用户名: 密码: 验证码:
架空输电线路雷电监测及雷击杆塔暂态特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷击是输电线路可靠运行的主要危害。随着输电线路电压等级越来越高,输电线路上杆塔的高度也越来越高,因此增加了雷击输电线路和杆塔的概率。鉴于目前对架空输电线路雷电监测缺乏有效的手段和对雷击杆塔的冲击响应缺乏合理的理论分析,因此对架空输电线路进行雷电监测和对雷击杆塔的暂态特性进行分析,为输电线路及杆塔防雷提供科学依据及指导具有重要的科学意义和工程应用价值。
     ①为了实时在线监测输电线路过电压及雷击杆塔电流,本文提出并搭建了一套输电线路过电压及雷击杆塔电流在线监测系统。该在线监测系统由过电压传感器、电流传感器、嵌入式监控装置和监控主机四部分组成。其中过电压传感器利用电容分压原理,采用线板模型和串联法计算了过电压传感器的高压臂电容,得到线板电容计算公式,通过仿真和试验,验证了该串联电容计算法的准确性。同时优化了过电压传感器的结构,通过试验验证了该过电压传感器的测量性能。并对影响该过电压传感器测量精度的各种因素如相间耦合、电晕、温度、湿度、污秽、杆塔等进行分析。嵌入式监控装置采取模块化设计,由模拟前置通道、采集模块、监控模块和无线通信模块四部分构成,采集模块采用CPLD作为控制芯片,用来实现信号的高速采样,监控模块采用ARM处理器,用来实现数据存储。并详细介绍了各模块的组成结构。对该在线监测系统进行试验,试验结果表明:该传感器有较好的测量精度;嵌入式监控装置能够正常采集信号,并且能够与监控主机进行快速通讯。
     ②为了识别反击和绕击两种雷电过电压,本文提出并搭建了一套输电线路电流行波在线监测系统对输电线路电流行波进行在线监测,该在线监测系统利用带气隙的线圈从输电线路上感应取能,并通过电源管理单元和充电管理单元,将输电线路上的电流转变为稳定的输出电压,为在线监测系统供能。根据反击,绕击两种雷电过电压的波形特征,提出根据输电线路电流行波的上升时间比来识别两种雷电过电压,并分析了该特征参量在工程应用中可能受到的干扰因素及解决方法。
     ③考虑到雷电流在线监测系统结构复杂,供能困难,不利于大规模普及。本文提出并搭建了一套自供能雷电流在线监测系统。在雷电流通道上钳套信号线圈和取能线圈,利用雷电流对监测系统进行触发、供能和信号采集,将雷电流的极性、峰值存储在非易失存储器中。通过理论计算与仿真分析,实现对信号线圈和取能线圈结构、尺寸、线圈匝数等参数的合理选择。在雷电流10~200kA范围内,信号线圈输出电压与被测雷电流成线性关系;通过信号调理电路,实现对正、负极性雷电流幅值信号的保持;取能线圈通过电磁感应,从雷电通道摄取能量,经过压保护、整流、充电、稳压后,为雷电流监测系统提供满足时间、电压要求的供电电源。试验结果表明该在线监测系统能够精确测量雷电流幅值,误差小于4%,其电源供给能够满足监测系统的能量需求。同时本文进行了单片机采集系统的软硬件设计。
     ④为了准确地分析雷击输电线路杆塔时的波过程,研究了输电线路杆塔波阻抗的建模方法。以高杆塔为研究对象,引入模块化思想对杆塔结构进行细化,以求更真实具体地反映杆塔的实际情况。本文对雷击杆塔时的波过程作了以下研究分析:从电磁场的相关理论出发,结合杆塔的实际结构提出了杆塔新的等效阻抗模型的建立方法;在圆锥天线模型理论基础上得到垂直单导体的等效阻抗;考虑杆塔主体四根垂直支柱的实际情况,引入修正系数得到垂直四导体系统的等效阻抗;搭建了横担的等效阻抗模型;分析斜材对杆塔主体的影响,搭建了斜材等效阻抗模型;将杆塔模块化处理,得到杆塔阻抗随高度变化的函数关系;对张家坝—长寿500kV输电线路上的SZC3型直线塔建立了等效阻抗模型。基于搭建的杆塔等效波阻抗模型,在ATP中针对独立杆塔及线路中杆塔遭受雷击时的波过程进行仿真分析,得到横担端部的电位分布情况,并与Hara模型仿真结果进行比较。
Lightning stroke is a major hazard to the reliable operation of power transmissionline. With the transmission line voltage level increase higher and higher, the height oftower on lines is raising. It helps to increase the probability of lightning stroke on thetransmission lines and towers. However, there lack effective ways of the overheadtransmission lines lightning monitoring and reasonable theoretical analysis of theimpulse response of the lightning stroke on the tower. Therefore, it is of greatimportance in scientific significance and engineering application value to provide ascientific basis and guidance for lines and towers defending lightning from the overheadtransmission lines lightning monitoring and an analysis of the transient characteristics atthe lightning stroke on towers.
