用户名: 密码: 验证码:
爆炸荷载下钢筋混凝土板的动态响应及损伤评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会中,爆炸袭击或意外爆炸事故日益频繁发生,不仅造成严重的人员伤亡和设备财产损失,也导致临近的建筑结构损伤破坏甚至灾难性的倒塌。国内对建筑结构构件的抗爆性能研究进展缓慢,迫切需要开展全面的结构构件抗爆研究。在爆炸冲击过程中,钢筋混凝土板由于承载面积大、截面厚度小,容易出现大范围的损伤破坏,甚至将使梁、柱等主要结构构件丧失侧向支撑承载力,引发整体框架连续倒塌。本文采用理论分析和数值模拟方法对爆炸荷载下钢筋混凝土板的动态响应和损伤评估进行了系统研究,具有重要的理论意义和工程应用价值。主要的研究工作和成果如下:
     (1)将钢筋混凝土板简化为单自由度体系,进行了爆炸荷载下动态响应的理论分析。结合爆炸荷载下混凝土板发生塑性大变形时的性质特点,基于合理假设条件,运用能量守恒原理,采用Lagrangian方程建立大变形混凝土板的极限变形公式;基于挠度相等和能量守恒原则,将钢筋混凝土板经转换系数等效成单自由度体系,应用单自由度体系动力分析方法,计算出动态响应的最大位移。与数值结果对比验证理论公式和分析的正确性和有效性。
     (2)基于显式动力学程序ANSYS/LS-DYNA建立了爆炸荷载下四边简支钢筋混凝土双向板动态响应和损伤评估的数值模拟方法,并与相关文献试验进行了对比验证。揭示了钢筋混凝土板动态响应中各参数的发展变化过程,得到了不同条件下动态响应的参数影响规律,找出了钢筋混凝土板抗爆性能的主要影响参数,为抗爆设计时确定合理的设计参数和抗爆措施提供了理论依据和建议。
     (3)建立了基于支座转角的爆炸荷载下钢筋混凝土板的超压—冲量损伤评估准则,提出了确定超压—冲量(P-I)曲线的数值试算法,进而得到了钢筋混凝土板的P-I曲线和曲线拟合公式,与理论方法建立的P-I曲线对比验证。并探讨了不同损伤等级时相关参数对P-I曲线影响的变化规律。所建立的钢筋混凝土板的P-I曲线相比于理论方法的P-I曲线更能反映真实的材料性能和构件动态响应,可以准确地评估不同爆炸荷载下钢筋混凝土板的损伤。
     (4)基于等效单自由度体系方法进行了钢筋混凝土板的抗爆设计,提出钢筋混凝土板的抗爆措施。研究结果表明:提高混凝土强度、增加板厚、减小跨厚比、增加钢筋配筋率,采取双向双层配筋形式,加强支座联结均能提高新设计钢筋混凝土板的抗爆性能;对于已建构件,可综合采用多层次多种加固方法形成的多层复合结构进行抗爆加固。
In the modern society, more and more explosive terror attacks and explosive accidentshave happended around the world. These explosions not only inflict heavy casualties andproperty loss, but also cause serious damage even disastrous collapse to neighboring buildings.The research for blast resistant capacity of structures is far from sufficient in China, so it isnecessary to carry out overall research on it. During explosions, reinforced concrete (RC)slabs with large a surface area for the pressure to act on and a comparably small thickness, arevulnerable to widespread damage More seriously, RC slabs failure may cause the loss oflateral support capacity for major members of columns and beams, even may lead to theprogressive collapse of RC frame. This dissertation integrates theoretical analysis andnumerical simulation method to study dynamic response and damage assessment of RC slabssubjected to blast loading, and this research also has important theoretical significance andpractical value. Main research and conclusions can be obtained as follows:
     (1) RC slabs are reduced to one-degree systems to study dynamic response theoretically.Based on reasonable assumptions, combined with severe plastic deformation properties ofconcrete slabs, a theoretical formula for limit deformation of concrete slabs with largedeformation is established by means of using the law of conservation of energy andLagrange's equations. Base on the principles of equal deflections and equal energy, the RCslab element is represented by an equivalent one-degree system through conversion factors.Then the maximum displacement of key point of a RC slab is calculated by single degrees offreedom system dynamic analysis. The formula and theoretical analysis are verified bycompared with some numerical results
     (2) Using a explicit dynamic finite element analysis program, LS-DYNA, a finiteelement model method of RC slabs with simply supported on four sides is developed forsimulating dynamic response and damage assement, then is discussed and verified throughcorrelated experimental studies. Development change processes for various parameters ofdynamic response of RC slabs are revealed. Under different conditions, several parameters were simulated to get the effects on dynamic response and explosion resistance. The majorinfluential parameters were screened out to provide some theories and suggestions ondetermining reasonable parameters in blast-resistance design and blast resistant measures.
