用户名: 密码: 验证码:
矿渣胶凝材料胶结矿山尾砂充填性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山胶结充填中的胶凝材料大部分采用通用水泥,但水泥做胶结固化材料时,对充填料的粒度有一定要求,存在着凝结时间长、脱水困难和成本太高等问题。而矿渣是炼铁过程中排放的工业废渣,具有较好的潜在活性,而且产生量很大。从有效利用资源、节约能源、保护环境的角度出发,选用矿渣作为矿山充填胶凝材料的主要原材料具有重要的战略意义。
     本文以高炉矿渣作为原材料,通过在矿渣中掺入不同含量水泥熟料和石膏、不同激发剂含量和类型,探讨不同型号的矿渣胶凝材料对不同类型尾砂的胶结效果,从而确定其优化配比选出效果最好的矿渣胶凝材料。根据矿渣胶凝材料对胶结充填体强度及性能的影响规律,探讨了矿渣胶凝材料在矿山充填中的胶凝机理,并为矿渣胶凝材料进一步应用于矿山胶结充填提供理论依据和技术支持。
     (1)试验结果表明不同的尾砂作为充填骨料用于矿山充填时,对矿渣胶凝材料有一定的选择性。以无侧限抗压强度指标来衡量,对于颗粒较粗的程潮尾砂,采用H1低硫型矿渣胶凝材料固化效果较好;而H4高硫型矿渣胶凝材料则对颗粒较细的金山店尾砂具有良好的固结性能。
     (2)通过充填体的强度试验,探讨了掺灰量、料浆质量浓度、龄期等因素对充填体强度的影响规律,并与水泥尾砂胶结体进行对比。当矿渣胶凝材料的掺量为5.3%时,其胶结体强度要高于10%掺量的水泥硬化体。同时,影响充填体强度的因素有很多,分别从絮凝剂和细粒废石掺量、试验用水及养护条件等因素探讨了对充填体强度的影响。
     (3)在室内无侧限抗压强度的试验基础上,分析充填体的细观损伤机制及损伤特性,推导出在全尾砂胶结体和废石尾砂胶结体两种不同的损伤本构方程模型。
     (4)借助于XRD、SEM、TG-DSC等微观分析手段,探讨了矿渣胶凝材料水化产物和充填胶结体的微观结构特点及其胶凝机理。通过试验结果发现,矿渣胶凝材料具有较高强度的原因是其水化产物主要以C-S-H凝胶和AFt晶体为主,这些产物共同参与胶结体网状结构形成;而且在固结尾砂的过程中,尾砂中的活性成分如方英石、云母和白云石、方解石等碳酸盐矿物会与胶凝材料发生反应,提高胶结体的固化性能。
     (5)根据矿渣胶凝材料、尾砂系统的反应特点,采用扫描电镜分析方法,建立了矿渣胶凝材料的水化反应物理模型。通过水化反应模型,可将矿渣胶凝材料水化反应看成是多矿物的化合反应,矿渣受到碱和硫酸盐的双重激发,从而反映出良好的胶凝性能。
     (6)矿山现场胶结充填试验表明,矿渣胶凝材料完全可以代替水泥作为矿山充填系统中的胶结剂,而且充填体在井下环境中养护更有利于强度的增长。
Portland cement is traditionally used as binder for cemented paste backfill, which makes the mining cost high, the filling mining used in underground mine becomes the fatal technology problem. The blast furnace slag (BFS) is a kind of industrial waste which is produced in blast furnace process, and it not only contains the potential pozzuolana activity but also has high production. Using BFS as the main raw material in mine filling system, which has important strategic significance to save production resources and energy and protect environment.
     This paper takes BFS as the raw material, through mixing into different content of cement clinker, gypsum and activator in the slag material make up binders. The different types of slag cementitious materials are used to solidify the different type of tailings in order to ascertain the mixture ratio. According to the rule of filling body strength and capability, the paper discussed cementing mechanism of slag cementitious material in mine backfilling, which will provide theory evidence and technical support for further application of the slag cementitious materials in paste backfill.
