用户名: 密码: 验证码:
PBL加劲型方钢管混凝土轴压柱受力性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为改善钢管混凝土界面力学性能、加强钢管混凝土组合效应,提出了在钢管混凝土内部增设PBL的概念,即PBL加劲型钢管混凝土组合柱。本文在国家自然科学基金项目—PBL加劲型钢管混凝土拱力学性能与设计方法研究(51178051)的资助下,对PBL加劲型方钢管混凝土组合柱的轴压受力性能和破坏机理进行了研究,并将其应用于方钢管混凝土拱桥中,研究了其在力学性能方面的优势,为其在桥梁工程中的应用提供了依据。
     论文主要研究内容和研究成果如下:
     (1)对方钢管混凝土、设加劲肋方钢管混凝土和PBL加劲型方钢管混凝土共27根短柱进行了轴压试验,研究分析了构件的破坏模式、荷载位移曲线、荷载应变曲线等。研究结果表明:PBL加劲型方钢管混凝土轴压短柱的破坏模式与设加劲肋方钢管混凝土轴压短柱的破坏模式相似,但与方钢管混凝土轴压短柱的破坏模式存在明显不同。PBL能够参与全截面受力,能更有效的将荷载传递给混凝土,增强钢混的共同作用;PBL加劲型方钢管对核心混凝土的约束效应更强;在方钢管内部设加劲肋或者增设PBL能有效提高方钢管混凝土的承载力和轴压刚度。
     (2)采用有限元软件ANSYS对轴压短柱的受力全过程进行了仿真模拟分析,提出了修正后的核心混凝土应力应变关系,有限元计算结果与本文试验结果吻合较好。根据计算结果,分析比较了不同截面形式的方钢管混凝土轴压短柱柱中截面核心混凝土和钢管的应力分布规律,分析结果表明:孔内混凝土压应力高于其余核心混凝土压应力,PBL加劲型方钢管混凝土的核心混凝土应力分布最不均匀;随着开孔孔径的增大,钢管壁板中部横向应力呈现先增大后减小的趋势。
     (3)基于试验数据,提出了适用于方钢管混凝土轴压短柱、设加劲肋方钢管混凝土轴压短柱和PBL加劲型方钢管混凝土轴压短柱的统一承载力计算公式和轴压刚度计算公式,并与相关规范进行了比较,公式计算结果与试验数据吻合较好。在此基础上,对PBL加劲型方钢管混凝土轴压短柱进行了有限元参数分析,验证了计算方法的可行性,提出了其设计方法。
     (4)对5根PBL加劲型方钢管混凝土轴压长柱进行了轴压试验研究。试验之前,采用超声波对内填混凝土的质量进行检测,超声波检测结果表明:PBL与混凝土能够有效的粘结在一起,混凝土浇筑质量良好。试验结果表明:长细比是影响组合长柱轴压受力性能的主要因素,提出了适用于PBL加劲型方钢管混凝土轴压长柱抗弯刚度和长柱稳定承载力的实用计算方法,与试验结果吻合较好。
     (5)将PBL应用于一座方钢管混凝土拱桥中,分析了PBL对方钢管混凝土拱桥力学性能的影响,研究结果表明:在方钢管混凝土拱桥中增设PBL能够有效提高拱桥的抗弯刚度和极限承载能力,与方钢管混凝土拱桥相比,增设PBL之后含钢率增大约30%,然而承载能力提高约54%,在极限状态下,荷载能够更有效的沿拱肋传递,从而增强了钢与混凝土的共同作用。
A novel idea of setting PBL stiffeners into section of steel and concrete composite wasproposed. PBL stiffeners may improve the mechanical properties of the interface of steel andconcrete as well as its composite effect. The project “Mechanical behavior and design methodstudy of new type arch with PBL stiffened section of steel-concrete composite” was funded bythe National Natural Science Foundation(51178051). The objective of the study is toinvestigate its mechanical performance, failure modes, its applications in arch bridges withrectangular shape section and its advantages in mechanical properties. The research canprovide the basis for its application in bridge engineering.