     (3) Damage assessment parameters and criteria for RC slabs are discussed. Apressure-impluse damage criterion for RC slabs is defined based on the support rotation, and anumerical method to generate pressure-impulse diagrams is established. Pressure-impulsediagrams and curves fitting formulas for RC slabs are established, and compared withpressure-impulse diagrams from equivalent one-degree system approach. Under differentdamage levels, the effects of key parameters on pressure-impulse diagrams are discussed.Pressure-impulse diagrams established in this dissertation can reflect the actual materialproperties and dynamic response more effectively, and can carry out accurate damageassessments for RC slabs under different blast loads.
     (4) Based on an equivalent one-degree system method, a blast-resistant design for RCslabs structural elements is carried out. Blast resistant measures for new and exsiting RC slabsare put forward. It is found that blast resistance of a new RC slab can be improved by meansof enhancing concrete strength, increasing thickness, decreasing span-thickness ratio,increasing reinforcement ratio, two-way double layers of reinforcement layout, andstrengthening supports for slabs. For exsiting RC slabs, forming composite protectivestructure with multilevels and various methods is an effective blast-resistant improvementmeasure.
引文
[1] Committee on Research for the Security of Future U.S. Embassy Buildings, of the Building ResearchBoard(BRB), Commission on Engineering and Technical Systems, National Research Council. TheEmbassy of the Future: Recommendations for the Design of Future U.S. Embassy Buildings[M].Washington, D. C.: National Academy Press,1986
    [2] Committee on the Protection of Federal Facilities Against Terrorism, Building Research Board,National Research Council. Protection of Federal Office Buildings against Terrorism[M].Washington, D. C.: National Academy Press,1988
    [3] ARMY TM5-1300, Structures to Resist the Effects of Accidental Explosions[S]. Washington, D. C.:U. S. Department of the Army, Navy and the Air Force,1990
    [4] Henry J. The dynamics of explosion and its use[M]. Amsterdam: Elsevier,1979
    [5] UFC3-340-02, Structures to resist the effects of accidental explosions[S]. Washington, D. C.: U. S.Department of the Army, Navy and the Air Force,2008,12
    [6] Smith P.D., Mays G.C., Rose T. A., et al. Small scale models of complex geometry for blastoverpressure assessment[J]. International Journal of Impact Engineering,1992,12(3):345-360
    [7] Smith P.D., Rose T. A Blast wave propagation in city streets-an overview[J]. Progress in StructuralEngineering and Materials,2006,8(1):16-28
    [8] B. Luccioni, D. Ambrosini, R. Danesi. Blast load assessment using hydrocodes[J]. EngineeringStructures,2006,28(12):1736-1744
    [9]林大超,白春华,张奇.空气中爆炸时爆炸波的超压函数[J].爆炸与冲击,2001,21(1):41-46
    [10]都浩,李忠献,郝洪.建筑物外部爆炸超压荷载的数值模拟[J].解放军理工大学学报(自然科学版),2007,8(5):413-418