     ①To monitor transmission line overvoltage and lightning tower current, the paperproposes a set of transmission line overvoltage and lightning tower current onlinemonitoring system. The online monitoring system consists of overvoltage sensor,current sensor, embedded monitoring device and monitoring computer. This paperpresents the basic principle of the overvoltage sensor and has analysis the line-boardmodel of the overvoltage sensor. Using the series-parallel method, the capacitance ofthe high voltage arm of the overvoltage sensor is calculated and the result has beenproved by the simulation and experiment. Meanwhile, the structural of the overvoltagesensor is optimized. The performance and measurement accuracy of the overvoltagesensor has been proved by the experiment. And various influencing factors of theaccuracy of the overvoltage sensor, like interphase coupling, corona, temperature,humidity, pollution, tower, etc are also analyzed. The hardware of the embeddedmonitoring device is of modular design, mainly including four parts: signal conditioningmodule, data acquisition module,monitoring module and wireless communicationmodule. The data acquisition module adopts CPLD as controller chip, achieving dataacquisition with high speed. The monitoring unit adopts high-powered ARM processorto realize data saving and transmission. The compositional structure of all functionmodules are introduced in this paper. At last, the frequency and impulse voltageexperiment has proved that the monitoring system is of better measurement accuracy,the data acquisition function of the embedded monitoring device works regularly, andfast in communication with the monitoring computer.
     ②For shield failure overvoltage and back flashover recognition, this paperdevelops a set of transmission line current wave online monitoring system formonitoring transmission line current wave. Based on electromagnetic induction, thispower gains induction power from transmission line in high potentials by draw-outpower coil with air-gap and changes transmission line current into stable output voltageby power management unit and charging management unit which supplies power fortransmission line current wave online monitoring system. This paper suggests use frontpart of transmission line current wave as research object because the front part ofcurrent wave can avoid the disturbance of wave reflection. The rise time rate oftransmission current wave is raised to identify the two kind of lightning overvoltageabove. Influencing factors and solutions in application are also considered in this paper.
     ③Considering complicated structure and lack of power supply are key problemsfor the lightning online monitoring system mass popularization, the paper proposes a setof the energy harvesting and online monitoring system for lightning. Signal coil and thepower supply coil would be nested in lightning flow channel. The lightning current willsupply the trigger signal and required energy to the monitoring system to acquire objectsignals, while the polarity and peak value of the lightning current will be stored innon-volatile storage. According to the result of theoretical calculation and simulationanalysis reasonable structure, size, winding turns and other parameters of the signal andthe power supply coil could be obtained. Within the range of10~200kA lightningcurrent, output voltage of signal coil would be linear with the measured lightningcurrent; The signal of the positive and negative polarities lightning current amplitudecould be maintained through the signal conditioning circuit; Through electromagneticinduction, energy could be obtained from the lightning channel by the power supply coil.After the process of overvoltage protection, rectification, charging and voltagestabilization, the energy would be used for the power supply of the lightning currentmonitoring system with suitable time and voltage requirements. According to theexperiment results, this method has been proved to be practical and feasible to measurelightning current accurately with a error below4%, while its power supply enoughenergy to guarantee the normal operation of the monitoring system.