     The research content and research results are as follows:
     (1) A total of27short columns with various section: rectangular steel-concrete composite,rectangular steel-concrete composite with stiffeners and rectangular steel-concrete compositewith PBL stiffeners were tested in axial compression. Component failure modes,load-displacement curve and load strain curve were analyzed. The results show that: thefailure modes of the rectangular steel-concrete composite columns with PBL stiffeners aresimilar to those of rectangular steel-concrete composite columns with stiffeners, but they aremuch different from those of rectangular steel-concrete composite columns. The reason is thatPBL stiffeners can help steel plates to resist load and transfer the load to concrete effectively,which enhances steel-concrete combination effect. Also, it can enhances constrain effect ofsteel plates on core concrete of the composite section. Bearing capacities of concrete filledsteel tubular and axial compression stiffness are significantly improved by using steelstiffeners or PBL stiffeners.
     (2)The behavior of short columns subjected to axial loads was analyzed by ANSYS-afinite element software program. A revised stress-strain relationship of core concrete wasproposed. The numerical results show a good agreement with the experimental results.According to the numerical results, we investigated and compared stress distribution ofrectangular steel-concrete composite columns. The results show that hole concretecompressive stress is higher than the rest of the core concrete compressive stress. Also, PBLstiffened core concrete stress distribution is most uneven among all columns; the mechanismof PBL stiffened concrete short columns was analyzed and results show that steel stresses atthe transverse direction of steel plates at the center of columns first increases and thendecreases with the increase of the diameter of hole of the stiffeners.
     (3)According to the experimental data, universal regression equations of bearing capacityand stiffness for rectangular steel-concrete composite, rectangular steel-concrete compositewith stiffeners and rectangular steel-concrete composite with PBL stiffeners are given andcompared to the equations in related codes. The results from regression equations andexperimental results are in good agreement. Based on the above analyses, we continued to dosensitive analyses for rectangular steel-concrete composite with PBL stiffeners and verify thefeasibility of the calculation method. Finally, a design method was proposed.
     (4)Five rectangular steel-concrete composite slender columns with PBL stiffeners weretested in axial compression. Before the test, quality of internal fill concrete was tested. Theultrasonic testing results show that: PBL stiffeners are bonded well with concrete, whichmeans a good quality concrete pouring. The test results also show that: the slenderness ratio isa major factor that affects the behavior of slender columns subjected to axial compressionforce. Practical method of calculating for bending stiffness and stability capacity of slendercolumns with PBL stiffeners under axial compression were proposed. The results from thepractical method are in good agreement with the experimental results.
     (5)We applied PBL stiffeners to a square steel-concrete composite arch bridge and analyzedthe effect of PBL stiffeners on the mechanical properties of the bridges. The results show that:PBL stiffeners can significantly improve the flexural stiffness and ultimate bearing capacity ofarch bridges. The steel ratio of the arch bridge with PBL stiffeners is increased by about30%,while the carrying capacity is increased by about54%. In the ultimate limit state, the load canbe more effectively transferred to the arch rib; thereby the combination effect of steel-concrete is improved.
引文
[1]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [2]韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社,2004.
    [3]钟善桐.钢管混凝土结构(第三版)[M].北京:清华大学出版社,2003.
    [4]钟善桐.钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1994.
    [5]蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社,1989.
    [6]陈宝春.钢管混凝土拱桥实例集(一)[M].北京:人民交通出版社,2002.
    [7]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [8]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,2000.
    [9]韩林海,陶忠,王文达.现代组合结构和混合结构—试验、理论和方法[M].北京:科学出版社,2009.
    [10]钟善桐.钢管混凝土统一理论—研究与应用[M].北京:清华大学出版社,2006.
    [11]陈宝春.钢管混凝土拱桥(第二版)[M].北京:人民交通出版社,2007.