    [11] Colin M. Morison. Dynamic response of walls and slabs by single-degree-of-freedom analysis-acritical review and revision[J]. International Journal of Impact Engineering,2006,32:1214-1247
    [12] W.W. El-Dakhakhni, S. H. Changiz Rezaei, W. F. Mekky, et al. Response sensitivity of blast-loadedreinforced concrete structures to the number of degrees of freedom[J]. Canadian Journal of CivilEngineering,2009,36(8):1305-1320
    [13]王芳,冯顺山,俞为民.爆炸冲击波作用下靶板的塑性大变形响应研究[J].中国安全科学学报,2003,13(3):58-61
    [14]何建,王善,唐平.爆炸载荷作用下混凝土板的塑性动力响应[J].哈尔滨工业大学学报,2005,37(6):798-800
    [15]刘土光,朱科,郑际嘉.爆炸荷载下矩形板的塑性动力响应[J].爆炸与冲击,1992,12(2):166-169
    [16] Pedro F. Silva P.E., Binggeng Lu. Blast Resistance Capacity of Reinforced Concrete Slabs [J].Journal of Structural Engineering,2009,135(6):708-716
    [17] Chengqing Wu, Ratni Nurwidayati, Deric John Oehlers. Fragmentation from spallation of RC slabsdue to airblast loads[J]. International Journal of Impact Engineering,2009,36:1371–1376
    [18] Andra′s Schenker, Ido Anteby, Erez Gal, et al. Full-scale field tests of concrete slabs subjected toblast loads[J]. International Journal of Impact Engineering,2008,35:184-198
    [19] S. Chung Kim Yuen, G. N. Nurick. Experimental and numerical studies on the response ofquadrangular stiffened plates. Part I: subjected to uniform blast load[J]. International Journal ofImpact Engineering,31(2005):55-83
    [20] G. S. Langdon, S. Chung Kim Yuen, G. N. Nurick. Experimental and numerical studies on theresponse of quadrangular stiffened plates. Part II: localized blast loading[J]. International Journal ofImpact Engineering,31(2005):85-111
    [21]孙文彬.钢筋混凝土板的爆炸荷载试验研究[J].辽宁工程技术大学学报,2009,28(2):217-220
    [22]张想柏,杨秀敏,陈肇元,等.接触爆炸钢筋混凝土板的震塌效应[J].清华大学学报(自然科学版),2006,46(6):756-768
    [23] Xu K., Lu Y. Numerical simulation study of spallation in reinforced concrete plates subjected to blastloading[J]. Computers&Structures,2006,84(5-6):431-438
    [24] J. Jones, C. Wu, D. J. Oehelers, et al. Finite difference analysis of simply supported RC Slabs forblast loadings[J]. Engineering Structures,2009,31(12):2825-2832
    [25] Low H.Y., Hao H. Reliability analysis of direct shear and flexural failure modes of RC slabs underexplosive loading[J]. Engineering Structures,2002,24(2):189-198
    [26] X.Q. Zhou, V.A. Kuznetsov, H. Hao, et al. Numerical prediction of concrete slab response to blastloading[J]. International Journal of Impact Engineering,2008,35:1186–1200
    [27]阎石,张亮,王丹.钢筋混凝土板载爆炸荷载作用下的破坏模式分析[J].沈阳建筑大学学报(自然科学版),2005,21(3):177-180
    [28]杨超,侯日立,刘生发,等.不同爆炸载荷作用下加筋板的动态响应分析[J].武汉理工大学学报,2010,32(2):56-59
    [29]张舵,卢芳云,王瑞峰.钢筋混凝土板在爆炸作用下的破坏研究[J].弹道学报,2008,20(2):13-16
    [30]龚顺风,朱升波,张爱晖,等.爆炸荷载的数值模拟及近爆作用钢筋混凝土板的动力响应[J].北京工业大学学报,2011,37(2):199-205
    [31]龚顺风,金伟良.内部爆炸荷载作用下钢筋混凝土板碎片抛射速度的预测[J].工程力学,2009,26(9):225-230
    [32]龚顺风,金伟良,何勇.内部爆炸荷载作用下钢筋混凝土板的动力响应研究[J].振动工程学报,2008,21(5):516-519
    [33]方秦,柳锦春,张亚栋,钱七虎.爆炸荷载作用下钢筋混凝土梁破坏形态有限元分析[J].工程力学,2001,18(2):1-8
    [34]方秦,吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J].计算力学学报,2003,20(1):39-42+48
    [35]魏雪英,白国良.爆炸荷载下钢筋混凝土柱的动力响应及破坏形态分析[J].解放军理工大学学报,2007,8(5):525-529