     ④The tower model corresponding to the real circumstances is established toaccurately analyze the wave process at lightning stroke on the tower. This paper takesthe high tower as the object of study and conducts a detailed analysis of the structure ofthe tower by introducing the modular idea in order to report the real situation of the tower in a more authentic and more concrete way. The paper makes the following studyand analysis of the wave process of the lightning striking on the tower: a new towerequivalent impedance modeling method for the tower is put forward in view of therelated theory of electromagnetic field and combining the real structure of the tower.The equivalent impedance of a single vertical conductor is acquired on the basis of thetheory of taper antenna. The equivalent impedance of the vertical four-conductor systemis acquired by introducing compensation factor in consideration of the realcircumstances of the four vertical supports of tower main body. The equivalentimpedance modeling of the cross arm is constructed. The equivalent impedancemodeling of the inclined holder is put up by analyzing the influence of the inclinedholder on the main part of the tower. The functional relationship of the impedance withthe change of the height of the tower by the modularization of the tower is found. TheSZC3tower equivalent impedance model of Zhangjiaba-Changshou is build. Based onthe tower model, this paper analyses the wave process of transmission tower underlightning striking in the ATP simulation software, the distribution condition of voltageon the terminal of cross arm was found, comparing with the simulation result of Haramodel.
引文
[1]梅贞,陈水明,顾勤炜,黄歆章.1998~2004年全国雷电灾害事故统计[J].高电压技术,2007,33(12):173-176.
    [2]刘晓东.110kV线路几起雷击故障分析及其对策[J].高电压技术,2002,28(9):52-53.
    [3]陈家宏,张勤,冯万兴,方玉河.中国电网雷电定位系统与雷电监测网[J].高电压技术,2008,34(3):425-431.
    [4]维列夏金,吴维韩.俄罗斯超高压和特高压输电线路防雷运行经验分析[J].高电压技术,1998,24(2):76-79.
    [5]易辉,崔江流.我国输电线路运行现状及防雷保护[J].高电压技术,2001,27(6):44-45.
    [6]钱冠军.500kV线路直击雷典型事故调查研究[J].高电压技术,1997,23(2):73-75.
    [7] A. J. Ericsson. The incidence of lightning strikes to power line [J]. IEEE Transactions onPower Delivery,1987,2(3):871-886.
    [8] IEEE Working Group on Estimating Lightning Performance of Transmission Lines. ASimplified Method for Estimating Lightning Performance of Transmission Lines. IEEE Trans,1985, PAS-104(4):919-932.
    [9] IEEE Working Group on Estimating Lightning Performance of Transmission Lines.Estimating Lightning Performance of Transmission Lines II-Updates to Analytical Models[J].IEEE Trans,1993, PWRD-8(3):1254-1267.
    [10]刘振亚.过电压防护及绝缘配合[M].北京:中国电力出版社,2009.
    [11]张伟钹,何金良,高玉明.过电压防护及绝缘配合[M].北京:清华大学出版社,2002.
    [12]李培国.国外对特高压输电线路雷击跳闸原因的一个新观点[J].电网技术,2000,24(7):63-65.
    [13]莫付平,陈充平,软江军.输电线路杆塔模型与防雷性能计算研究[J].电网技术,2004,28(11):80-84.
    [14]杜澍春.关于输电线路防雷计算中若干参数及方法的修改意见[J].电网技术,1996,20(12):53-56.
    [15]钱冠军,王晓瑜,汪雁,詹花茂.输电线路雷击仿真模型[J].中国电机工程学报,1999,19(8):39-44.
    [16]吴璞三,孙萍.磁钢式雷电陡度仪[J].高电压技术,1986,12(4):25-33.
    [17]刘继.对仪征泵站雷害事故的看法[J].电网技术,1997,21(6):26-28.
    [18]朱虎.基于雷电流特征值的单片机检测系统设计[D].华北电力大学,2007.
    [19] Sakesen E C. Influence of rate-of-rise on distribution arrester protective characteristics[J].IEEE Trans on Power Apparatus and System,1979,98(2):519-526.
