相沉积技术及在难熔金属材料中的应用[J].稀有金属材料与[程,2010,39(z1):438-443.
    [40]夏伯雄.刀具镀层的技术进展[J].理化检验-物理分册,2002,38(7):303-305.
    [41]赵海波.国内外切削刀具涂层技术发展综述[J].工具技术,2002,(2):3-7.
    [42]邓福铭,卢学军,赵志岩,等.CVD金刚石厚膜刀具及应用研究[M].2009中国超硬材料行业技术发展论坛论文集,2009.
    [43]李健,韦习成.物理气相沉积技术的新进展[J].材料保护,2000,33(1):91-94.
    [44]吴笛.物理气相沉积技术的研究进展与应用[J].机械工程与自动化,2011,(4):214-216.
    [45]胡树兵,崔崑.物理气相沉积TiN多元涂层和多层涂层的研究进展[J].材料保护,2001,34(10):24-27.
    [46]张洪涛,王天民,王聪.物理气相沉积技术制备的硬质涂层耐腐蚀的研究进展[J].材料 导报,2002,16(8):15-16.
    [47]刘齐成,刘培英,陶冶,等.CVD法与PCVD法TiN薄膜研究[J].材料工程,2000,(12):22-25.
    [48]吴昊.弧增强PCVD法设备及薄膜制备研究[D].北京航空航天大学硕士学位论文,2001.
    [49]朱永法,张利,姚文清,等.溶胶-凝胶法制备薄膜型TiO2光催化剂[J].催化学报,1999,20(3):362-364.
    [50]黄英,黄飞,王艳丽.溶胶-凝胶法制备纳米钡铁氧体薄膜[J].稀有金属材料与工程,2008,37(7):1229-1232.
    [51]陈吉利,赵立峰,许加阳,等.高分子辅助溶胶-凝胶法制备BiFe1-xCoxO3薄膜及其性能[J].稀有金属材料与工程,2010,39(9):1668-1671.
    [52]栗卓新,方建筠,魏琪,等.国内外热喷涂涂层形成机理的研究进展[J].中国机械工程,2006,17(11):1198-1203.
    [53]王卫泽,李长久.热喷涂涂层的结构及其表征[J].材料保护,2006,39(11):43-47.
    [54]侯国梁,周惠娣,安宇龙,等.铝合金异形曲面热喷涂涂层的制备及性能研究[J].表面技术,2010,39(3):67-70.
    [55]罗乐,储雅琼,秦娟娟,等.用脉冲激光沉积法在A1203上沉积类金刚石薄膜[J].红外与激光工程,2011,40(6):1106-1110.
    [56]刘红飞,程晓农,张志萍.脉冲激光沉积法制备ZrW2O8薄膜[J].硅酸盐学报,2009,37(5):755-759.
    [57]张亦文,李效民,赵俊亮,等.脉冲激光沉积法生长In掺杂SrTiO3薄膜及其微观结构研究[J].无机材料学报,2008,23(3):531-534.
    [58]刘耀东,赵磊.脉冲激光沉积法制备氧化锌薄膜[J].中国激光,2007,34(4):534-537.
    [59]张桂凯,李炬,陈长安,等.HR-2不锈钢室温熔盐镀铝[J].稀有金属材料与工程,2010,39(7):1219-1223.
    [60]王吉会,夏扬,王茂范.无机熔盐镀铝层的制备与性能研究[J].兵器材料科学与工程,2005,29(6):1-4.
    [61]马瑞新,李国勋.熔盐镀钨的历史与发展趋势[J].材料保护,1999,32(2):4-6.
    [62]蒋洪川,张金平,张万里,等.电镀法制备CoNiMnP永磁薄膜阵列的研究[J].无机材料 学报,2003,18(5):1143-1146.
    [63]陈书荣,谢刚,张雄飞,等.NaCl-KCl熔融体系电镀钛的研究[J].稀有金属材料与工程,2001,30(6):471-474.
    [64]林金堵,吴梅珠.化学镍/化学钯/浸金的表面涂覆层的可焊性和可靠性[J].印制电路信息,2011,(5):43-48.
    [65]华中胜,姚广春,曹卓坤,等.碳纤维表面化学涂覆NiO[J].过程工程学报,2009,9(3):580-585.
    [66]徐新乐.多弧离子镀用于制备高质量的Ti-N膜[J].材料保护,2000,33(8):28-30.
    [67]姜雪峰,刘清才,王海波.多弧离子镀技术及其应用[J].重庆大学学报(自然科学版),2006,29(10):55-57.