    [36] Wei xue-ying, Mark G. Stewart. Model validation and parametric study on the blast response ofunreinforced brick masonry walls[J]. International Journal of Impact Engineering.2010,37:1150-1159
    [37] Xue-ying Wei, Hong Hao. Numerical derivation of homogenized dynamic masonry materialproperties with strain rate effects[J]. International Journal of Impact Engineering.2009,36:522-536
    [38] Wei xueying, Hao hong. Numerical derivation of strain rate effects on material properties of masonrywith solid clay bricks[J]. Transactions of Tianjin University,2006,12(suppl):147-151
    [39] Yanchao Shi, Hong Hao, Zhong-Xian Li. Numerical derivation of pressure-impulse diagrams forprediction of RC column damage to blast loads[J]. International Journal of Impact Engineering,2008,35(11):1213-1227
    [40]师燕超,李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J].建筑结构学报,2008,29(4):112-117
    [41]孙建运,李国强,陆勇.爆炸荷载作用下SRC柱等效单自由度模型[J].振动与冲击,2007,26(6):82-89
    [42]孙建运.爆炸冲击荷载作用下钢骨混凝土柱性能研究[D].同济大学博士学位论文,2006
    [43]杨涛春,李国强.接触爆炸荷载下钢-混凝土组合梁的破坏模式研究[J].结构工程师,2009,25(1):34-40
    [44]伍俊,刘晶波,杜义欣.汽车炸弹爆炸下装配式防爆墙弹塑性动力计算与数值分析[J].防灾减灾工程学报,2007,17(4):394-400
    [45] By G. C. Mays, J. G. Hetherington, T. A. Rose. RESPONSE TO BLAST LOADING OFCONCRETE WALL PANELS WITH OPENINGS[J]. JOURNAL OF STRUCTURALENGINEERING,1999,125(12):1448-1450
    [46] Ching-Chuan Huang, Jeng-Chong Horng, Wen-Jong Chang et al. Dynamic behavior of reinforcedwalls-Horizontal displacement response[J]. Geotextiles and Geomembranes,2011,29:257-267
    [47]阎石,刘蕾,齐宝欣,等.爆炸荷载作用下方钢管混凝土柱的动力响应及破坏机理[J].防灾减灾工程学报,2011,31(5):477-482
    [48]杜林,石少卿,张湘,等.钢管混凝土短柱内部抗爆炸性能的有限元数值模拟[J].重庆大学学报,2004,27(10):142-144+159
    [49]陈肇元,罗家谦,潘雪雯.钢管混凝土短柱作为防护结构构件的性能[R].清华大学抗震抗爆工程研究室主编.科学研究报告集第四集,钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986,45-52
    [50]李朝.基于ANSYS/LS-DYNA软件的配筋砌块墙体爆炸数值模拟[D].哈尔滨工业大学硕士学位论文,2007,7
    [51] Sucuoglu Haluk, Citipitioglu Ergin, Altin Sinan. Resistance mechanisms in RC building framessubjected to column failure[J]. Journal of Structural Engineering,1994,120(3):765-782
    [52] Williams MS, Lok TS. Structural Assessment of Blast Damaged Buildings[C]. Structures underShock and Impact VI: Proceedings of International Conference on Structures under Shock andImpact,399-409,200
    [53]阎石,王积慧,王丹,等.爆炸荷载作用下框架结构的连续倒塌机理分析[J].工程力学,2009,26(S1):119-123
    [54]申祖武,龚敏,王天运,等.汽车炸弹爆炸冲击波作用下建筑物的动力响应分析[J].振动与冲击,2008,27(8):165-168+186
    [55] Li Z X, Shi Y C. Methods for progressive collapse analysis of building structures under blast andimpact loads[J]. Transactions of Tianjin University,2008,14(5):329-339
    [56]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J].解放军理工大学学报,2007,8(6):652-658
    [57] Ruwan Jayasooriya, David P. Thambiratnam, Nimal J. Perera, et al. Blast and residual capacityanalysis of reinforced concrete framed buildings[J]. Engineering Structures,2011,33(12):3483-3495
    [58] Pandey, A. K., et al. Non-linear response of reinforced concrete containment structure under blastloading[J]. Nuclear Engineering and Design,2006.236(9):993-1002