    [20] Richard E Orville,Gary R Huffines,William R.Burrows,The North Ameriean lightningdetection network(NALDN)-first results,1998-2000[J]. Monthly weather review,2002,130(8),2098-2109.
    [21] Zaima,Eiichi,Mochizuki etc,Observation of lightning by means of Time-of-arrival typelightning location system[J]. Electrical Engineering in japan(English translation of DenkiGakkai Ronbunshi),1997,120(1),9-15.
    [22] House V D L,National lighting detection network and the fault analysis lightning system[C].1996Intemational Lightning Deteetion Conferenee(ILDC) Tucson Arizona USA,1996,430-437.
    [23]陈小兵,张小峰,潘荣泽.雷电探测定位实时计算网络的应用及对广西亚热带地区雷情的初步探讨[J].电网技术,1994,18(4):39-44.
    [24]赵文光,陈家宏,张勤.新的雷电综合定位系统的定位计算[J].高电压技术,1999,25(4):66-68.
    [25]张勤,王光财,吴维宁.新的综合雷电定位系统的误差计算[J].高电压技术,2000,26(2):54-56.
    [26]王巨丰,唐兴祚.测量雷电流幅值的磁带法及幅值读出装置[J].高电压技术,1992,17(1):8-89.
    [27]王巨丰,唐兴祚,覃海深.磁带测量雷电流幅值的研究[J].高电压技术,1993,19(1):65-68.
    [28]王巨丰,唐兴祚,覃海深.磁带测量雷电流幅值的误差分析[J].高电压技术,1993,19(3):40-46
    [29]王巨丰.磁带测量雷电流参数的研究[J].高电压技术,1996,22(4):68-70.
    [30]王巨丰,毛小虎,杨文斌,等.磁带直接测量雷电流最大陡度的方法与机制[J].中国电机工程学报,2006,26(6):162-166.
    [31] Rogowski W, Steinhaus W. Die messung der magnetischen spannung[J]. Archivfurelektrotechnik,1912,1(4),141-150.
    [32]罗苏南,田朝勃,赵希才.空心线圈电流互感器性能分析[J].中国电机工程学报,2004,24(3):108-113.
    [33]郭晓华,朱明钧,徐雁.Rogowski线圈工业化应用中若干问题的探讨[J].高电压技术,2003,29(3):16-17,33.
    [34] Griscom S. B., Lloyd B. L., Hileman A. R. Voltage Divider for Measuring Impulse Voltageson Transmission Lines[J].1954.73(1).228-237
    [35]张仁豫,陈昌渔,王昌长.高电压试验技术(第2版)[M].北京.清华大学出版社,2003.
    [36] Jayaram S., Xu X. Y., Cross J. D. High-divider-ratio fast-response capacitive dividers forhigh-voltage pulse measurements[J].2000.36(3).920-922
    [37] Seljeseth H., Saethre E. A., Ohnstad T., Lien I. Voltage transformer frequency response.Measuring harmonics in Norwegian300kV and132kV power systems[J].1998(2).820-824
    [38] Schwab A. J., Pagel J. H. W. Precision Capacitive Voltage Divider for Impulse VoltageMeasurements[J].1972. PAS-91(6).2376-2382
    [39] Feser K. A new type of voltage divide for the measurement of high impulse and ac voltage[J].1972. PAS-91(1).56-71.
    [40] Feser K. Transient Behaviour of Damped Capacitive Voltage Dividers of Some MillionVolts[J].1974. PAS-93(1).116-121
    [41] Gomez D. F. G., Saens E. M., Prado T. A., Martinez M. Methodology for Lightning ImpulseVoltage Divisors Design[J].2009.7(1).71-77
    [42]赵东阳,王剑飞,李成祥,米彦,姚陈果,唐建兴.阻容串联分压器的设计与研制[J].重庆.
    [43]韩英杰.纳秒脉冲信号的测量与波形重建[D].北京:中国科学院电工研究所.2004.
