用户名: 密码: 验证码:
矿物学角度研究添加剂对煤灰熔融性的作用及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高灰熔点煤(FT>1400℃)在我国煤炭总量中占有很大的比例,在煤气化应用过程中受到了一定的限制。调整高灰熔点煤的煤灰熔融特性是煤气化或燃烧过程所关注的项目。本文的目的在于寻求改善煤灰熔融性的方法,以适应不同排渣方式的燃烧和气化技术,扩大煤种的适用范围。
     本文通过向高熔点煤灰中添加MgO与Na2CO3,研究Mg2+与Na+在高温下对煤灰熔融性的影响,按照GB/T219-2008煤灰熔融性的标准测定方法对其进行灰熔融温度的测定。借助XRD、SEM和三元相图研究煤灰高温熔融机理。并以此为理论研究基础,向煤灰中添加白云石、钠长石、石灰石等助熔矿物质,选择合适的工业添加剂,利用XRD、红外光谱、SEM和晶相显微镜进一步研究矿物质对煤灰熔融性的作用机理。另外,向低熔点的煤灰中加入白云母、硅酸铝纤维和含锆硅酸铝纤维,研究它们对煤灰的阻熔作用,以及矿物形貌和结构对煤灰熔融性的影响。研究表明:
     (1)阳泉固庄煤灰熔融温度随氧化镁的添加(5%-25%)单调下降;而随氧化钠添加(5%-25%)出现先降后升现象,在氧化钠添加量为15%时,灰熔点达到最低。XRD分析表明,阳泉固庄煤灰熔融温度高(大于1750℃)的原因是高温条件下耐熔矿物莫来石,方英石的存在。添加外加剂后,高温时外加剂与硅铝酸盐矿物反应,生成了更多的低共熔矿物霞石,堇青石等。通过三元相图以及SEM分析,高温条件下煤灰中部分元素的富集以及团聚现象是导致Mg2+和Na+对煤灰熔融温度不同影响的原因。
     (2)钠长石、白云石和石灰石,三种矿物质均能够降低滕州煤灰的熔融温度,但是影响程度明显不同。同样降低100℃的FT,白云石添加比例仅需0.05,石灰石需要0.2,钠长石则需要0.5。三种矿物质对胜利煤灰熔融性也有着相似的作用。根据XRD分析,钠长石和白云石分别在高温时和煤灰中的耐熔矿物质反应,生成了低熔融矿物霞石、钙长石和透辉石。白云石的加入增加了原本就是助熔矿物钙长石的生成量,MgO起到了推波助澜的作用,使煤灰的熔融温度更低。钠长石的加入,同时带入了大量的Al和Si,他们是煤灰熔点高的原因之一。根据FT-IR分析,添加白云石与提高温度对煤灰熔融起到了相同的作用,都能够使得煤灰中[SiO4]的连接方式改变,聚合程度降低,最终改变煤灰熔融性
     (3)氧化气氛下滕州煤灰的四个熔融特征温度均比弱还原气氛下的高。XRD无法检测出气氛对煤灰熔融温度的影响是否是因为Fe的不同价态导致。一是因为Fe2O3在滕州煤灰中的含量较少;二是因为含Fe矿物质在较低温度出现,而高温时已变为玻璃体。但可以推断的是,弱还原性气氛能够加速耐熔矿物的熔解。
     (4)白云石中的Mg2+不仅可以降低煤灰的熔融温度,而且相对于Ca2+其腐蚀性要小。因此,白云石与石灰石相比,作为助熔剂具有更好的优势。煤灰颗粒表面出现孔洞的原因是,高温时煤灰中矿物质发生反应并伴随气体的释放。
     (5)白云母,硅酸铝纤维,含锆硅酸铝纤维均能够提高煤灰的熔融温度。其中含锆硅酸铝纤维的作用最显著,添加比例为0.2时,FT提高了120℃左右。煤灰熔融温度与添加剂矿物形态以及矿物的结构类型关系不大,主要起作用的还是矿物质成分,以及高温时的矿物质反应。
The coals with high fusion point temperature (FT>1400℃) are in a large proportion of total coals in China. That limits the coals using in gasification applications. Adjustment to the coal ash fusibility of high fusion point coal has attracted attentions of many researchers in coal gasification and combustion. The purpose of this paper is to find methods to adjust the fusibility of coal ash, for adapting to different slagging ways in combustion and gasification technologies and expanding the scope of application of the coals.
