用户名: 密码: 验证码:
蒙脱石活化及其与微结构变化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从酸活化处理、热处理、单核及多核柱撑等实验方法入手,对蒙脱石进行多种活化处理,并对未经活化的单矿物(提纯后的蒙脱石)和活化产物的矿物物理化学性质、微结构变化进行了详细的分析研究,阐明了蒙脱石活化以后,其物理化学性质和矿物微结构变化之间的关系。具体表现在以下方面:
     蒙脱石酸处理的实质是经过酸化使蒙脱石的表面结构发生变化。活化后的蒙脱石随着八面体片中阳离子的溶出和四面体片中硅结构的重组,增强了蒙脱石的表面酸性,从而增大了它的吸附性能。酸化蒙脱石脱色的根源是由于酸化作用改变了蒙脱石的表面结构,使其表面形成畸变的Q~3硅结构和Q~4硅结构从而具有BrΦnsted酸活性。
     HP蒙脱石的热处理研究表明,热处理温度达到600℃时,蒙脱石八面体片中的羟基开始脱失,但层状结构仍然保持。蒙脱石羟基的脱失过程对应着八面体片中Al~Ⅵ向Al~Ⅳ的转变,且其平整的层状结构受到破坏而使其表面粗糙化。当温度达到900℃时,蒙脱石的层状结构完全被破坏,并有新的矿物相X—SiO_2产生。当温度达到1200℃时,出现方英石及莫来石相。当热处理温度达到1350℃时,方英石及莫来石的含量略有减少,并出现较多的堇青石相。
     AlCl_3溶液在[OH~-]/[Al~(3+)]=2.4时水解生成的Keggin离子最多,且最稳定。随着Fe/Al比的增加,羟基铁铝柱化液中的四配位Al(Ⅳ)逐渐减少,过量的Fe对Keggin结构具有破坏作用。HP蒙脱石经羟基铝柱撑后其层间距d_(001)由自然状态下的1.57nm增大到2.53nm,经300℃灼烧后其层间距稳定在1.83nm,具有较好的热稳定性。柱撑蒙脱石表面的Lewis酸性明显增强。
     用溴化十六烷基吡啶改性后的蒙脱石及柱撑蒙脱石,能大幅度提高其对苯酚的吸附能力。柱撑蒙脱石对苯酚的吸附能力主要取决于改性粘土吸附剂的微孔结构和表面组分;而不仅仅依赖于表面积。经灼烧后的柱撑蒙脱石用少量的Na_2CO_3处理后,再与溴化十六烷基吡啶反应制成有机柱化粘土而可循环使用。
This paper begin with acid activated treatment,thermal activation treatment,single nuclear and multi-nuclear pillared experiment method,and activated montmorillonite in several methods. We study the microstructure change,physics-chemistry characteristic between raw minerals and activated products,interpret the relationship of physics-chemistry characteristic and microstructure change of montmorillonite before and after activation. All of them concrete on following:
    The essence of acid activated treatment is that the surface structure of montmorillonite changes after treated by acid. After acid activated treatment,along with the cation in octahedron sheet of montmorillonite dissolved and the Si in tetrahedron sheet of montmorillonite structure recombined,make the surface structure of montmorillonite change greatly. This changes enhance the surface acidity of activated montmorillonite,accrete the adsorption characteristic of activated montmorillonite. There are some Q3 Si structure in montmorillonite transform to distortion QJ Si structure and Q4 Si structure through structure recombination. The distorted Q3 and Q4 Si structure in montmorillonite surface possess Bnjmsted acidity.
    It is found that montmorillonite dehydrate adsorbing water and interlayer water when the temperature is between 126C-148C,this process is reversible. When the thermal treatment temperature reach 659C,the hydroxyl in octahedra sheet begin dehydrating,but the layer structure is maintaining. When the temperature reach 900 C,the layer structure of montmorillonite is destroyed,and the new mineral phase SiO2-x is found,when the temperature reach 1200C. It appears cristobalite and mullite,when the temperature reach 1350C. It appears cordierite.