     (1) The experimental results indicated that the different types of tailings have some selectivity for slag cementitious material. The mechanical strength results have shown that using H1 material has the best solidification effect relative to CHENCHAO tailings, and the H4 has better performance for JINSHANDIAN tailings than other types of slag cementitious material.
     (2) By unconfined compression strength (UCS) tests of filling body with slag cementitious material, influencing rules of binder addition ratio, mortar density and curing time on the strength are individually analyzed. The UCS of tailing added 5.3% slag cementitious material are higher than the tailings added 10% cement after curing 28 days. There are many other factors influence on the strength of filling body, for example, the content of flocculating agent and fine waste rock, experimental water, curing condition.
     (3) Based on the analysis of micro-damage mechanism and damage performance of the whole tailings and the waste rock-tailings filling body, two different damage constitutive model are established under unconfined compression condition.
     (4) Using XRD, SEM, TG-DSC et al tests to observe and analysis the hydration products of slag cementitious material and component and microcosmic frame of filling body. It is found that the main hydration products of slag cementitious material are calcium silicate hydrate (C-S-H) gel and ettringite (AFt) crystal. The presence of hydration products is a good indication that cementitious bonds are forming and therefore the strength of material is increased. The active components of tailings are mica clay minerals and carbonate minerals, which take part in hydrate reaction in order to improve filling body's performance.
     (5) According to the characteristic of slag cementitious material and tailings system hydrating process, the paper establishes a physical model of slag cementitous material hydrating reaction by using SEM analysis. The hydrate reaction of slag cementitious material can be considered as multiply-reaction of mineral through physical model. The potential hydraulicity of slag is activated by alkali and sulphate, which reflects favorable cementing capability.
     (6) The tests of paste backfill in mine industry indicate:slag cementitious material can instead of cement as a binder in backfill system, and the filling body is more advantageous to the development of its intensity in the moist environment in well.
引文
[1]R.J. Mitchell, R.S. Olsen, J.D.Smith. Model studies on cemented tailing used in mine backfill [J]. Can. Geotech.J.,1982, (19):14-28
    [2]王新民.基于深井开发的充填材料与管输系统的研究[D].长沙:中南大学,2005
    [3]裴启涛,陈建宏,王子哲等.胶结充填技术在矿山的应用[J].矿业快报,2008,5(5):92-95
    [4]孙恒虎,黄玉诚,杨宝贵.当代胶结充填技术[M].北京:冶金工业出版社,2002
    [5]张文生,李北星,周明凯等.高水材料的胶凝、浆体结构和稳定性[J].中国有色金属学报,1998,8(增刊):185-188
    [6]赵才智,周华强,柏建彪等.膏体充填材料强度影响因素分析[J].辽宁工程技术大学学报,2006,25(6):904-906
    [7]周爱民,姚中亮.赤泥资源化开发前景—赤泥用作矿山充填工程材料[R].长城铝业公司技术创新院士报告文集.郑州:国家经贸委,2000
    [8]周爱民.基于工业生态学的矿山充填模式与技术[D].长沙:中南大学,2004