     MgO and Na2CO3were added into high fusion point temperature coal ash, to study the effect of Mg2+and Na+on the fusibility of coal ash at high temperature. The ash fusion temperatures were tested according to GB/T219-2008determination of fusibility of coal ash, and the fusibility mechanism at high temperature was investigated by XRD, SEM and Ternary phase diagram. Then, basing on the results, the effect of minerals (albite, dolomite and limestone) on coal ash fusibility and the mechanism were further studied by XRD, FT-IR, SEM and OM. In addition, muscovite, aluminum silicate fiber and zirconia aluminum silicate fiber were added into lower fusion point coal ash to study the effect of morphology and structure of the minerals on coal ash fusibility. The results show that:
     (1) The ash fusion temperatures monotonically decrease with increasing addition amount of MgO, while the ash fusion temperatures exhibit low valley and reach the minimum when the addition amount of Na2CO3is15%. Investigated by XRD, mullite and cristobalite are detected in the Yangquan Guzhuang coal ash, which results in the ash fusion temperature of the coal ash higher than1750℃. Additions reacting with silicate minerals can form more low-melting eutectic minerals, such as cordierite and nepheline, etc. Ternary phase diagram and SEM micrograph confirm that the local clustering of partial elements and reunited phenomenon of coal ash under high temperature condition result in the different effect of Mg2+and Na+on the coal ash fusibility behavior.
     (2) Albite, dolomite and limestone all can reduce the fusion temperatures of Tengzhou coal ash; however, their impacts are significantly different. To decrease the FT with100℃, the adding proportion of albite, limestone and domolite are0.5,0.2and0.05, respectively. The three minerals have a similar function on Shengli coal ash. From the results of XRD analysis, albite and dolomite respectively react with refractory minerals in coal ash at high temperature and form lower fusion minerals:nepheline, anorthite and diopside. The amount of anorthite which is already in Tengzhou coal ash increases because of adding domolite, and MgO also strengthens the melting. Those all lower the fusion temperature of coal ash. Albite having no obvious effect is because a lot of Al and Si in albite increasing the fusion temperature. From the results of FT-IR analysis, adding domolite and increasing temperature paly the same role in the fusibility of coal ash. They all can change the connection of [SiO4], reducing the extent of polymerization, and adjusting the fusibility of coal ash.
     (3) The four melting characteristic temperatures in weak reducing atmosphere are all lower than those in oxidizing atmosphere. It is uncertain whether the different valance of Fe is the cause of changement in fusion temperature with different atmosphere by detection of XRD. It is because that Tengzhou coal ash has a low amount of Fe2O3content, in addition, iron mineral exists at a lower temperature while that transforms into glass at high temperature. However, it can be inferred that the weak reducing atmosphere can accelerate the melting of the refractory minerals.
     (4) The fusion temperature of coal ash can be decreased by adding Mg2+in the carrier of dolomite. Compare with Ca2+, the corrosivity of Mg2+is slitht. So the dolomite is an optimal flux compare with limestone. The reason for appearing of holes at the ash particle surface is the release of gases in mineral reaction at high temperature.
     (5) The fusion temperatue of coal ash can be improved by adding muscovite, aluminosilicate fiber and zirconium aluminum silicate fiber. It is worth noting that, zirconia aluminum silicate fiber is the optimized additive. When the adding proportion is0.2, the FT increases with120℃. The fusion temperature of coal ash has little influence with the morphology and structure of adding minerals. In contrast, the composition and high-temperature reaction of minerals have an important influence to the fusion temperature of coal ash.
引文
[1]汪寿建.21世纪洁净煤气化技术发展综述[J].化肥设计,2004,42(5):3—5.