    [44]司马文霞,兰海涛,杜林,孙才新,姚陈果,杨庆.套管末屏电压传感器响应特性研究[J].中国电机工程学报.2006.26(21).5
    [45]汤宁平,柔少瑜,廖福旺.基于空间电场效应的高电压测量装置的研究[J].电工电能新技术.2009.28(1).5
    [46]任稳柱, Zaengl W.测量冲击电压的电容电流法[J].高电压技术.1991.(04).12-15
    [47] Birtwhistle D., Gray I. D. A new technique for condition monitoring of MV metalcladswitcher[J].1998.91-95
    [48]杜林,刘伟明,司马文霞,陈伟根,王有元.基于容性设备泄漏电流的电网电压测量方法[J].电力系统自动化,2008.32(19).5
    [49] Xiufang Jia, Shutao Zhao, Baoshu Li, Wei Zhao. A new method of transient overvoltagemonitoring for substation[J]. North China Electr Power Univ, Beijing.2002(2).994-997
    [50] Changsheng Li, Xiang Cui, Yamaguchi I., Yokota M., Yoshino T. Optical voltage sensorusing a pulse-controlled electroptic quarter wave plate[J].2005.54(1).273-277
    [51] Changsheng Li, Yoshino T. Optical voltage sensor based on electroptic crystal multiplier[J].2002.20(5).843-849
    [52]李开成,张健梅,戴建华.基于电光效应的几种光纤电压传感器[J].高压电器.2001.(01).41-43
    [53]罗承沐,苏进喜,郭小明,张贵新.无源光纤电压传感器测量高速暂态电压[J].高电压技术.1996.(04)
    [54]李开成,江德长.高电压测量的几种光学传感方法[J].高压电器.2000.(06).40-42
    [55]段雄英,邹积岩.电压/电流组合型电子式互感器的研究[J].电工技术杂志.2002.(05).9-12
    [56]钱政,申烛,罗承沐.电子式光电组合电流/电压互感器中的相位补偿技术[J].电力系统自动化.2002.(24).40-44
    [57]1997.DL/T620219971交流电气装置的过电压保护和绝缘配合[S].1997.
    [58] Jordan C A. Lightning computations for transmission lines with overhead ground wires part.Ⅱ[J]. General Electric Review,1934,34:180-185.
    [59] Wagner C F, Hileman A R. A new approach to calculation of lightning performance oftransmission linesⅢ-a simplified method stroke to tower [J]. AIEE Trans on Power Apparatusand System,1960,79(10):589-603.
    [60] Sargent M A, Darveniza M. Tower surge impedance[J]. IEEE Trans on Power Apparatus andSystem,1969,88(5):680-687.
    [61] Yamada T, Mochizuki A, Ishii M, et al. Experimental evaluation of a LTHV tower model forlightning surge analysis[J]. IEEE Trans on Power Delivery,1995,10(1):393-402.
    [62]牧原,曾楚英.杆塔波阻抗的研究[J].高电压技术,1992,18(2):9-13.
    [63] CIGRE SC33-WG01. GIGRE guide to procedure for estimating the lightning performances oftransmission line [R]. Parie: GIGRE SC33-WG01,1995.
    [64]解广润.电力系统过电压[M].北京:水利电力出版社,1988.
    [65] Hideki Motoyama. Analytical and experimental study on surge response of transmissiontower[J]. IEEE Trans on Power Delivery,2000,15(2):812-819.
    [66] E.A.Oufi, A.S.Alfuhaid and M.M.Saied, Transient analysis of lossless single-phasenonuniform transmission lines, IEEE Trans. Power Delibery,1994,9(3):1694-1700.
    [67] M.T.Correia de Barros and M.E.Almeida, Modeling of single-phase nonuniform transmissionlines in electromagnetic transient simulations, IEEE Trans. Power Delivery,1997,12:916-921.
    [68] GD.Breuer, A.J.Schultz, R.H.Sehloman.Field studies of the surge response of a345-kVtransmission tower and ground wire, AIEE Trans,1958,77:1392-1396.
    [69]招誉颐.线路杆塔冲击响应的测量问题[J].华中工学院,1965,5(8):38-44.
    [70] Kawai M. Studies of the surge response on a transmission line tower[J].IEEE Trans on PowerApparatus and System,1964,83(1):30-34.