    [9]C. Wang, E. Villaescusa. Backfill research at the Western Australian School of Mines [A]. In:Massmin.2000. Australian institute of mining and metallurgy publication series [C].2000: 735-743
    [10]R.A. Ford. A review of backfill mining practices and technology at the Fox Mine [A]. Mining with backfill 12th Canada Rock Mechanics Symposium [C]. Sudbury/Ontario,1979:1-156
    [11]A. Moreman, K. Rogers, M. Cooper et al. Operating and technical issues in the implementation of paste backfill at the Brunswick mine, Proc. Minefill 2001 [A].7th Int. Symp. Min. Backfill, SME,2001,237-250
    [12]S.J. Jung, Kousick Biswas. Review of current high density paste fill and its technology [J]. Mineral Resources Engineering,2002,11(2):165-182
    [13]J.Z. Chen, Y. Potvin, K. Kuganathon. The investigation of high density and paste fills for the enterprise mine project at Mount Isa [A] 6th Int. Symp. Min. Backfill, AusIMM, Melbourne,1998, 29-33
    [14]E.G. Thomas. Cemented fill Practice and researeh of Mount Isa [J]. Proc. Austr. Inst. Min. Met.,1971, (240):35-51
    [15]采矿设计手册编委会.采矿设计手册(矿床开采卷下)[M].北京:中国建筑工业出版社,1990
    [16]刘同有,周成浦.我国充填采矿技术新进展[J].中国矿业,1995,4(5):25-29
    [17]孙恒虎,刘文永.高水固结充填采矿[M].北京:机械工业出版社,1998
    [18]孙恒虎,陈玉和.高水速凝材料及其应用[M].徐州:中国矿业大学出版社,1994
    [19]胡家国.电厂粉煤灰矿山充填胶凝机理研究及水化反应动力学特性[D].长沙:中南大学,2004
    [20]侯浩波.一种土壤固化剂[P].中国专利:98113594.3,1999-12-22
    [21]苏先锋,陈闻舞,李建雄等.凡口铅锌矿充填工艺现状及发展方向[A].见:矿业研究与开发.第八届国际充填采矿会议论文集[C].2004,15-17
    [22]P. Farsangi, A. Hara. Consolidated rockfill design and quality control at Kidd Creek Mines [J]. CIM Bulletin,1993,86(972):68-74
    [23]王新民.基于深井开采充填材料与管输系统的研究[D].长沙:中南大学,2005
    [24]M.J. Carlson, L.W. Saperstein. Efficient use of additives to improve pneumatically emplaced backfill strength [J]. Mineral Engineer,1989,462-466
    [25]Wolfgang Helms,胡际平.影响细粒胶结充填料强度的各种因素[J].矿业工程,1983,(4): 61-69
    [26]F.L. Aylmer. Cement properties related to the behaviour of cemented fill [A]. Proc. of the Jubilee Symp. on Mine Filling [C], Mt. Isa/Queensland,1973; Austral. Inst. Min. Met. (1973)S. 1-282
    [27]A. Kesimal, E. Yilmaz, B. Ercikdi et al. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill [J]. Materials Letter,2005, 59(28):3703-3709
    [28]张钦礼,王新民,田明华.硫化物对充填体强度的影响[J].矿业研究与开发,2004,24(增刊):168-169
    [29]J.Li, E. Villaescusa, D.Tyler et al.影响地下矿山充填质量的因素[J].矿业研究与开发,2004,24(增刊):187-191
    [30]余斌.影响尾砂胶结充填体强度的若干因素分析[J].河北冶金,2001,3(123):3-6
    [31]C. Wang, E. Villaescusa. Influence of water salinity on the properties of cemented tailings backfill [J]. Transactions of the institution of mining and metallurgy section A-mining technology,2001,110:62-65
    [32]李兴尚.水砂胶结充填材料配合比的优化研究[D].昆明:昆明理工大学,2005
    [33]S.D. Wang, K.I. Scrivener, P.L. Pratt. Alkali-activated slag cement and concrete, a review of properties and problem [J]. Advance in Cement Research,1995,7(27):93-102
    [34]袁润章.胶凝材料学[M].武汉:武汉理工大学出版社,1996
    [35]周红.矿渣微粉在水泥生产中的应用研究[D].西安:西安建筑科技大学,2007
    [36]GB/T203-1994.用于水泥中的粒化高炉矿渣[S].北京:中国标准出版社,1994
    [37]陈煊浩.胶凝物质工业学[M].北京:中国工业出版社,1983.