    [2]Perry Nowacki, Coal gasification processes [M]. Noyes Data Corporation,1981.
    [3]路江鸿,赵麦玲.煤气化技术及应用现状综述[J].化肥工业,2010,37(5):8—11.
    [4]C.R. Ward, Analysis and significance of mineral matter in coal seams[J]. International Journal of Coal Geology,2002 (50):135-168.
    [5]M. Grigore, R. Sakurovs, D. French, V. Sahajwalla, Mineral matter in coals and their reactions during coking[J]. International Journal of Coal Geology 2008 (76):301-308.
    [6]N.J. Wagner, M. Coertzen, R.H. Matjie, J.C. van Dyk. Coal gasification, in:Ⅰ. Suarez-Ruiz, J.C. Crelling (Eds.), Applied Coal Petrology:Application of Petrology to Coal Utilization, Academic Press, Amsterdam,2008, pp.119-144.
    [7]Slegeir, WA, Singletary, JH, Kohut, JF. Application of a microcomputer to the determination of coal ash fusibility characteristics[J]. Coal Quality 1988, (7):248-54.
    [8]J.C. Van Dyk, S.A. Benson, M.L. Laumb, B. Waanders, Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel 2009 (88):1057-1063.
    [9]Vassilev S V,Kitano K,Takeda S,et al.Influence of Mineral and Chemical Composition of Coal Ashes on Their Fusibility[J]. Fuel Processing Technology,1995,45:27-51.]
    [10]Sadriye Kucukbayrak, et al. Investigation of the relation between chemical composition and ash fusion temperatures for soke turkish lignites[J]. Fuel Science and Technology International,1993,11(9):1231.
    [11]T.M. Linjewile, A.R. Manzoori, Role of additives in controlling agglomeration and defluidization during fluidized bed combustion of high-sodium, high-sulphur low-rank coal[J]. Engineering Foundation Conference,2007,11:2-7.
    [12]CHEN Dong-xia, TANG Li-hua, ZHOU Ya-ming, et al. Effect of char on the melting characteristics of coal ash[J]. Fuel chemistry and technology,2007,35(2):136-140.
    [13]HurstH.J. Evaluation of the slagging eharaeteristies of Australian bituminous coals for use in slagging gasifier.15th Annu. Int. Pittsburgh eoaleonf (Pittsburgh),1998:421-439.
    [14]Ratale H. Matjie, David French, Colin R. Ward, et al. Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process[J]. Fuel Processing Technology,2011,(92):1426-1433.
    [15]Awni Y. Al-Otoom, Liza K. Elliott, Behdad Moghtaderi, et al. The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC[J]. Fuel,2005, (84):109-114.
    [16]Alpern B, Nahuys J, Martinez L. Mineral matter in ashy and non-washable coals-its influence on chemical properties[J]. Commun Serv Geol Portugal,1984,70(2):299-317.
    [17]Seggiani M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel,1999,78:1121-5.
    [18]王泉清,曾蒲君.煤灰熔融性的研究现状与分析[J].煤炭转化,1997,20(2):32-37.
    [19]芦涛,张雷,张晔等.煤灰中矿物质组成对煤灰熔融温度的影响[J].燃料化学学报,2010,38(1):23-28.
    [20]陆宏权,李寒旭,马飞等.钙基助熔剂对煤灰熔融性影响及熔融机理研究[J].煤炭科学技术,2011,39(2):111—114.
    [21]于戈文,王延铭,徐元源.弱还原性气氛条件下CaO对高灰熔点煤灰熔融性影响的研究[J].内蒙古科技大学学报,2007,26(1):59-62.
    [22]范立明,陈杰瑢,田晓莉等.石灰石添加量对黄陵煤灰熔融特性的影响[J].煤化工,2007,35(2):31-63.
    [23]康虹,吴国光,孟献梁等.添加CaCO3对煤灰熔融性影响及其机理的研究[J].中国科技论文在线,2008,3(9):692-697.