    [12]王玉银,惠中华.钢管混凝土拱桥施工全过程与关键技术[M].北京:机械工业出版社,2010.
    [13]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2007.
    [14]Schneider S P. Axially loaded Concrete-Filled Steel Tubes[J]. Journal of StructuralEngineering.ASCE,1998,124(10):1125-1138.
    [15]T K. Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers inJapan[J]. Engineering Structures,1998,20:4-6,347-354.
    [16]顾威. CFRP钢管混凝土柱的力学性能研究[D].大连海事大学,2007.
    [17]胡忠君. CFRP约束混凝土轴心受压柱力学行为研究[D].吉林大学,2010.
    [18]胡波. FRP约束混凝土柱的受压性能研究[D].合肥工业大学,2010.
    [19]朱昌宏.带约束拉杆方形和矩形截面钢管混凝土短柱承载力与延性[D].华南理工大学,2010.
    [20]左志亮.带约束拉杆异形截面钢管混凝土短柱的受压力学性能研究[D].华南理工大学,2010.
    [21]黄宏.中空夹层钢管混凝土压弯构件的力学性能研究[D].福州大学,2006.
    [22]曾彦,曾勇,赵顺波.钢管混凝土叠合柱式桥墩受力性能分析[J].世界桥梁,2010(2):52-54.
    [23]张玉芬.复式钢管混凝土轴压性能及节点抗震试验研究[D].长安大学,2010.
    [24]蔡健,龙跃凌.带约束拉杆方形、矩形钢管混凝土短柱的轴压承载力[J].建筑结构学报,2009(01):2-14.
    [25]蔡健,何振强.带约束拉杆方形钢管混凝土的本构关系[J].工程力学,2006(10):145-150.
    [26]涂光亚,颜东煌,邵旭东.脱黏对桁架式钢管混凝土拱桥受力性能的影响[J].中国公路学报,2007(06).
    [27]涂光亚,颜东煌,邵旭东.脱粘对单圆管钢管混凝土拱桥极限承载力的影响[J].哈尔滨工业大学学报,2010(12).
    [28]涂光亚,颜东煌,邵旭东,等.脱粘对桁架式钢管混凝土拱肋刚度影响研究[J].公路交通科技,2011(02).
    [29]周继忠,郑永乾,陶忠.带肋薄壁和普通方钢管混凝土柱的经济性比较[J].福州大学学报(自然科学版),2008,36(4):598-603.
    [30]黄义勇,黄宏.带肋方钢管混凝土柱的经济性分析[J].铁道建筑,2010(10):130-132.
    [31]李斌.钢管混凝土结构的研究[D].西安建筑科技大学,2005.
    [32]朱勤.塞维利亚阿拉米略桥的建造[J].国外桥梁,1996(02).
    [33]樊健生,聂建国.钢-混凝土组合桥梁研究及应用新进展[J].建筑钢结构进展,2006(05).
    [34]代向群,毛健.南海紫洞大桥钢管混凝土斜拉桥的设计[J].公路交通科技,2002(02).
    [35]刘士林,王似舜.斜拉桥设计[M].北京:人民交通出版社,2006.
    [36]臧华,刘钊.钢管混凝土桥墩的应用与研究[J].中国工程科学,2007(07).
    [37]马建锋.钢管混凝土压弯构件的稳定性及在桥墩中的应用[D].南京理工大学,2009.
    [38]徐腾飞,赵人达,向天宇,等.钢管混凝土高墩非线性稳定承载能力可靠度分析[J].土木建筑与环境工程,2010,32(2):60-63.
    [39]Furlong R W. Strength of steel-encased concrete beam columns[J]. Journal of theStructural Division, proceedings of the American Society of Civil Engineers, p.113,1967,93:113.
    [40]Liu Z, Goel S C. Cyclic Load Behavior of Concrete-Filled Tubular Braces[J]. Journal ofStructural Engineering,1988,114:1488.