    The pillared montmorillonite was prepared by A13+ in Keggin ions which hzs Keggin structure. The results suggest when m=2.4 the quantity of Keggin ions in A1C13 solution is more. In natural state,the d(001) value of pillared montmorillonite is 2.53nm,after incandescing at 300 'C,the basal interlayer spacing is stabilized 1.83nm,with high stability. The pillared montmorillonite containing Fe3+ ion was prepared by substituting Fe3> for A13+ in Keggin ions which has Keggin structure. The results suggest that the structure of hydroxy-Fe-Al oligocation,d(OOI) values and the thermal stability of pillared clay are affected by the Fe/Al ratio in pillared solution. The d(001) values increase and the thermal stability decrease with increasing F;/A1 ratio. Excessive amounts of Fe3+ ions can destroy the Keggin structure. The existence of Keggin structure can improve the thermal stability of the pillared clays.
    Both inorganic and organic pillared montmorillonites are used to adsorb the phenol,to study their suitable conditions and adsorption isotherms of adsorbing phenol. It reveals that using modified pillared montmorillonite with surfactant can improve the adsorbing capacity greatly. The adsorbing capacity of phenol by pillared montmorillonites is depended on micropore structure and
    
    
    surface component of modified clays mainly,not only surface area. After incandescing at 500C,the pillar structure and the basal interlayer spacing (1.83nm) are stable still. So the pillared
    montmorillonite can use recycle,it is a potential substance of Adsorption of environmental pollutants.
引文
任磊夫编,1992,粘土矿物与粘土岩,地质出版社。
    陈武、季寿元编,1985,矿物学导论,地质出版社。
    杨雅秀、张乃娴等著,1994,中国粘土矿物,地质出版社。
    陈丰等编著,1995,矿物物理学概论,科学出版社。
    全国工业矿物原料深加工及综合开发利用学术讨论会论文集,1993,重庆大学出版社。
    张惠芬等编,1993,全国第三届矿物物理矿物材料学术讨论会论文集—矿物物理矿物材料新研究,地震出版社。
    张培元主编,1987,中国工业矿物和岩石,下册,地质出版社。
    彭明生、张惠芬主编,1995,全国工艺矿物学专业委员会成立暨首届成果交流会全国第四届矿物物理矿物材料学术讨论会论文集—矿物物理与矿物材料新工艺,中山大学出版社。
    王濮、潘兆橹、翁玲宝等,1984,系统矿物学,中册,地质出版社。
    潘兆橹等,1985,结晶学及矿物学,地质出版社。
    南京大学地质学系矿物岩石学教研室,1980,粉晶X射线物相分析,地质出版社。
    须藤俊男著,严寿鹤等译,1981,粘土矿物学,地质出版社。
    威维尔、L.n.普拉德著,张德玉译,1983,粘土矿物化学,地质出版社。
    孙维林等,1992,粘土理化性能,地质出版社。
    H.范.奥尔芬著,许冀泉等译,1982,粘土胶体化学导论,农业出版社。
    浙江省地质科学研究所,1981,粘土和粘土矿物译文选辑。
    彭文世等,1982,矿物红外光谱图集,科学出版社。
    冯敏等,1993,有机膨润土的制备流程,地质实验室,No.6.
    陈济美等,1992,关于膨润土阳离子交换量的测定方法,地质实验室,No.6.
    潘建强,1992,蒙皂石应用矿物学评述(上),建材地质,No.5.
    潘建强,1992,蒙皂石应用矿物学评述(下),建材地质,No.6,
    谢志鹏等,1993,羧甲基田菁胶对高岭石、蒙脱石吸附机理的研究,硅酸盐学报,No.5.
    孙家寿等,1992,膨润土对铬、磷的吸附性能的研究,非金属矿,No.3.
    毛燕红等,1993,膨润土浆纱研究,非金属矿,No.3.
    邹蔚蔚等,1993,利用钙基膨润土合成NaA型沸石时晶化动力学过程的讨论,非金属矿,No.1.