    [24]李继炳,沈本贤,赵基钢等.镁基助熔剂对刘桥二矿混煤灰熔融特性的影响[J].煤炭转化,2009,32(2):37-40.
    [25]李慧,焦发存,李寒旭.助熔剂对煤灰熔融性影响的研究[J].煤炭科学技术,2007,35(1):81—84.
    [26]LI Ji-bing, SHEN Ben-xian, LI Han-xun, et al. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No.2 Coal Mine in Wan-bei[J]. Journal of Fuel Chemistry and Technology.2009,37(3):262-265.
    [27]张雷,李寒旭.铁系助熔剂对煤灰熔融特性影响的研究[J].广东化工,2010,37(2):28—29.
    [28]Stanislav V. Vassilev, Kunihiro Kitano, Shohei Takeda, Takashi Tsurue. Influence of mineral and chemical composition of coal ashes on their fusibility [J]. Fuel Processing Technology,1995,45 (1):27-51.
    [29]李帆,邱建荣,郑楚光.煤中矿物质对灰熔融温度影响的三元相图分析[J].华中理工大学学报,1996,24(10):96—99.
    [30]KONG Ling-xue, BAI Jinl, LI Wen1, BAI Zong-qing, GUO Zhen-xing. Effect of lime addition on slag fluidity of coal ash[J]. Journal of Fuel Chemistry and Technology,2011, 39(6):407-411.
    [31]J.C. van Dyk, L.L. Baxterb, J.H.P. van Heerdena, R.L.J. Coetzer. Chemical fractionation tests on South African coal sources to obtain species-specific information on ash fusion temperatures (AFT)[J]. Fuel,2005, (84):1768-1777.
    [32]李继炳,沈本贤,赵基钢等.助熔剂对皖北刘桥二矿煤灰熔融特性的影响[J].煤炭学报,2010,35(1):140—143.
    [33]Qiu, J. el at. Ash characteristics and minerals behavior during coal blend combustion[J]. Pimburgh Coal Conf,1997,14(12):3-8.
    [34]Ji-bing LI, Ben-xian SHEN, Han-xun LI, Ji-gang ZHAO, Ji-ming WANG. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No.2 Coal Mine in Wan-bei[J]. Fuel Chemistry and Technology,2009,37(3): 262-265.
    [35]乌晓江,张忠孝,朴桂林等.高灰熔点煤高温下煤焦CO2/水蒸气气化反应特性的实验研究[J].中国电机工程学报,2007,27(32):24-28.
    [36]王艳柳,张晓慧.煤灰熔融性对气化用煤的影响[J].煤质技术,2009,(4):55—58.
    [37]Stanislav V. Vassilev, Kunihiro Kitano, Shohei Takeda, Takashi Tsurue. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology,1995,45(1):27-51.
    [38]J.J. Wells, F. Wigley, D.J. Foster, et al. The nature of mineral matter in a coal and the effects on erosive and abrasive behaviour[J]. Fuel Processing Technology,2005 (86): 535-550.
    [1]GB/T 212—2008煤炭工业分析方法
    [2]GB/T 219—2008煤灰熔融性的标准测定方法
    [3]贾明生,张乾熙.影响煤灰熔融性温度的控制因素[J].煤化工,2007,(3):1—5.
    [1]李宝霞,张济宇.煤灰渣熔融特性的研究进展[J].现代化工,2005,25(5):22-28.
    [2]Qiu, J. el at. Ash characteristics and minerals behavior during coal blend combustion[J]. Pimburgh Coal Conf.,1997,14(12):3-8.
    [3]Ji-bing LI, Ben-xian SHEN, Han-xun LI, Ji-gang ZHAO, Ji-ming WANG. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No.2 Coal Mine in Wan-bei. Fuel Chemistry and Technology,2009,37(3): 262-265.
    [4]乌晓江,张忠孝,朴桂林,森滋腾,板谷羲纪,陈龙.配煤对降低高灰熔融性煤的三元相图分析[J].洁净煤技术,2007,13(3):64-67.
    [5]Hurst, H. J. Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes. Energy F&s.1996,10(6):1215-1219.