    [59] Luccioni, B.M., R.D. Ambrosini, and R.F. Danesi, Analysis of building collapse under blast loads[J].Engineering Structures,2004.26(1):63-71
    [60] Wu C Q, HAO H, LU Y. Dynamic response and damage analysis of masonry structures and masonryinfilled RC frames to blast ground motion[J]. Engineering Structures,2005,27:323-333
    [61] Esparza E. D., Baker W. E. Measurement of blast waves from bursting pressurized frangiblespheres[R]. NASA CR-2843, Southwest Research Institute, San Antonio, Texas,1977
    [62] Hopkinson B. British ordnance board minutes,13565[R]. British Ordnance Office, London, UK,1915
    [63] Brode H. L. Numerical solution of spherical blast waves[J]. Journal of Applied Physics, AmericanInstitute of Physics, New York,1955,26(6):766-775
    [64] Mills C. A. The design of concrete structure to resist explosions and weapon effects[C]. Proceedingsof1st International conference on concrete for hazard protections, Edinburgh, UK,1987:61-73
    [65] Wu Chengqing, Hao Hong. Modeling of simultaneous ground shock and air blast pressure on nearlystructures from surface explosions[J]. International Journal of Impact Engineering, Elsevier,2005,(31):699-717
    [66] W. E. Baker, P. A. Cox, P. S. Westine, et al. Explosion Hazards and Evaluation[M]. Amsterdam:Elsevier,1983
    [67] TM5-856, Design of Structures to Resist the Effects of Atomic Weapons[S]. U. S. Department ofDefense, Washington, DC,1965
    [68] John M. Biggs. Introduction to Structural Dynamics[M]. Mcgraw-Hill Book Company,1964
    [69] Manual No.42, Design of Structures to Resist Nuclear Weapons Effects[S]. Reston, VA: AmericanSociety of Civil Engineers,1985
    [70] Newmark, Nathan M. An engineering approach to blast resistant design[J]. ASCE Transactions,1956,121:45-64
    [71] Smith PD, Hetherington JG. Blast and ballistic loading of structures[M]. Butterworth-Heinemann,Oxford,1994
    [72] Mays G. C., Smith P. D. Blast effects on buildings[M]. Thomas Telford, London,1995
    [73] ConWep: Conventional weapons effects program[Z]. DW Hyde, ERDC Vicksburg MS,1991
    [74] PSADS: Protective structures automated design system v1.0[Z]. US Army Corps of Engineers,1998
    [75] C. N. Kingery, G. Bulmash. Airblast parameters from TNT spherical air blast and hemisphericalsurface burst[R]. Report ARBL-TR-02555, U. S. Army BRL, Aberdeen Proving Ground, MD,1984
    [76] Randers Pehrson G, Bannister K A. Airblast loading model for DYNA2D and DYNA3D[R]. ArmyResearch Laboratory, Rept. ARL-TR-1310,1997
    [77] User’s guide on protection against terrorist vehicle bombs[S]. U. S. Naval facilities engineeringservice center,1998,5
    [78]熊祝华.结构塑性分析[M].北京:人民交通出版社,1987
    [79] LS-DYNA KEYWORD USER'S MANUAL[M]. LIVERMORE SOFTWARE TECHNOLOGYCORPORATION(LSTC),2007,5, Version971
    [80] LS-DYNA Theory Manual[M]. LIVERMORE SOFTWARE TECHNOLOGYCORPORATION(LSTC),2006,3
    [81]江见鲸.钢筋混凝土结构非线性有限元分析[M].陕西科学技术出版社,1994
    [82] ANSYS LS-DYNA User’s Guide[M]. ANSYS, INC,2009,9