    董振亮等,1993,膨润土在干电池制造中的应用研究,非金属矿,No.4.
    魏克武,1992,高岭石晶体结构和表面性质,非金属矿,No.1.
    章庆和,1989,膨润土差热曲线与物理化学特性的关系,矿物学报,No.2.
    何宏平等,我国北方两种高岭石的电子顺磁共振研究,矿物学报,1994,14(3),265-269.
    陈静生等,1994,中国东部主要河流沉积物的比表面及其地域差异研究,环境化学,Vol.13,No.6.
    袁望治,1990,蒙脱石类质同象置换的IR和ESR研究,矿物学报,No.3.
    
    
    虞锁富,1989,膨润土、高岭石对锌的吸附和解吸,矿物学报,No.3.
    马毅杰,1988,钙钠离子对蒙脱石吸水特性的影响,矿物学报,No.3。
    马毅杰,1985,钙钠离子对蒙脱石脱水特性的影响,矿物学报,No.1.
    马毅杰,1985,钙钠离子对蒙脱石胶体稳定性的影响,矿物学报,No.3.
    刘云,1985,用红外吸收光谱确定层状硅酸盐中羟基键的方向,矿物学报,No.4.
    周公度,1982,无机化学丛书,第十一卷,无机结构化学,科学出版社.
    胡智荣等,1993,膨润土改性的研究,非金属矿,No.5.
    王德强、郭九皋等,1996,蒙脱石中铁的赋存状态的研究,矿物学报,NO.1.
    赵东源等,1993,添加镧的羟基铝柱化粘土的合成与表征,石油化工,No.11.
    赵东源等,1993,铁铝复合柱撑粘土的制备、柱结构和稳定性(Ⅰ),物理化学学报,No.2.
    赵东源等,1993,铁铝复合柱撑粘土的制备、酸性与表征(Ⅱ),物理化学学报,No.3.
    张法军等,1993,膨润土絮凝剂在味精废水处理中的应用,非金属矿,No.3.
    蒋引珊等,1994,蒙脱石细微结构对其水体系电势的影响,物理化学学报,No.2.
    侯文华等,1994,A1柱层状钛铌酸的制备,化学学报,No.52.
    吴平霄,张惠芬等.柱撑蒙脱石制备与表征.矿物学报,1997,17(2):200—207
    雷志芳,杨克武等,水体颗粒物以及土壤对有机物吸附常数的测定,环境化学,1994,13(3):225-228。
    Aksay, I. A., Dabbs, D. M. Et. al. Mullite for structural, electronic, and optical applications.Journal of the American Ceramic Society,1991,74(10): 2343-2357.
    P. Komadel, et. al. 1996, Dissolution ofhectorite in inorganic acids. Clays and clay minerals. Vol.44. No. 2. 228-236.
    Giora Rytwo, et. al. 1996, Exchange reactions in the Ca-Mg-Na-Montmorillonite system.Clays and clay minerals.Vol.44. No.2.276-285.
    K. Tanabe, Solid Acids and Bases, Kodansha,Tokyo and Academic Press, New York London,1970.
    E.P.Parry, J. Catal 2. 374 1963.
    Srinivasan,K.R.,1990,无机—有机—粘土在污水处理中的应用,国外非金属矿与宝石,No.6.
    Zielke,R.C.,1989,吸附环境毒物的改性粘土,国外非金属矿,No.3.
    Engelthaler,Z.A.,1990,膨润土在环境工程中的作用,国外非金属矿与宝石,No.5.
    Akitt,J.W., et. al., 1972. ~(27)Al Nuclear magnetics resonance studies of the hydrolysis and polymerisation of the hexa-aquo-aluminum(Ⅲ) cation.J.C.S. Dalton.,604.
    Akitt,J.W., et.al., 1981. Hydrolysis of the hexa-aquo-aluminum(Ⅲ) in organic Medica. J.C.S.Dalton.,1233.