    [68]黄承敏.等离子浸没注入和多弧离子镀对纯钛及钛合金表面改性的基础研究[D].四川大学博士学位论文,2004.
    [69]赵彦辉.脉冲偏压电弧离子镀沉积超硬多层薄膜[D].大连理工大学博士学位论文,2005.
    [70]王利,程鑫彬,王占山,等.离子束辅助沉积薄膜工艺[J].红外与激光工程,2007,36(6):896-898.
    [71]孙方宏,陈明,张志明,等.高性能CVD金刚石薄膜涂层刀具的制备和试验研究[J].机械工程学报,2003,39(7):101-106.
    [72]黄树涛,许立福,姚英学,等.金刚石薄膜涂层刀具的破损机理研究[J].人工晶体学报,2004,33(2):278-281.
    [73]宋贵宏,杜吴,贺春林.硬质与超硬涂层:结构、性能、制备与表征[M].北京:化学工业出版社,2007.
    [74]Silva E, Rebelo de F M, Franz R, et al. Structure-property relations in ZrCN coatings for tribological applications [J]. Surface and Coatings Technology,2010,205(7):2134-2141.
    [75]Ospina-Ospina R, Jurado J F, Velez J M, et al. Structural and morphological characterization WCxNy thin films grown by pulsed vacuum arc discharge in an argon-nitrogen atmosphere [J]. Surface and Coatings Technology,2010,205(7):2191-2196.
    [76]Lin J, Moore J J, Moerbe W C, et al. Structure and properties of selected (Cr-Al-N, TiC-C, Cr-B-N) nanostructured tribological coatings [J]. International Journal of Refractory Metals and Hard Materials,2010,28(1):2-14.
    [77]Garcia J, Pitonak R, Weissenbacher R, et al. Production and characterization of wear resistant Ti(C,N) coatings manufactured by modified chemical vapor deposition process [J]. Surface and Coatings Technology.2010,205(7):2322-2327.
    [78]Zou D, Yan D, Xiao L, et al. Characterization of nanostructured TiN coatings fabricated by reactive plasma spraying [J]. Surface and Coatings Technology,2008,202(10):1928-1934.
    [79]Yang Q, Wang C B, Zhang S, et al. Effect of nitrogen pressure on structure and optical properties of pulsed laser deposited BCN thin films [J]. Surface and Coatings Technology, 2010,204(11):1863-1867.
    [80]Mannan M A, Noguchi H, Kida T, et al. Chemical bonding states and local structures of the oriented hexagonal BCN films synthesized by microwave plasma CVD [J]. Materials Science in Semiconductor Processing,2008,11(3):100-105.
    [81]Yamamoto K, Ito H, Kujime S. Nano-multilayered CrN/BCN coating for anti-wear and low friction applications [J]. Surface and Coatings Technology,2007,201(9-11):5244-5248.
    [82]Pi-Chuen T. The deposition and characterization of BCN films by cathodic arc plasma evaporation [J]. Surface and Coatings Technology,2007,201(9-11):5108-5113.
    [83]Zhou F, Adachi K, Kato K. Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various environments [J]. Wear,2006,261(3-4):301-310.
    [84]Tang Y, Li Y S, Yang Q, et al. Deposition and characterization of diamond coatings on WC-Co cutting tools with W/Al interlayer [J]. Diamond and Related Materials,2010,19(5-6): 496-499.
    [85]Jian X G, Shi L D, Chen M, et al. Tribological studies on ultra-fine diamond composite coatings deposited on tungsten carbide [J]. Diamond and Related Materials,2006,15(2-3): 313-316.
    [86]Vladimir I G. Characterization of cascade arc assisted CVD diamond-coating technology:Part Ⅱ. Coating properties and applications [J]. Surface and Coatings Technology,2005,194(2-3): 300-318.
    [87]Burkat G K, Fujimura T, Dolmatov V Y, et al. Preparation of composite electrochemical nickel-diamond and iron-diamond coatings in the presence of detonation synthesis nanodiamonds [J]. Diamond and Related Materials,2005,14(11-12):1761-1764.
    [88]Tzeng Y, Liu C, Hirata A. Effects of oxygen and hydrogen on electron field emission from microwave plasma chemically vapor deposited microcrystalline diamond, nanocrystalline diamond, and glassy carbon coatings [J]. Diamond and Related Materials,2003,12(3-7): 456-463.