    [41]Shakir-Khalil H A Z J. Experimental behavior of concrete filled rolled rectangularhollow-section columns[J]. Structural Engineer,1989,67(9):346-353.
    [42]Shakir-Khalil H, Mouli M. Further tests on concrete-filled rectangular hollow-sectioncolumns[J]. Structural Engineer,1990,68(20):405-413.
    [43]Cederwall K, Engstrom B, Grauers M. High-strength concrete used in composite columns:Second International Sympsium on Utilization of High-Strength Concrete, Hester, W. T.(ed.), Berkeley,California.,1990[C].
    [44]Matsui C, Tsuda K, El Din H Z. Stability design of slender concrete filled steel squaretubular columns[J]. Proceedings of the4th East Asia-Pacific Conference on StructuralEngineering and Construction,1993(1):317-322.
    [45]O'Shea M D, Bridge R Q. Behaviour of thin-walled box sections with lateral restraint[M].The University of Sydney, Department of Civil Engineering,1997.
    [46]Wang Y C. Tests on slender composite columns[J]. Journal of Constructional SteelResearch,1999,49(1):25-41.
    [47]Schneider S P. Axially loaded concrete-filled steel tubes[J]. Journal of StructuralEngineering,1998,124(10):1125-1138.
    [48]Uy B. Strength of concrete filled steel box columns incorporating local buckling[J].Journal of Structural Engineering,2000,126:341.
    [49]Varma A H, Ricles J M, Sause R, et al. Experimental behavior of high strength squareconcrete-filled steel tube beam-columns[J]. Journal of Structural Engineering,2002,128:309.
    [50]Liu D, Gho W M, Yuan J. Ultimate capacity of high-strength rectangular concrete-filledsteel hollow section stub columns[J]. Journal of Constructional Steel Research,2003,59(12):1499-1515.
    [51]Liu D, Gho W M, Yuan J. Ultimate capacity of high-strength rectangular concrete-filledsteel hollow section stub columns[J]. Journal of Constructional Steel Research,2003,59(12):1499-1515.
    [52]张正国,左明生.方钢管混凝土轴压短柱在短期一次静载下的基本性能研究[J].郑州工学院学报,1985(02):19-32.
    [53]罗力.方钢管砼长柱在轴心荷载作用下的试验研究[D].郑州工学院郑州大学,1989.
    [54]张正国.方钢管砼偏压短柱基本性能研究[J].建筑结构学报,1989(6):10-20.
    [55]张正国.方钢管砼中长轴压柱稳定分析和实用设计方法[J].建筑结构学报,1993(4):28-39.
    [56]王菁,关罡,李四平,等.方钢管砼轴压柱承载力的计算[J].建筑结构,1997(5):13-15.
    [57]黄玉盈,李四平,霍达,等.偏心受压方钢管混凝土柱极限承载力的计算[J].建筑结构学报,1998(1):41-51.
    [58]陶忠.方钢管混凝土构件力学性能若干关键问题的研究[D].哈尔滨工业大学,2001.
    [59]余勇.方钢管混凝土结构的性能研究[D].上海:同济大学,1998.
    [60]余勇,吕西林.方钢管混凝土柱的三维非线性分析[J].地震工程与工程振动,1999(1):57-64.
    [61]Zhou Ming, Zhang Sumei. Separated stress-strain models of steel and concrete of CFSSTshort columns: Proceedings of sixth pacific structural steel conference, Beijing China.,2001[C].
    [62]叶再利.方形、矩形钢管高强混凝土轴压短柱基本力学性能研究[D].哈尔滨:哈尔滨工业大学,2001.
    [63]杨有福.矩形截面钢管混凝土构件力学性能的若干关键问题研究[D].哈尔滨工业大学,2003.
    [64]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报,2001,34(4):22-31.
    [65]郭兰慧.方形、矩形钢管高强混凝土构件力学性能分析与试验研究[D].哈尔滨工业大学,2002.