    [38]A. Limenez, F. Putertas, L. Carrasco. Alkaline sulfate activation processes of a Spanish blast furnace slag [J]. Mater. Constr.,1996,46(241):23-27
    [39]吴达华,吴永革,林蓉.高炉水淬矿渣结构特性及水化机理[J].石油钻探技术,1997,25(1):31-33
    [40]朱守东,崔崇,谢永波等.高性能矿渣的活化研究[J].房材与应用,2000,10(5):18-20
    [41]张树青,吴学礼,王彩英.矿粉颗粒级配及其对高掺量矿渣水泥强度的影响[J].水泥,2001,(2):5-9
    [42]蒋永惠,阎春霞.粉煤灰颗粒分布对水泥强度影响的灰色系统研究[J].硅酸盐学报,1998;26(4):424-429
    [43]周焕海,唐明述,吴学权.粒化高炉矿渣的细度对其水硬活性和浆体强度的影响[J].水泥石灰,1993,(1):2-4
    [44]唐明,王涛,戚无恙.激发仪下矿渣微粒群分形特征的快速评价[J].沈阳建筑工程学院学报(自然科学报),2003,19(3):200-202
    [45]高树军,吴其胜,张少明.高能球磨矿渣的形貌及其活性[J].建筑材料学报,2003,6(2):157-161
    [46]高树军,吴其胜,张少明.机械力学化学方法活化矿渣研究[J].南京工业大学学报,2002,24(6):61-65
    [47]阎文涛,郑雯.碱矿渣水泥的热激发研究[J].水泥技术,2008,1:27-30
    [48]F. Puertas, S. Martinez-Ramirez, S. Alonso, et al. Alkali-activated fly ash/slag cement strength behaviour and hydration products [J]. Cement and Concrete Research 2000,30:1625-1632.
    [49]韩风娟,姜兴国,傅桂香等.SSS型土壤固化剂的试验研究[J].公路,1997,(8):37-40
    [50]H. Zhou, X.Q. Wu. Kinetic study on hydration of alkali-activated slag [J]. Cement and Concrete Research,1993,23:1625-1632.
    [51]袁润章.矿渣结构与水硬活性及其激发机理[J].武汉工业大学学报,1987,(3):297-302.
    [52]董超,谢葆青,林红.高炉矿渣混凝剂处理有机废水的研究[J].山东环境,2000,(2):32-32.
    [53]于衍真,王建荣,伊爱焦等.用矿渣处理革废水的试验研究[J].环境科学动态,1999,(4):24-26.
    [54]吴达华,吴永革,林蓉.高炉矿渣结构特性及水化机理[J].石油钻探技术,1997,25(1):31-33.
    [55]徐彬,蒲心诚.矿渣玻璃体微观分相结构研究[J].重庆建筑大学学报,1997,19(4):53-57.
    [56]徐彬,蒲心诚.矿渣玻璃体分相结构与矿渣水玻璃活性本质的关系探讨[J].硅酸盐学报,1997,25(6):728-733
    [57]崔崇,谢运波,朱守东.少熟料水泥中大掺量矿渣激发剂条件的研究[J].水泥,2000,(2):13-16
    [58]陈有治,蒲心诚,马保国等Na2SO4-矿渣水泥的水化与硬化特性研究[J].硅酸盐学报,2000,28(增刊):81-84.
    [59]吴其胜,李玉寿,徐风广等.固体碱激发制备525号矿渣水泥的研究[J].水泥工程,2000,(2):11-15
    [60]朴应模.无机激发剂对无熟料高炉矿渣水泥的作用机理及强度效果[J].延边大学学报(自然科学版),2003,29(3):220-224
    [61]李东旭,吴学权.石膏种类对矿渣水泥性能的影响[J].水泥工程,1999(1):16-20.
    [62]张云升,胡曙光,王发洲.晶种在矿渣混凝土中的增强作用[J].山东建材学院学报,2001,15(1):13-16
    [63]肖志兴,吴梅芬,徐明等.高炉矿渣水化过程中晶核诱导机理[J].石油学报,1998,19(4):117-124.
    [64]周明凯,李北星,沈卫国.SGL结合料稳定土的性能、应用及其硬化机理研究[J].中国公路学报(增刊),1999,12:9-17.