    [89]Lewis O D, Critchlow G W, Wilcox G D, et al. A study of the corrosion resistance of a waterborne acrylic coating modified with nano-sized titanium dioxide [J]. Progress in Organic Coatings,2012,73(1):88-94.
    [90]Klocke F, Bouzakis K D, Georgiadis K, et al. Adhesive interlayers' effect on the entire structure strength of glass molding tools' Pt-Ir coatings by nano-tests determined [J]. Surface and Coatings Technology,2011,206(7):1867-1872.
    [91]Bouzakis K. D, Gerardis S, Skordaris G, et al. Nano-impact test on a TiAIN PVD coating and correlation between experimental and FEM results [J]. Surface and Coatings Technology,2011, 206(7):1936-1940.
    [92]Fox-Rabinovich G S, Yamamoto K, Aguirre M H, et al. Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel 718 superalloy [J]. Surface and Coatings Technology,2010,204(15):2465-2471.
    [93]Ananda Kumar S, Sasikumar A. Studies on novel silicone/phosphorus/sulphur containing nano-hybrid epoxy anticorrosive and antifouling coatings [J]. Progress in Organic Coatings, 2010,68(3):189-200.
    [94]韩敏建.刀具表面涂层技术的研究进展[J].兰州工业高等专科学校学报,2010,17(3):48-52.
    [95]刘海浪,羊建高,黄如愿.硬质合金涂层刀具研究进展[J].凿岩机械气动工具,2009,(2):52-59.
    [96]刘海浪,羊建高,黄如愿.硬质合金涂层刀具研究进展[M].第十四届全国钎钢钎具年会论文集,2008.
    [97]王核源,王敬华.TiN涂层高速钢刀具的磨损特性及磨损规律[J].工具技术,1999,33(4):10-12.
    [98]Deng J X, Liu J H, Ding Z L, et al. Unlubricated friction and wear behaviors of ZrN coatings against hardened steel [J]. Materials & Design,2008,29(9):1828-1834.
    [99]Zhang J J, Wang M X, Yang J, et al. Enhancing mechanical and tribological performance of multilayered CrN/ZrN coatings [J]. Surface and Coatings Technology,2007,201(9-11): 5186-5189.
    [100]Liu C, Lin G, Yang D, et al. In vitro corrosion behavior of multilayered Ti/TiN coating on biomedical AlSI 316L stainless steel [J]. Surface and Coatings Technology,2006,200(12-13): 4011-4016.
    [101]Nordin M, Larsson M. Deposition and characterisation of multilayered PVD TiN/CrN coatings on cemented carbide [J]. Surface and Coatings Technology,1999,116-119:108-115.
    [102]蔡志海,张平,谭俊,等.CrTiAIN复合涂层硬质合金刀具的制备与切削性能研究[J].核技术,2009,32(3):202-205.
    [103]李佳,陈利,王社权TiAlSiN多元PVD涂层的研究[J].硬质合金,2010,27(5):263-268.
    [104]钟平,孙方宏TiAlN涂层铣刀铣削9SiCr切削性能试验研究[J].现代制造工程,2005,(2):91-92.
    [105]刘建华,邓建新,张庆余TiAlN涂层刀具的发展与应用[J].工具技术,2006,40(4):9-13.
    [106]毛延发,唐为国,刘金良,等TiAlN纳米复合涂层的技术进展[J].工具技术,2006,40(4):20-24.
    [107]Wang Q, Zhou F, Chen K, et al. Friction and wear properties of TiCN coatings sliding against SiC and steel balls in air and water [J]. Thin Solid Films,2011,519(15):4830-4841.
    [108]Luo Q. Temperature dependent friction and wear of magnetron sputtered coating TiAIN/VN [J]. Wear,2011,271(9-10):2058-2066.
    [109]Munteanu D, Gabor C, Constantin D G, et al. Friction and wear behaviours of Ti(C,O,N) dark decorative coatings [J]. Tribology International,2011,44(7-8):820-828.
    [110]Ouyang J H, Sasaki S. The friction and wear characteristics of cathodic arc ion-plated (V,Ti)N coatings in sliding against alumina ball [J]. Wear,2004,257(7-8):708-720.
    [111]Huang S H, Chen S F, Kuo Y C, et al. Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings [J]. Surface and Coatings Technology, 2011,206(7):1744-1752.
    [112]Chen L, Wang S Q, Zhou S Z, et al. Microstructure and mechanical properties of Ti(C,N) and TiN/Ti(C,N) multilayer PVD coatings [J]. International Journal of Refractory Metals and Hard Materials,2008,26(5):456-460.