    [66]王秋萍.薄壁钢管混凝土轴压短柱力学性能的试验研究[D].哈尔滨工业大学,2002.
    [67]曹宝珠.薄壁钢-混凝土组合构件静力性能研究[D].哈尔滨:哈尔滨工业大学,2004.
    [68]徐政.洪家渡水电站厂房矩形薄壁钢管混凝土组合柱试验研究[D].哈尔滨工业大学,2005.
    [69]郭兰慧.矩形钢管混凝土构件力学性能的理论分析与试验研究[D].哈尔滨:哈尔滨工业大学,2006.
    [70]Ge H B, Usami T. Strength of Concrete-Filled Thin-Walled Steel Box Columns:Experiment[J]. Journal of structural engineering,1992,118:3036.
    [71]Kwon Y B, Song J Y, Kon K S. The structural behaviour of concrete-filled steel piers[C].Proceedings of16th Congress of IABSE. Iucerne,Switzerland University of AppliedSciences Fribourg.2000.
    [72]Petrus C, Abdul Hamid H, Ibrahim A, et al. Experimental behaviour of concrete filledthin walled steel tubes with tab stiffeners[J]. Journal of Constructional Steel Research,2010,66(7):915-922.
    [73]陈勇,张耀春.设置斜肋方形薄壁钢管混凝土轴压短柱研究[J].东南大学学报(自然科学版),2006(1):107-112.
    [74]张耀春,陈勇.设直肋方形薄壁钢管混凝土短柱的试验研究与有限元分析[J].建筑结构学报,2006(05):16-22.
    [75]Zhang Y, Xu C, Lu X. Experimental study of hysteretic behaviour for concrete-filledsquare thin-walled steel tubular columns[J]. Journal of Constructional Steel Research,2007,63(3):317-325.
    [76]陶忠,于清.新型组合结构柱—试验、理论与方法[M].北京:科学出版社,2006.
    [77]王志滨,陶忠.带肋薄壁方钢管混凝土轴压短柱设计探讨[J].工业建筑,2007(12):13-17.
    [78]Tao Z, Han L H, Wang Z B. Experimental behaviour of stiffened concrete-filledthin-walled hollow steel structural (HSS) stub columns[J]. Journal of Constructional SteelResearch,2005,61(7):962-983.
    [79]黄宏,李毅,张安哥.带肋方钢管混凝土轴压短柱的试验研究[J].铁道建筑,2009(12):113-115.
    [80]黄宏,张安哥,李毅,等.带肋方钢管混凝土轴压短柱试验研究及有限元分析[J].建筑结构学报,2011(02).
    [81]谢红兵,柯在田,林广元,等.在动载作用下的连续结合梁的设计[J].国外桥梁,1998(4):12-21.
    [82]Valente I, Cruz P J S. Experimental analysis of Perfobond shear connection between steeland lightweight concrete[J]. Journal of Constructional Steel Research,2004,60(3):465-479.
    [83]Tan D L, Qin F J, Jin D. Experimental Study on Neotype Anchor System in Tower ofCable-Stayed Bridge[J]. Advanced Materials Research,2011,163:2017-2022.
    [84]肖林.钢混组合结构中剪力连接件试验研究[D].西南交通大学,2008.
    [85]周浩,张勇.浅谈钢—混凝土组合梁的剪力连接件[J].四川建筑,2004(5):50-51.
    [86]雷昌龙.钢—混凝土组合桥中新的剪力连接器的发展与试验[J].国外桥梁,1999(2):64-68.
    [87]Kraus D, Wurzer O. Nonlinear finite-element analysis of concrete dowels[J]. Computers\&structures,1997,64(5):1271-1279.
    [88]宗周红,车惠民.剪力连接件静载和疲劳试验研究[J].福州大学学报(自然科学版),1999(6):61-66.
    [89]张清华,李乔,卜一之. PBL剪力连接件群传力机理研究(Ⅰ)——理论模型[J].土木工程学报,2011(04).