    [83] Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rate[J]. Materials andStructures,1991,24(144):425-450
    [84] L. Javier Malvar, C. Allen Ross. Review of strain rate effects for concrete in tension[J]. ACIMaterials Journal,1998,95(6):735-739
    [85] Hentz, S., F., V. Donze, L. Daudeville. Discrete element modeling of concrete submitted to dynamicsloading at high strain rates[J]. Computers&Structures,2004,82(29-30):2509-2524
    [86] Hao, H., X. Q. Zhou. Concrete material model for high-rate dynamic analysis[C]. Proceeding of the7th International Conference on Shock and Impact Loads on Structures, Beijing,2007,10:753-768
    [87] Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete[J].ACI J,49(1953):72-744
    [88]肖诗云,林皋,王哲.应变率对混凝土抗拉特性的影响[J].大连理工大学学报,2001,41(6):721-725
    [89]祁佳睿,苏幼坡,刘煜,等.考虑应变速率影响的混凝土动态特性的研究[J].混凝土,2010,2:48-52
    [90] Du B. C. E.–I. CEB-FIP Model Code1990[S]. Redwood Books, Trowbridge, Wiltshire, UK,1990
    [91] Malvar, L. J, J. E. Crawford. Dynamic increase factors for concrete[C]. Proceedings of the28thDepartment of Defense Explosive Safety Seminar1998, Orlando, FL,1998
    [92] Williams, M.S. Modeling of Local Impact Effects on Plain and Reinforced Concrete[J]. ACIStructural Journal, March-April1994,91(2):178-187
    [93] X. Q. Zhou, V. A. Kuznetsov, H. Hao, J. Waschl. Numerical prediction of concrete slab response toblast loading[J]. International Journal of Impact Engineering,2008,35(10):1186-1200
    [94] Gebbeken, N., M. Ruppert. A new material model for concrete in high dynamic hydrocodesimulation[J]. Archive of Applied Mechanics,2000,70(7):2509-2524
    [95]肖诗云,许东.应变率效应对钢筋混凝土柱的影响[J].防灾减灾工程学报,2009,29(6):668-675
    [96]林峰,顾祥林,匡昕昕,等.高应变率下建筑钢筋的本构模型[J].建筑材料学报,2008,11(1):14-20
    [97] Roger L. Brockenbrough, Frederick S. Merritt. Structural Steel Designers Handbook[M]. New York:McGraw–Hill,2006
    [98] Lee, W–S., C.–Y. Liu. The effects of temperature and strain rate on the dynamic flow behavior ofdifferent steels[J]. Materials Science and Engineering A,2006,426(1-2):102-113
    [99] L. Javier Malvar. Review of static and dynamic properties of steel reinforcing bars[J]. ACI MaterialsJournal,1998,95(5):609-614
    [100] Riedel W. Thoma K, Hiermaier, et al. Penetration of reinforced concrete by BETA-B-500numericalanalysis using a new macroscopic concrete model for hydrocodes[C]. Proceedings of9thInternational Symposium on Interaction of the Effects of Munitions with Structures, Berlin,1999:315-322
    [101] MALVAR L. J., CRAWFORD J. E., WESEVICH J. W., et al. A plasticity concrete material model forDYNA3D[J]. International Journal of Impact Engineering,1997,19(9/10):847-873
    [102] Malvar L. J., Simons D. Concrete Materials Modeling in Explicit Computations[C]. Workshop onRecent Advances in Computational Structural Dynamics and High Performance Computing. USAEWaterways Experiment Station, Vicksburg, MS,1996:165-194