    [71]中华人民共和国电力行业标准DL/T620-1997交流电气装置的过电压保护和绝缘配合[S].中华人民共和国电力工业部,1997.
    [72]胡毅.雷电波下超高压线路杆塔的塔顶电位响应特性研究[D].武汉高压研究所,1985.
    [73] Chisholm W A, Chow Y L. Lightning surge response of transmission towers[J]. IEEE Transon Power Delivery,1983,102:3232-3242.
    [74] Masaru Ishii, Tatsuo Kawamura. Multistory transmission tower model for lightning surgeanalysis[J]. IEEE Transactions on Power Delivery,1991,6(3):1327-1335.
    [75]张永记,司马文霞,张志劲.防雷分析中杆塔模型的研究现状[J].高电压技术,2006,32(7):93-97.
    [76] Toshiaki Ueda. A comparison between two tower models for lightning surge analysis of77kVsystem[C]. International Conference on Power System Technology.[S.l.],2000:433-437.
    [77] Takamitsu Ito, Toshiaki Ueda. Lightning flashovers on77kV systems: observed voltage biaseffects and analysis[J]. IEEE Transactions on Power Delivery,2003,18(2):545-550.
    [78] Hara T, Yamamoto O. Modeling of a transmission tower for lightning surge analysis[J]. IEEProc of Trans Distrib,1996,143(3):283-289.
    [79]张颖,高亚栋,杜斌,等.输电线路防雷计算中的新杆塔模型[J].西安交通大学学报,2004,38(4):365-368.
    [80] Lundholm R, Finn R B, Price W S. Calculation of transmission line lightning voltages by fieldconcepts [J]. AIEE Trans on Power Apparatus and System,1957,76(3):1271-1281.
    [81] Wagner C F, Hileman A R. A new approach to calculation of lightning performance oftransmission line Ⅱ[J]. AIEE Trans on Power Apparatus and System,1959,78(4):996-1020.
    [82] Y.Baba, M.Ishii. Numerieal electromagnetic field analysis on measuring methods of towersurge impedance. IEEETrans,1999,14:630-635.
    [83] M.lshii, Y.Baba. Numerieal electromagentic field analysis of tower surge response[J]. IEEETrans,1997,12:483-488.
    [84]周凯,张涛,董秀成,等.10kV电网过电压在线监测装置的研制及波形分析[J].电工电能新技术,2006,25(3):73-76.
    [85]王士彬,孙才新,姚陈果,等.10kV配网内外过电压在线监测系统及波形分析[J].高电压技术,2004,30(6):64-66.
    [86]蔡光显,王建兴,吴世林,等.电力系统过电压在线监测装置[J].电网技术,1995,19(1):9-12.
    [87]包大恩,鲁铁成,吴高林.配电网电压质量在线监测装置的研制[J].高电压技术,2002,28(10):48-49.
    [88]姚陈果,孙才新,米彦,等.配电网过电压在线监测系统的设计与实现[J].电力系统自动化,2004,28(9):74-76.
    [89]兰海涛,司马文霞,姚陈果,等.高压电网过电压在线监测数据采集方法研究[J].高电压技术,2007,33(3):79-82.
    [90]周凯,张涛,董秀成,等.基于电容分压的配电网过电压在线监测[J].电力系统自动化,2007,31(21):86-89.
    [91]周生奇,辜超.嵌入式过电压远程实时监测系统的研究[J].高电压技术,2004,30(12):53-57.
    [92]刘斌,任力,徐兴华,等.基于虚拟仪器的电网过电压在线监测系统[J].电力自动化设备,2007,27(2):97-100.
    [93]陈建新.计算电容器电容的一种简易方法[J].洛阳师范学院学报.2002.(05).39-40.
    [94]杜林,常阿飞,司马文霞,王有元,陆国俊.一种非接触式架空输电线路过电压传感器[J]电力系统自动化.2010.(11).93-97.
    [95]莎皮罗Д H.电磁屏蔽理论基础[M].山西.国防工业出版社.1983.9-23.
    [96]戴玉松,颜怀梁.考虑冲击电晕时的一种多相线等值电路模型[J].四川工业学院学报.2000.(02).41-46.