    [90]张清华,李乔,卜一之. PBL剪力连接件群传力机理研究Ⅱ:极限承载力[J].土木工程学报,2011(05).
    [91]刘玉擎,周伟翔,蒋劲松.开孔板连接件抗剪性能试验研究[J].桥梁建设,2006(06).
    [92]胡建华,侯文崎,叶梅新. PBL剪力键承载力影响因素和计算公式研究[J].铁道科学与工程学报,2007(06).
    [93]胡建华,叶梅新,黄琼. PBL剪力连接件承载力试验[J].中国公路学报,2006(06).
    [94]Isabel V, Paulo JSC. Experirmental Analysis of Perfobond Shear Connection BetweenSteel and Light-Weight Concret[J]. Journal of Constructional Steel,2004,60(3):465-479.
    [95]张霞,向中富.钢-砼组合梁中两种新型连接件的有限元分析[J].重庆交通学院学报,2007(02).
    [96]李小珍,肖林,张迅,等.斜拉桥钢-混凝土结合段PBL剪力键承载力试验研究[J].钢结构,2009(09).
    [97]肖林.钢混组合结构中剪力连接件试验研究[D].西南交通大学,2008.
    [98]Hosakat T, Kaoru M, Hirokazu T. Study on Shear Strength and Design Method ofPerfobond Strip[J]. Japanese Journal of Structural Ennineering,2002,48(A).
    [99]刘永健,张俊光,黄健超,等.双层桥面三桁刚性悬索加劲钢桁梁桥全桥试验模型[J].建筑科学与工程学报,2008(03):61-65.
    [100]刘永健,张俊光,徐开磊,等.设纵肋钢箱混凝土轴压短柱试验研究[J].建筑结构学报,2011(10):159-165.
    [101]中华人民共和国国家标准.《钢及钢产品力学性能试验取样位置及试样制备》(GB/T2975-1998)[S].北京:中国建筑工业出版社,1998,1-36.
    [102]中华人民共和国国家标准.《金属室温拉伸试验方法》(GB/T228.1-2010)[S].北京:中国建筑工业出版社,2010,1-25.
    [103]中华人民共和国国家标准.《普通混凝土力学性能试验方法标准》(GB.T50081-2002)[S].北京:中国建筑工业出版社,2002,1-47.
    [104]荣彬.方钢管混凝土组合异形柱的理论分析与试验研究[D].天津大学,2008.
    [105]李黎明.矩形钢管混凝土柱力学性能研究[D].天津大学,2007.
    [106]张正国.方钢管混凝土柱的机理和承载力的分析[J].工业建筑,1989(11).
    [107]卢方伟.新型钢管混凝土构件的理论和试验研究[D].上海交通大学,2007.
    [108]陈勇.新型薄壁钢管混凝土柱静力性能研究[D].哈尔滨:哈尔滨工业大学,2006.
    [109]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [110]GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [111]王玉银,张素梅.圆钢管高强混凝土轴压短柱性能的试验研究[J].哈尔滨工业大学学报,2004(12):完1646-1648.
    [112]王茜.钢桥塔与组合桥塔受力性能试验研究[D].长安大学,2008.
    [113]郭鑫,阳震宇,乔建东.基于ANSYS的钢管混凝土拱桥抗震分析[J].铁道标准设计,2003(04).
    [114]陆新征,江见鲸.用ANSYS Solid65单元分析混凝土组合构件复杂应力[J].建筑结构,2003(06).
    [115]罗业辉,赵海涛,邓仕涛.应用ANSYS软件进行碾压混凝土重力坝非线性有限元静力和动力分析[J].西北水电,2005(02).
    [116]王琳鸽,张耀庭.压区粘钢加固钢筋混凝土梁的ANSYS分析[J].工程力学.
    [117]赵同峰,王连广,安山河,等.方钢管钢骨高强混凝土轴压柱有限元分析[J].东北大学学报(自然科学版),2011(07):1041-1043.