    [65]王培铭,金左培,张永明.碱矿渣胶凝材料复合激发剂的研究[A].见:第一届全国化学激发剂材料研讨会.第一届全国化学激发剂材料研讨会论文集[C].南京:南京工业大学出版社,2004:255-259.
    [66]范莲花.矿渣微粉掺合料对混凝土性能的影响[D].西安:西安建筑科技大学,2007
    [67]付立娟,王仁忠,陈书起.21世纪水泥技术发展趋势[J].中国建材科技,2000,(4):46-49
    [68]蒋家奋.矿渣微粉在水泥混凝土中应用的概述[J].混凝土与水泥制品,2002,(3):3-6
    [69]邓飞,李永辉.全尾砂高水固化胶结充填工艺前景展望[J].中国矿业,2007,10(8):41-42.
    [70]侯浩波,张发文,魏娜等.利用HAS固化剂固化尾砂胶结充填的研究[J].武汉理工大学学报,2009,31(4):7-10.
    [71]S.P. Pandey, R.L. Sharma. The influence of mineral additives on the strength and porosity of OPC mortar[J]. Cement and Concrete Research,2000,30(1):19-23.
    [72]Y. M. Zhang, W. Sun, H.D. Yan. Hydration of high-volume fly ash cement pastes [J]. Cem. & Con. Com,2000,22(6):445-452.
    [73]GB/T 1346-2001.水泥标准稠度用水量、凝结时间、安定性检验方法[S].北京:中国标准出版社,2001
    [74]GB/T 1345-2005.水泥细度检验方法[S].北京:中国标准出版社,2005
    [75]GB 208-1963.水泥比重测定方法[S].北京:中国标准出版社,1964
    [76]GB/T 17671-1999.水泥胶砂强度检验方法(ISO法)[S].北京:中国标准出版社,1999
    [77]支全,张军成.选矿尾砂处理研究进展[J].河北冶金,2006,(4):3-6
    [78]A. Kesimal, B. Ercikdi, E. Yilmaz. The effect of desliming by sedimentation on paste backfill performance [J]. Miner. Eng.2003, (16):1009-1011
    [79]M. Benzaazoua, P. Marion, I. Picquet et al. The use of pastefill as a solidification and stabilization process for the control of acid mine drainage [J], Minerals Engineering,2004,17: 233-243
    [80]GB/T 50123-1999.土工试验方法标准[S].北京:中国计划出版社,1999
    [81]M. Fall, S.S. Samb. Pore structure of cemented tailings materials under natural or accidental thermal loads[J]. Materials Characterization.2008,59(5):598-605
    [82]M. Fall, S.S. Samb. Influence of curing temperature on strength, deformation behaviour and pore structure of cemented paste backfill at early ages [J]. Construction and Building Materials.
    [83]A. Kesimal, E. Yilmaz, B. Ercikdi. Evaluation of backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents [J]. Cement and Concrete Research,2004, (34): 1817-1822.
    [84]M. Benzaazoua, T. Belem, B.Bussiere. Chemical factors that influence the performance of mine sulphidic paste backfill [J]. Cement and concrete research,2002, (32):1133-1144
    [85]S. Ouellet, B.Bussiere, M. Mbonimpa et al. Reactivity and mineralogical evolution of an underground mine sulphidic cemented paste backfill [J]. Minerals Engineering,2006,19:407-419
    [86]SL 352-2006.水工混凝土试验规程[s].北京:中国水利水电出版社,2006
    [87]冯巨恩,吴超,姚振巩.絮凝剂改善充填效果的试验研究[J].金属矿山,2005,10:12-19
    [88]何哲祥.絮凝剂对胶结充填体强度的影响[J].长沙矿山研究院季刊,1990,10(1):48-52
    [89]M. Fall, M. Benzaazoua, S. Ouellet. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill [J]. Mineral Engineering,2005, 18(1):41-43
    [90]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001
    [91]蔡正泳,王足献.正交设计在混凝土中的应用[M].北京:中国建筑工业出版社,1985
    [92]M. Fall, M. Benzaazoua, E.G. Saa. Mix proportioning of underground cemented tailings backfill [J]. Tunnelling and Underground Space Technology,2008,23(1):80-90
    [93]F.W. Brackebusch. Internal report, Mine system Design Inc.,1999.