    [97]张芳榴,吴维韩.电力系统过电压数值计算[M].北京.科学出版社.1989.
    [98]赵宇明,麻敏华,楚金伟,等.电晕笼中直流导线起晕电压的测量方法[J].高电压技术.2008.34(08).1567-1572.
    [99]武秀荣.气体介电常数的微观表达式[J].山西农业大学学报.1994.(01).
    [100]方瑜,周泽存,沈其工.高电压技术[M].北京.中国电力出版社.2006.3-4.
    [101]蒋兴良,舒立春,孙才新,等.电力系统污秽与覆冰绝缘[M].北京:中国电力出版社,2009.
    [102]致远电子有限公司. EPC2000系列MiniISA工控主板用户手册[R].广州:致远电子有限公司,2004.
    [103]汤蕴缪,史乃.电机学[M].北京:机械工业出版社,2000.
    [104]俞集辉.电磁场原理[M].重庆:重庆大学出版社,2003.
    [105]李先志,杜林,陈伟根,等.输电线路状态监测系统取能电源的设计新原理[J].电力系统自动化,2008.32(1).76-80.
    [106]谭宇刚,韩旻.低频铁心式罗果夫斯基线圈饱和问题分析[J].高电压技术,2001.27(2).22-23.
    [107] Voislav Jankov. Estimation of the maximal voltage induced on an overhead line due to thenear by lightning [J]. IEEE Trans. On Power Delivery,1997,12(1):315-324.
    [108] Yamada T, Mochizuki A, Sawada J, et al. Experiment evaluation of a UHV tower model forlightning surge analysis[J]. IEEE Trans. on Power Delivery,1995,10(1):393-402.
    [109] IEEE Working Group3.4.11of Surge Protection Devices Committee. Modeling of metaloxide surge arresters [J]. IEEE Trans. on Power Delivery,1992,7(1):302-309.
    [110]张曦,张庆伟,张源斌,混合式OCT高压侧电路的供电方式[J].高电压技术,2002,28(12):14-15.
    [111]钱政.有源电子式电流互感器中高压侧电路的供能方法[J].高压电器,2004,40(2):135-138.
    [112]李芙英,朱小梅,纪昆,等.一种应用于高电压侧测量系统中电源[J].高电压技术,2002,28(3):46-47.
    [113]方志,赵中原,邱毓昌,等.用于混合式光电电流互感器的光电传输系统[J].电网技术,2003,27(4):43-45.
    [114]刘丰,高迎霞,毕卫红.电子式电流互感器高压侧供能方案的研究[J].高电压技术,2007,33(7):72-75.
    [115] Dong-Seok In,Sugoog Shon,Jae-Jo Lee.A study on the implementation of inductive couplerwith Rogowski coil for BPLC[A].International Conference on ATC2008[C]. Oct.2008.327-330.
    [116] Kojovic L J A.Application of Rogowski coils used for pro-tective relaying purposes[A].IEEE/PES Power Systems Conference and Exposition [C]. USA,Oct.2006.538-543.
    [117] Zhu J,Yang L,Jia J.Design of Rogowski coil with wide band using for partial dischargemeasurements [A]. Proc.of Int.Sym.on Electrical Insulating Materials[C]. June2005.518-521.
    [118]陈绍东,王孝波,李斌,等.标准雷电波形的频谱分析及应用[J].气象,2006,32(10).
    [119] J A Gutierrez, P Moreno, J L Naredo. Nonuniform transmission tower model for lightningtransient studies[J]. IEEE Trans on Power Delivery,2004,19(2):490-496.
    [120] E C Jordan. Electromagnetic waves and radiating systems[J]. American Journal of Physics,1951,19(8):477-478.
    [121]叶齐政,孙敏.电磁场[M].武汉:华中科技大学出版社,2007.
    [122]杨宝初,刘晓波,戴玉松.高电压技术[M].重庆:重庆大学出版社,2001.
    [123]莫付江,陈允平,阮江军.输电线路杆塔模型与防雷性能计算研究[J].电网技术,2004,No.21, Vol.28:80-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700