    [118]钟善桐.国产建筑钢材弹塑性阶段工作性能和泊松比的实验研究[J].哈尔滨建筑工程学院学报,1979(1):18-30.
    [119]王新敏,李义强,许宏伟. ANSYS结构分析单元与应用[M].北京:人民交通出版社,2011.
    [120]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [121]肖阿林.钢骨-钢管高性能混凝土轴压组合柱受力性能与设计方法研究[D].湖南大学,2009.
    [122]黄翔宇,石少卿,尹平.高强钢管混凝土短柱轴压承载力试验和有限元分析[J].四川建筑科学研究,2005,31(3):22-27.
    [123]江韩.轴心受压双钢管混凝土短柱的理论分析和试验研究[D].南京:东南大学,2007.
    [124]Zhang J G, Liu Y J, Yang J, et al. Experimental Research and Finite Element Analysisof Concrete-Filled Steel Box Columns with Longitudinal Stiffeners[J]. AdvancedMaterials Research,2011,287:1037-1042.
    [125]Zeghiche J, Chaoui K. An experimental behaviour of concrete-filled steel tubularcolumns[J]. Journal of Constructional Steel Research,2005,61(1):53-66.
    [126]Tomii M, Sakino K. Experimental studies on concrete filled square steel tubularbeam-columns subjected to monotonic shearing force and constant axial force[J].Transactions of the Architectural Institute of Japan,1979,281:81-90.
    [127]Chitawadagi M V, Narasimhan M C, Kulkarni S M. Axial capacity of rectangularconcrete-filled steel tube columns-DOE approach[J]. Construction and BuildingMaterials,2010,24(4):585-595.
    [128]卢方伟,李四平,孙国钧.方钢管混凝土轴压短柱的非线性有限元分析[J].工程力学,2007(3):110-114.
    [129]韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报,2001(02).
    [130]李小伟,赵均海,朱铁栋,等.方钢管混凝土轴压短柱的力学性能[J].中国公路学报,2006(04).
    [131]刘永健,张俊光,张国玺,等.节段拼接的钢箱柱稳定承载力试验研究[J].建筑结构学报,2010(S1):23-27.
    [132]ACI318-05.Building code requirements for structural concrete and commentary[S].Detroit,USA: American Concrete Institute:2005.
    [133]London,UK: British Standards Institutions BS5400,2005.Steel,concrete and compositebridges,Part5:Code of practice for design of composite bridges[S].2005.
    [134]Eurocode4(EC4).Design of steel and concrete structure-part1-1:General rules andrules for building [S]. EN1994-1-1:2004.Brussels: European committee forstandardization..
    [135]DBJ13-51-2003.钢管混凝土结构技术规程[S].福州:福建省建设厅,2003.
    [136]CECS159:2004.矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004.
    [137]陈辉.轴压作用下钢管混凝土矩形柱的组合刚度研究[D].武汉理工大学,2010.
    [138]邓远征.钢骨-钢管混凝土轴压短柱的组合轴压刚度研究[J].水运工程,2009(11):45-47.
    [139]徐亚丰,向常艳,赫芳.钢骨-钢管混凝土组合柱轴压组合刚度分析[J].钢结构,2008(11):13-15.
    [140]钟善桐.钢管混凝土刚度的分析[J].哈尔滨建筑大学学报,1999(3):13-18.
    [141]康希良,赵鸿铁,薛建阳,等.钢管混凝土柱组合轴压刚度的理论分析[J].工程力学,2007(1):101-105.
    [142]马欣伯,张素梅.各国规程关于圆钢管混凝土构件刚度计算方法的介绍与比较[J].工业建筑,2004(02):75-78.
    [143]王玉银.圆钢管高强混凝土轴压短柱基本性能研究[D].哈尔滨:哈尔滨工业大学,2003.
    [144] CECS28:90《钢管混凝土结构设计与施工规程》[S].北京:中国工程建设标准化协会,1991.