    [94]邓代强,姚中亮,唐绍辉.单轴压缩作用下充填体损伤本构模型研究[J].土工基础,2006,20(3):53-55
    [95]刘志祥,李夕兵,戴塔根等.尾砂胶结充填体损伤模型及岩体的匹配分析[J].岩土力学,2006,27(9):1442-1446
    [96]胡华,崔明义.高水材料硬化体特性及其充填体力学作用机理分析[J].矿业研究与开发,2001,21(5):23-25
    [97]J.Lemaitre.损伤力学教程[M].倪金刚,陶春虎译.北京:科学出版社,1996
    [98]J. Lemaitre. How to use damage mechanics [J]. Nuclear Eang.& Design,1984,80(1)
    [99]谢和平.岩石混凝土损伤力学[M].北京:中国矿业大学出版社,1990.
    [100]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [101]蔡正咏,王足献,李秀英等.数理统计在混凝土试验中的应用[M].北京:中国铁道出版社,1988
    [102]吴政.基于损伤的混凝土拉压全过程本构模型研究[J].水利水电技术,1995,(11):58-63
    [103]J. Mazars. A description of macro scale damage of concreted structures[J]. Engineering Facture Mechanics,1986,25(5/6):729-737.
    [104]周旻,侯浩波,张大捷等.湖泊底泥改性固化的强度特性和微观结构[J].2008,29(4):1010-1014
    [105]K. Nishida, Y.Nagayoshi, H.Ota et al. Melting and stone production using MSW incinerated ash [J].Waste management,2001,21(5):443-449.
    [106]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991
    [107]杨久俊,海然,吴科如.钙矾石的结构变异对膨胀水泥膨胀性的影响[J].无机材料学报,2003,18(1):136-142.
    [108]K.J. Mun, W.K. Hyoung, C.W. Lee. Basic properties of non-sinte-ring cement using phosphogypsum and waste lime as activator [J]. Constr Build Mater,2007,21:1342-1350.
    [109]S. Manjit, G. Mridul. Activation of gypsum anhydrite-slag mixtures [J]. Cement and Concrete Research.,1995,25(2):332-338.
    [110]徐彬,蒲心诚.固态碱组分碱矿渣水泥水化产物研究[J].西南工学院学报,1997,(3):29-34
    [111]李青芳,李林,倪亚敏.碱集料反应机理及条件分析[J].山西建筑,2005,31(14):159-160.
    [112]初言.一种硅质建材资源——方英石轻质页岩[J].中国建材,1988,10:16-16
    [113]卞庆汉,张虹,付兴华等.碱—矿渣水泥的研究综述[J].山东建材学院学报,1989,3(1):49-53
    [114]A. Fernandez-Jimenez. Alkali-activated slag mortars Mechanical Strength behaviour [J]. Cement and Concrete Research,1999,29(8):1313-1321
    [115]C.J. Shi, R.L. Day. A calorimetric study of early hydration of alkali-slag cements [J]. Cement and Concrete Research.1995,25(6):1333-1346
    [116]P.S. De-Silva, F.P. Glasser. Phase relation in the system CaO-Al2O3-SiO2-H2O relevant to metakaolin-Ca(OH)2hydration [J]. Cement and Concrete Research,1993, (23):627-639.
    [117]王新民,张钦礼,过江等.柿竹园有色金属矿—柿竹园有色金属矿充填骨料和胶凝材料试验研究报告,中南工业大学,1998
    [118]张翔.利用HAS固化剂固化尾砂充填技术的应用与研究[D].武汉:武汉大学,2006
    [119]GB/T 2419-2005.水泥胶砂流动度测试方法[S].北京:中国标准出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700