    Akitt, J.W., et.al., 1981. Aluminum-(27) Nuclear magnetics resonance studies of the hydrolysis Aluminum(Ⅲ). Part 2. Gel-permeation Chromatography.J.C.S. Dalton.,1606.
    Akitt, J.W., et.al., 1981. Aluminum-(27) Nuclear magnetics resonance studies of the hydrolysis Aluminum(Ⅲ). Part 3. Stopped-flow kinetic studies.J.C.S. Dalton.,1609.
    Akitt,J.W., et.al., 1981. Aluminum-(27)Nuclear magnetics resonance studies of heteropolyanions
    
    containing aluminium as heteroatom.J.C.S. Dalton.,1615.
    Akitt,J.W., et.al.,1981. Aluminum-(27) Nuclear magnetics resonance studies of the hydrolysis Aluminum(Ⅲ). Part 4. Hydrolysis using sodium carbonate.J.C.S.Dalton.,1617.
    Akitt,J.W., et.al.,1981. Aluminum-(27) Nuclear magnetics resonance studies of the hydrolysis Aluminum(Ⅲ). Part 5. Slow hydrolysis using aluminium metal.J.C.S.Dalton.,1624.
    Cheng, S. and Wang T.C., 1989. Pillaring of layered titanates by polyoxo cations of aluminum.Inorg. Chem. 28,1283.
    Berkheiser, V.E. et.al., 1977. Hectorite complexes with Cu(Ⅱ) and Fe(Ⅱ)-1, 10-phenanthroline chelates.Clays & clay minerals,vol.25.
    Rupert J P, Granquist W T, Pinnavaia T J.Catalytic properties of clay minerals.In: Newman A C D ed.Chemistry of Clays and Clay Minerals.London: Longman Scientific & Technical,1987.275~236
    Thompson J G. 29Si and 27A1 nuclear magnetic resonance spectroscopy of 2:1 clay minerals.Clay Miner,1984, 19:229~236
    Occelli,M.L. and Tindwa,R.M.,1983.Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars.Clays & clay minerals,vol.31.No.1.
    Malla, P.B. and Komameni,S.,1993. Properties and characterization of Al_2O_3 and SiO_2-TiO_2 pillared saponite.Clays & clay minerals,vol.41.No.4.
    Singh, S.S. and Kodama, H.,1988. Reactions of polynuclear hydroxyaluminum cations with montmorillonite and the formation of a 28-pillared complex.Clays & clay minerals,vol. 36.No.5.
    Hsu,P.H., 1992. Reactions of OH-Al polymers with smectites and vermiculites. Clays & clay minerals,vol. 40.No.3.
    Schoonheydt,R.A. et.al.,1993.The Al pillaring of clays, Part Ⅰ. pillaring with dilute and concentrated Al solutions.Clays & clay minerals,vol.41.No.5.
    Lou,G. and Huang,P.M. 1993. Silication of hydroxy-Al interlayers in smectite. Clays & clay minerals.vol.41.No.1.
    Natale,I.M. and Helmy A.K.,1992. Montmorillonite-salt interactions at 550℃. Clays & clay minerals, vol. 40.No.2.
    Kowalska, M. and Cocke,D.L., 1992. Interactions of montmorillonite with p-Nitro- and p-Methoxyanilines.Clays & clay minerals,vol; 40.No.2.
    Lahav,N. and Shani,U., 1978. Cross-linked smectites.Ⅰ. Synthesis and properties of hydroxy-aluminum-montmorillonite. Clays & clay minerals,vol.26.No.2.
    Sister Traynor,M.F. et.al., 1978. Ion, exechange and interaction reactions of hectorite with tris-bipyridly metal complexes.Clays & clay minerals,vol. 26.No.5.
    Sterte, 1986. Synthesis and properties of titanium oxide cross-linked montmorillonite. Clays & clay minerals,vol. 34.No.6
    Plee,D. Gatineau, L. and Fripiat,J.J.,1987. Pillared processes of smectites with mid without tetrahedral substitution.Clays & clay minerals,vol.35.No.2.