    [103] Tu Z., Lu Y. Evaluation of Typical Concrete Material Model Used in Hydrocodes for High DynamicResponse Simulations[J]. International Journal of Impact Engineering,2009,36(1):132-146
    [104] Krieg, R.D, Key, S.W. Implementation of a time dependent plasticity theory into structural computerprograms[J]. A. Stricklin, K.J. Saczalski (Eds.), Constitutive Equations in Viscoplasticity:Computational and Engineering Aspects, AMD-20, ASME, New York (1976)
    [105] Tianhua Li, Junhai Zhao, Xueying Wei, et al. Numerical simulation of one-way reinforced concreteslabs subjected to blast loadings[C]. The2nd International Conference on Electric Technology andCivil Engineering (ICETCE2012),2012(Accepted)
    [106] Jone D. Osteraas. Murrah Building bombing revisited: A qualitative assessment of blast damage andcollapse patterns[J]. Journal of Performance of Constructed Facilities,2006,20(4):330-335
    [107] GB50010-2010,混凝土结构设计规范[S].中华人民共和国国家标准,中国建筑工业出版社,2010,8
    [108] Krauthammer T. Shallow-buried RC box-type structures[J]. Journal of Structural Engineering,1984,110(3):637-651
    [109] Krauthammer T, Bazaeos N, Holmquist T J. Modified SDOF analysis of RC box-type structures[J].Journal of Structural Engineering,1986,112(4):726-744
    [110] Muszvnski L., Purcel M R. Review of effects o f loading rate on concrete in compression[J]. Journalof Structural Engineering,1991,(117):3660-3679
    [111] Fu H. C., ErkiM A, Seckin M. Review of effects of loading rate on concrete in compression[J].Journal of Structural Engineering,1991,117:3360-3379
    [112] Donald O. Dusenberry. Handbook for Blast-Resistant Design of Buildings[M]. John Wiley&Sons,Inc., Canada,2010.
    [113] Ross TJ. Direct shear failure in reinforced concrete beams under impulsive loading[R]. TechnicalReport, No.AFWL-TR-83-84, Air Force Weapons Laboratory, Kirtland Air Force Base, NM,1983
    [114]李天华,赵均海,魏雪英,等.爆炸荷载下钢筋混凝土板的动力响应及参数分析[J].建筑结构增刊,2012,42(S1)
    [115] UFC4-010-01, DoD MINIMUM ANTITERRORISM STANDARDS FOR BUILDINGS[S].Department of Defense of the United States,2003,10
    [116] CEDAW(Component Explosive Damage Assessment Workbook) Final Report[R]. U. S. Army Corpsof Engineers, Protective Design Center,2005,6
    [117] SH/T3160-2009,石油化工控制室抗爆设计规范[S].中华人民共和国石油化工行业标准,2009,12
    [118] Ted Krauthammer. Explosion Damage Assessment[R]. First Structural Forensic Engineering Seminaron Structural Failure Investigations, University of Toronto,1999,1
    [119]吴宗之,高进东,魏利军.危险评价方法及其应用[M].北京:冶金工业出版社,2001
    [120] Stephens M. M. Minimizing damage to refineries from nuclear attack, natural and other disasters[R].The office of oil and gas, Dept. of the Interior, USA,1970
    [121]董守华.事故爆炸冲击波破坏准则综述[J].石油化工安全技术,1996,12(4):40-41
    [122]崔秉贵.目标损伤工程计算[M].北京理工大学出版社,1995
    [123] W. W. El-Dakhakhni, S. H. Changiz Rezaei, W. F. Mekky, et al. Response sensitivity of blast-loadedreinforced concrete structures to the number of degrees of freedom[J]. Canadian Journal of CivilEngineering,2009,36(8):1305-1320
    [124] Jarrett D.E. Derivation of British explosives safety distances[J]. Annals of the New York Academy ofSciences,1968,152(1):18-35