    [6]范立明,陈杰瑢,田晓莉,黄传卿,杜晓玮.石灰石添加量对黄陵煤灰熔融特性的影响[J].煤化工,2007,35(2):31—63.
    [7]许志琴,于戈文,邓蜀平,董众兵,李永旺.助熔剂对高灰熔点煤影响的实验研究[J].煤炭转化,2005,28(3):22-25.
    [8]王勤辉,景妮洁,骆仲泱,李小敏,揭涛.灰成分影响煤灰烧结温度的实验研究[J].煤炭学报,2010,35(6):1015—1020.
    [9]廖敏,郭庆华,梁钦锋,袁海平,倪建军,于广锁.气化条件下煤灰高温物相变化及其对黏度的影响[J].中国电机工程学报,2010,30(17):45—50.
    [10]Li Weidong, Li Ming, Li Weifeng, Liu Haifeng. Study on the ash fusion temperatures of coal and sewage sludge mixtures [J]. Fuel,2010,89(7):1566-1572.
    [11]谷小虎,曹敏,王兰甫,田亚鹏.煤灰对气化反应性的影响[J].煤化工,2009,37(2):19-21.
    [12]唐黎华,王福明,朱学栋,吴勇强,朱子彬.煤焦中矿物质行为与灰熔融温度的关系[J].华东理工大学学报,2003,29(3):243-247.
    [1]陈国艳,张忠孝,陈龙等.钙基对煤灰熔融特性影响的研究[J].锅炉技术,2009,40(3):10—14.
    [2]Awni Y. Al-Otoom, Liza K. Elliott, Behdad Moghtaderi, et al. The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC[J]. Fuel,2005 (84) 109-114.
    [3]范立明,陈杰瑢,田晓莉等.石灰石添加量对黄陵煤灰熔融特性的影响[J].煤化工,2007,(2):31—63.
    [4]Patterson J H, Hurst H J. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J]. Fuel,2000(79):1671-1678.
    [5]李慧,李寒旭,武成利.红外光谱在煤灰熔融性研究中的应用[J].煤炭科学技术,2006,34(3):24-26.
    [6]程翼,李寒旭,武成利.助熔剂对淮南煤灰熔融特性的影响行为研究[J].煤炭技术,2005,24(12):90-91.
    [7]LI Han-xu, QIU Xiao-sheng, TANG Yong-xin. Ash melting behavior by Fourier transform infrared spectroscopy[J]. J China Univ Mining & Technol,2008, (18):0245-0249.
    [8]赵冬杰.煤灰渣特性分析及应用[J].宁夏电力,2001,(4):62-63.
    [9]Richard W. Bryers. Fireside slagging, fouling, and high-temperarurecorrosion of heat-transfer surface due to impurities in steam-raising fuels[J]. Progress in Energy and Combustion Science,1996,22(1):29-120.
    [10]Van Dyk JC, Melzer S. Interpretation of mineral matter transformation during Sasol-Lurgi fixed bed gasification by means of high temperature X-ray diffraction. In: 21 st international annual Pittsburgh coal conference. Osaka, Japan; September 2004.
    [11]王艺慈,那树人.提高包钢高炉渣排碱能力的试验研究[J].包头钢铁学院学报,2001,20(2):105—106.
    [12]毛军,乔瑜,陈勇.动态燃烧条件下煤灰矿物质变化研究[J].华中电力,2010,23(2):1—5.
    [1]J.C. van Dyk. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Minerals Engineering,2006 (19): 280-286.
    [2]LI Jiel, DU Mei-fang1, YAN Bo, et al. Quantum and experimental study on coal ash fusion with borax fluxing agent[J]. J Fuel Chem Technol,2008,36(5):519-523.
    [3]Reifenstein AP, Kahraman H, Coin CDA, et al. Behaviour of selected minerals in an improved ash fusion test:quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite[J]. Fuel,1999,78:1449-1461.
    [4]王泉清,曾蒲君.煤灰熔融性的研究现状与分析[J].煤炭转化,1997,20(2):32-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700