    [145]日本建筑学会.充填钢管构造设计施行指针[S].1997.
    [146]Chiaki Matsui, Jun' ichi Sakai, Hitaka T. SRC Standards and Test of CFT Frames CFTstructures in Japan[S].2001.
    [147]国家建筑材料工业局标准.钢管混凝土设计与施工规程(JCJ01-89)[S].同济大学出版社,1989.
    [148]中华人民共和国经济贸易委员会.钢—混凝土组合结构设计规程(DL/T-5085-1999)[S].中国电力出版社,1999.
    [149]AISC. Load and Resistance Factor Design Specification for Structural SteelBuildings[S].
    [150]徐亚丰,贾连光.钢骨—钢管混凝土结构技术[M].北京:科学出版社,2009.
    [151]成戎,王志浩,石潇岩.加劲肋在大宽厚比方钢管混凝土柱中的应用[J].工业建筑,2008(1):100-102.
    [152]林春姣,郑皆连,秦荣.钢管混凝土拱肋混凝土脱空研究综述[J].中外公路,2004(6):54-58.
    [153]黄永辉.钢管混凝土拱桥拱肋病害机理与影响分析及吊杆更换技术研究[D].华南理工大学,2010.
    [154]杨世聪,王福敏,渠平.核心混凝土脱空对钢管混凝土构件力学性能的影响[J].重庆交通大学学报(自然科学版),2008(3):360-365.
    [155]涂光亚.脱空对钢管混凝土拱桥受力性能影响研究[D].湖南大学,2008.
    [156]GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [157]中国工程建设标准化协会标准.超声波检测混凝土缺陷技术规程(CECS21:2000)
    [S].北京:中国计划出版社,2001.
    [158]张宏,余钱华,吕毅刚.超声透射法检测钢管拱桥拱肋混凝土质量应用研究[J].土木工程学报,2004,37(8):50-53.
    [159]蔡奇,杨帡,王璐,等.超声法检测钢管混凝土缺陷关键技术试验研究[J].建筑结构,2011,41(3):81-83.
    [160]朱美春.钢骨-方钢管自密实高强混凝土柱力学性能研究[D].大连理工大学,2005.
    [161]谭克锋,蒲心诚.钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究[J].建筑结构学报,2000(02):12-19.
    [162]傅中秋,吉伯海,胡正清,等.钢管轻集料混凝土长柱轴压性能试验研究[J].东南大学学报(自然科学版),2009(03):546-551.
    [163]顾维平,蔡绍怀,冯文林.钢管高强混凝土长柱性能和承载能力的研究[J].建筑科学,1991(03):3-8.
    [164]郭兰慧,张素梅,王玉银,等.矩形钢管高强混凝土中长柱轴压构件的试验研究与理论分析[J].工业建筑,2005(03):75-79.
    [165]顾威,赵颖华. CFRP钢管混凝土轴压长柱试验研究[J].土木工程学报,2007(11):23-28.
    [166]顾威,赵颖华,贾永新. CFRP钢管混凝土长柱承载力的研究[J].工程力学,2008(07):147-152.
    [167]张耀春,许辉,曹宝珠.薄壁钢管混凝土长柱轴压性能试验研究[J].建筑结构,2005(01):28-31.
    [168]吉伯海,周文杰,王晓亮.钢管轻集料混凝土中长柱轴压性能的试验研究[J].建筑结构学报,2007(05):118-123.
    [169]王宏伟,徐国林,钟善桐.空心钢管混凝土长柱轴压性能的试验研究[J].工业建筑,2006(12):69-73.
    [170]吉伯海,周文杰,胡正清,等.核心混凝土性能对钢管混凝土稳定系数的影响研究[J].世界桥梁,2007(3):39-41.
    [171]陈宝春,陈友杰.钢管混凝土肋拱面内受力全过程试验研究[J].工程力学,2000(2):44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700