    [125] Marchand, K. A., Cox, P. A., Peterson J. P. Blast analysis manual, Part I–Level of protectionassessment guide–Key asset protection program construction option (KAPPCO)[R]. SouthwestResearch Institute, Final report for the U.S. Army Corps of Engineers, Omaha District,1991
    [126] Merrifield, R. Simplified calculations of blast induced injuries and damage[R]. Rep. No.37, Healthand Safety Executive Specialist Inspector,1993
    [127] Oswald, C. J., Skerhut, D. FACEDAP user’s manual[M]. Southwest Research Institute and U.S.Army Corps of Engineer, Omaha District,1993
    [128] Baker, W. E., Westine, P. S., Lulesz, J. J., et al. A manual for the prediction of blast and fragmentloading on structures[R]. Rep. No. DOE/TIC-11268, U.S., Department of Energy, Amarillo, Texas,1980
    [129] Q. M. Li, H. Meng. Pressure-Impulse Diagram for Blast Loads Based on Dimensional Analysis andSingle-Degree-of-Freedom Model[J]. Journal of Engineering Mechanics,2002,128(1):87-92
    [130] Q. M. Li, H. Meng. Pulse loading shape effects on pressure-impulse diagram of an elastic-plasticsingle-degree-of-freedom structural model[J]. International Journal of Mechanical Sciences,2002,44(9):1985-1998
    [131] Soh TB, Krauthammer T. Load–impulse diagrams of reinforced concrete beams subjected toconcentrated transient loading[R]. Technical report PTC-TR-006-2004. University Park, PA:Protective Technology Center, Pennsylvania State University,2004
    [132] Ng PH, Krauthammer T. Pressure–impulse diagrams for reinforced concrete slabs[R]. Technicalreport PTC-TR-007-2004. University Park, PA: Protective Technology Center, Pennsylvania StateUniversity,2004
    [133] Wesevich, J.W., Oswald, et al. Compile and Enhance Blast Related CMU Wall TestDatabase (CMUDS)[R]. Prepared for the Office of Special Technology by BakerEngineering and Risk Consultants, Inc.,2002,6
    [134] Xueying Wei etal. Numerical Derivation of Pressure-Impulse Diagrams for UnreinforcedBrick Masonry Walls[J]. Advanced Materials Research,368-373(2012):1435-1439
    [135]王德荣,王再晖,曹奇.钢纤维混凝土、钢纤维钢筋混凝土抗接触爆炸试验研究[J].混凝土,2006,8:8-11
    [136]李晓军,郑全平,杨益.钢纤维钢筋混凝土板爆炸局部破坏效应[J].爆炸与冲击,2009,29(4):385-389
    [137]孙文彬, Chengqing Wu.碳纤维加固钢筋混凝土板的爆炸试验研究[J].混凝土,2007,11:65-68,72
    [138]李砚召,王肖钧.预应力混凝土结构抗爆性能试验研究[J].实验力学,2005,20(2):179-185
    [139]周布奎,王安宝,杨秀敏,等.外贴玻璃纤维钢筋混凝土双向板抗爆性能研究[J].岩石力学与工程学报,2005,24(S1):4887-4893
    [140] Khaid MMoslam, Ayman S Mosallam. Nonlinear transient analysis of reinforced concrete slabssubjected to blast loading and retrofitted with CFRP composites[J]. Composites: Part B32,2001:623-636
    [141]贺虎成,唐德高,陈向欣,等.爆炸冲击波作用下碳纤维加固构件抗弯特性研究[J].解放军理工大学学报,2002,3(6):68-73
    [142]张志刚,李姝雅,廖红建.爆炸荷载下碳纤维布加固混凝土板的抗弯性能研究[J].应用力学学报,2008,25(1):150-154
    [143]袁林,龚顺风,金伟良.含泡沫防护层钢筋混凝土板的抗爆性能研究[J].浙江大学学报,2009,43(2):376-379
    [144]王海福,冯顺山.爆炸荷载下多孔材料中理论初始冲击波特性[J].北京理工大学学报,1998,18(5):634-637
    [145]阎石,黎伟.爆炸荷载下泡沫铝复合结构耗能性能分析[J].水利与建筑工程学报,2010,1:12-14,22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700