    Lopez,A., et.al.,1993. Pillared clays prepared from the reaction of chromium acetate with
    
    montmorillonite. Clays & clay minerals,vol.41.No.3.
    Tokarz,. and Shabtai,J.,1985. Cross-linked smectites.Ⅳ.preparation andproperties of hydroxyaluminum-pillaredd Ce- and La- montmorillonites and fluorinated NH~+-montmorillonites.Clays & clay minerals,vol. 33.No.2.
    Zhao,D.Y., et.al.,1993. Preparation and characterization of hydroxy-FeAl pillared clays.Clays & clay minerals,vol.41.No.3.
    Cambier,P., 1991. Interactions of citric acid and synthetics hydroxy-aluminum montmorillonites.Clays & clay minerals,vol.39.No.2.
    Luca, V., et.al., 1992. A synthetic Zn-Substituted smectite clay alkylationcatalyst,clay minerals.vol.27.Rodriguez,J.M., et.al.,1992. Exchange selectivity of lanthanide ions in montmorillonite.clay minerals, vol.27.
    Tsutsumi, S., et. al.,1993. Preparation and properties of a basic leadcarbonate-montmorillonite complex,clay minerals,vol.28.
    Bergaya, F., etal, 1993. Pillared of synthetic hectorite by mixed [Al_(13-x)Fe_x] pillars, clay minerals.vol.28.
    Zielke R C, Pinnavaia T J. Modified clays for the adsorption of environmental toxicans: Binding of chlorophenols to pillared,decaminated,and hydroxy interlayered smectites.Clays and Clay Minerals, 1988, 36:403-408.
    Srinivasan K R, Fogler S H. Use of inorgano-organo clays in the removal of priority pollutants from industrial wastewaters: Adsorption of benzo(a)pyrene and chlorophenols from aqueous solutions.Clays and Clay Minerals,1990,38:287-293.
    Srinivasan K R, Fogler S H. Use of inorgano-organo clays in the removal of priority pollutants from industrial wastewaters: Structural aspects.Clays and Clay Minerals,1990, 38:277-286.
    Michot L J, Pinnavaia T J. Adsorption of chlorinated phenols from aqueous solution by surfactant modified pillared clays.Clays and Clay Minerals,1991, 39(6): 634-641.
    Binnig G, Quate C F, Gerber Ch. Atomic force microscope. Phys Rev Lett,1986, 56:930-933.
    Hochella M F, Eggleston C M, Elings V B, et al. Atomic structure and morphology of albite {010} surface: An atomic force microscope and electron diffraction study.American Mineralogist,1990,75:723-730.
    Drake B, Prater C B, Weisenhom A L, et al.Imaging crystals, polymers and processes in water with the atomic force microscope. Science, 1989, 243:1586-1588.
    Gould S A C, Drake B, Prater C B, et al. From atoms to integrated circuit chips, blood cells and bacteria with the atomic force microscope.J. Vac. Sci. Technol.,1990, A8:369-375.
    Hansma P K, Elings V B, Marti O, et al. Scanning tunneling microscopy and atomic force microscope:Application to biology and technology.Science,1988, 242:209-216.
    Wicks F J, Kjoller K, Henderson G S. Imaging of the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope.Canadian Mineralogist,1992, 30:83-91.
    Mellini M. The crystal structure of lizardite 1T: hydrogen bonds and ploytypism.American Mineralogist,1982, 67:1442-1445.
    
    
    Berghmans P A, Muir I J, Adams F C. Surface analysis of chrysophosphate materials.Surface and Interface Analysis,1990, 16:575-579.
    Gordon A V, Henderson G S, Fawcett J J, et al. Structural relaxation of the chlorite surface by the atomic force microscope.American Mineralogist,1994, 79:107-112.
    Huamin Gan, Bailey G W, Yu Y S. Morphology of Lead(Ⅱ) and Chromium(Ⅲ) reaction products on phyllosilicate surfaces as determined by atomic force microscope.Clays and Clay Minerals,1996, 44(6):734-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700