    [113]Lin Y W, Huang J H, Yu G P. Microstructure and corrosion resistance of nanocrystalline TiZrN films on AIS1 304 stainless steel substrate [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,2010,28(4):774-778.
    [114]Zhang S, Sun D, Fu Y, et al. Recent advances of superhard nanocomposite coatings:a review [J]. Surface and Coatings Technology,2003,167(2-3):113-119.
    [115]Lang F, Yu Z. The corrosion resistance and wear resistance of thick TiN coatings deposited by arc ion plating [J]. Surface and Coatings Technology,2001,145(1-3):80-87.
    [116]Choi I S, Park J C. The corrosion behavior of TiAIN coatings prepared by PVD in a hydrofluoric gas atmosphere [J]. Surface and Coatings Technology,2000,131(1-3):383-385.
    [117]曹华伟,张程煜,乔生儒,等.物理气相沉积TiAIN涂层的研究进展[J].材料导报,2011,25(11):25-29.
    [118]张飞,闫鹏勋,陈江涛,等.(Ti1-xAlx)N硬质涂层的研究进展[J].人工晶体学报,2007,36(3):699-704.
    [119]高玉周,史雅琴,林国强,等.(Ti,Zr)N复合薄膜的微观结构及性能[J].大连海事大学学报,2002,28(2):81-84.
    [120]黄佳木,徐成俊,王亚平.室温磁控溅射制备(Ti,Zr)N薄膜及其性能研究[J].材料科学与工程学报,2005,23(5):517-520.
    [121]肖宏清,刘谦.空心阴极离子镀(Ti,Zr)N膜层制备及应用研究[J].表面技术,2004,33(6):57-59.
    [122]Lin Y W, Huang J H, Yu G P. Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering [J]. Thin Solid Films, 2010,518(24):7308-7311.
    [123]Hoerling A, Sjolen J, Willmann H, et al. Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films [J]. Thin Solid Films,2008,516(18):6421-6431.
    [124]Niu E W, Li L, Lv G H, et al. Characterization of Ti-Zr-N films deposited by cathodic vacuum arc with different substrate bias [J]. Applied Surface Science,2008,254(13):3909-3914.
    [125]Milosev I, Strehblow H H, Navinsek B. Oxidation of ternary TiZrN hard coatings studied by XPS [J]. Surface and Interface Analysis,1998,26(4):242-248.
    [126]Zhang T H, Wu Y G, Zhao Z Y, et al. The ternary Ti (Zr,N) phases formation and modification of TiN coatings by Zr+ MEVVA ion implantation [J]. Surface and Coatings Technology,2000, 131(1-3):326-329.
    [127]Uglov V V, Rusalski D P, Zlotski S V, et al. Stability of Ti-Zr-N coatings under Xe-ion irradiation [J]. Surface and Coatings Technology,2010,204(12-13):2095-2098.
    [128]Uglov V V, Anishchik V M, Zlotski S V, et al. Structural and mechanical stability upon annealing of arc-deposited Ti-Zr-N coatings [J]. Surface and Coatings Technology,2008, 202(11):2394-2398.
    [129]Uglov V V, Anishchik V M, Zlotski S V, et al. The phase composition and stress development in ternary Ti-Zr-N coatings grown by vacuum arc with combining of plasma flows [J]. Surface and Coatings Technology,2006,200(22-23):6389-6394.
    [130]Uglov V V, Anishchik V M, Khodasevich V V, et al. Structural characterization and mechanical properties of Ti-Zr-N coatings, deposited by vacuum arc [J]. Surface and Coatings Technology,2004,180-181:519-525.
    [131]Wang D Y, Chang C L, Hsu C H, et al. Synthesis of (Ti,Zr)N hard coatings by unbalanced magnetron sputtering [J]. Surface and Coatings Technology,2000,130(1):64-68.
    [132]Donohue L A, Cawley J, Brooks J S. Deposition and characterisation of arc-bond sputter TixZryN coatings from pure metallic and segmented targets [J]. Surface and Coatings Technology,1995,72(1-2):128-138.
    [133]Takeyama M B, Itoi T, Aoyagi E, et al. Diffusion barrier properties of nano-crystalline TiZrN films in Cu/Si contact systems [J]. Applied Surface Science,2003,216(1-4):181-186.
    [134]Ramana J V, Kumar S, David C, et al. Structure, composition and microhardness of (Ti,Zr)N and (Ti,Al)N coatings prepared by DC magnetron sputtering [J]. Materials Letters,2004, 58(20):2553-2558.
    [135]Purushotham K P, Ward L P, Brack N, et al. The effect of MEVVA ion implantation of Zr on the corrosion behaviour of PVD TiN coatings [J]. Corrosion Science,2008,50(1):8-14.
    [136]Panjan P, Navinsek B, Cvelbar A, et al. Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature [J]. Thin Solid Films, 1996,281-282(1-2):298-301.
    [137]马建丽.无机材料科学基础[M].重庆:重庆大学出版社,2008.
    [138]Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A,1976,32(5):751-767.
    [139]Pruymboom A, Kes P H, van der Drift E, et al. Flux-line shear through narrow constraints in superconducting films [J]. Physical Review Letters,1988,60(14):1430-1433.
    [140]Denton A R, Ashcroft N W. Vegard's law [J]. Physical Review A,1991,43(6):3161-3164.
    [141]李树棠.晶体X射线衍射线基础[M].北京:冶金工业出版社,1990.
    [142]Niels H. Hall-Petch relation and boundary strengthening [J]. Scripta Materialia,2004,51(8): 801-806.
    [143]Schiotz J, Vegge T, Di Tolla F D, et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Physical Review B,1999,60(17):11971-11983.
    [144]Patterson A L. The Scherrer formula for X-Ray particle size determination [J]. Physical Review,1939,56(10):978-982.
    [145]Schiotz J. Proceedings of the 22nd riso international symposium materials science [C]. Roskilde, Denmark,2001:127.
    [146]Durupthy O, Bill J, Aldinger F. Bioinspired synthesis of crystalline TiO2:effect of amino acids on nanoparticles structure and shape [J]. Crystal Growth & Design,2007,7(12):2696-2704.
    [147]叶大伦,胡建华.实用无机物热力学手册.第二版.[M].北京:冶金工业出版社,2002.
    [148]Suresh S, Mortensen A.功能梯度材料基础[M].北京:国防工业出版社,2000.
    [149]黄锡森.金属真空表面强化的原理与应用[M].上海:上海交通大学出版社,1989.
    [150]张九渊.表面工程与失效分析[M].杭州:浙江大学出版社,2005.
    [151]刘孝敏.工程材料的微观结构和力学性能[M].合肥:中国科学技术大学出版社,2003.
    [152]李恒德,肖纪美.涂层表面与界面[M].北京:清华大学出版社,1990.
    [153]波特J M,杜K N,迈耶J W.薄膜的相互扩散和反应[M].北京:国防工业出版社,1983.
    [154]曹美蓉,魏仕勇,刘建军.物理气相沉积TiN涂层结合力的研究现状与展望[J].热处理技术与装备,2009,30(4):27-29.
    [155]胡树兵,李志章,崔崑.过渡层对TiN涂层结合力的影响[J].材料保护,2001,34(9):1-3.
    [156]肖国珍,黄春良.改善离子镀氮化钛涂层结合力的探索[C].98全国材料表面与界面的科学与工程研讨会论文摘要集.1998.
    [157]Freund L B, Syresh S. Thin film materials-stress, defect formation and surface evolution [M]. Cambridge:Cambridge University Press,2003.
    [158]Tsui Y C, Clyne T W. An analytical model for predicting residual stresses in progressively deposited coatings Part 1:Planar geometry [J]. Thin Solid Films,1997,306(1):23-33.
    [159]Stoney G G. The tension of metallic films deposited by electrolysis [J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character,1909,82(553):172-175.
    [160]Nibennaoune Z, George D, Ahzi S, et al. Numerical simulation of residual stresses in diamond coating on Ti-6A1-4V substrate [J]. Thin Solid Films,2010,518(12):3260-3266.
    [161]Chawla V, Jayaganthan R, Chandra R. Finite element analysis of thermal stress in magnetron sputtered Ti coating [J]. Journal of Materials Processing Technology,2008,200(1-3):205-211.
    [162]Bialas M. Finite element analysis of stress distribution in thermal barrier coatings [J]. Surface and Coatings Technology,2008,202(24):6002-6010.
    [163]Yilbas B S, Arif A F M. Residual stress analysis for hvof diamalloy 1005 coating on Ti-6A1-4V alloy [J]. Surface and Coatings Technology,2007,202(3):559-568.
    [164]Julfikar H, Mahfujur R, Brian C, et al. Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis [J]. Journal of Materials Processing Technology,2005, 168(1):36-41.
    [165]Widjaja S, Limarga A M, Yip T H. Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating [J]. Thin Solid Films,2003, 434(1-2):216-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700