用户名: 密码: 验证码:
黑龙江地区野生鲤鱼耳石的成因矿物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选择黑龙江连环湖、龙虎泡及东升水库三个不同水域为主要研究区,以在这三个不同水体中生长的野生鲤鱼耳石为主要研究对象,开展鱼耳石的生理学特征、矿物的微形貌特征、热发光特征、晶胞参数特征、主微量元素特征、各种属性之间的相互关系及各种属性对水体响应方式的初步研究,并将所分析的结果与河北白洋淀及北京密云水库这2个水体平均温度和污染度均与研究区有明显区别的水域的分析结果进行对比。
     研究结果初步显示:黑龙江连环湖和北京密云水库两水域的鲤鱼耳石中分别具有球文石和柱文石两种晶体类型,这与水体的平均温度及昼夜温差有关。耳石中的某些微量元素之间也存在着较好的相关性,所分析的13个元素中显著相关的共有7对,分别为Na-Ba、Na-Ca、Sm-La、Sr-Ba、Sr-Na、U-La和U-Sm,说明这些元素在鱼耳石的形成和生长过程中存在着密切的生态化学联系。此外,耳石中部分微量元素的丰度与各自水体的特征可能存在较好的相关性,利用野生鲤鱼耳石的微化学特征应该可以反映其所生活水域的环境状况。而且,耳石对多数水体中的微量元素有强烈的富集作用,根据富集系数确定Sr、Se和Zn是高富集元素,Ni、Ba、K和Rb是中富集元素,As、Na、Co和Fe是低富集元素,Cr和Au属于非富集元素。通过利用LA-ICPMS对耳石不同生长环带的化学成分进行分析发现,耳石中不同元素在特定位置出现系统变化,初步查明其可以反映特定时段的水化学变化特征。不同水体中野生鲤鱼耳石的热发光特征存在着明显的差异,主要反映在半高宽、发光强度及峰位(尤其是第二峰半高宽)的不同。黑龙江地区鲤鱼耳石第二峰半高宽众值和中值分别为60和62,密云水库的为62和55.5,而白洋淀的中值为69。热释光的总体特征与全耳石的元素特征及各自的水体特征相一致。
     由上可知,利用野生鲤鱼耳石的矿物学特征对密闭湖泊水质进行评价和动态监测具有可行性。通过耳石的全耳石元素特征和热发光特征可以对水质进行评价,而耳石的不同生长环带中的元素特征可以作为湖泊动态监测的一个标型。本研究对认识不同环境下鲤鱼的耳石特征,开发经济型水质评价和动态监测新方法,丰富生命矿物学、成因矿物学及环境矿物学的理论均具有非常重要的意义。
Heilongjiang Lianhuan Lake, Long Hupao Lake and Dongsheng reservoir are the three researched area, from which the wild carp otoliths were taked. Based on the wild carp that growing in the three different water, fish otoliths physiological parameter, mineral micro-appearance characteristics, thermoluminescence characteristic, unit cell parameter characteristics are studied. Main and trace element characteristics, the correlation of each kind species and the responding of each kind of species to water also are preliminary studied. Except for the result, the water average temperature and contamination of Hebei Baiyang province Lake and the Beijing Miyun Reservoir is also studied.The result showed that, the carp otoliths of Heilongjiang Lianhuan Lake and Beijing city Miyun Reservoir has the ball aragonite and the column aragonite two kind of crystal types. The characteristics has relation to the average temperature and the difference in temperature of the water. Based on the study of 13 kinds of trace elements of otoliths, indicating the 7 pairs of elements have good correlation Na-Ba, Na-Ca, Sm-La, Sr-Ba, Sr-Na, U-La and U-Sm. The result explained these elements have the close ecology chemistry relation in the fish otolith formation and the growth process. In addition, the abundance of part of trace element in the otoliths possibly has the good relevance with the responding elements in water. Through the analysis of micro-chemistry characteristics of the wild carp otoliths, the waters environment condition that wild carps live in should be possible reflected. Moreover, the most elements in water are possible concentrated in the otoliths. According to the concentration coefficient, to determine Sr, Se and Zn are intensely concentrated in otoliths, Ni, Ba, K and Rb are medium concentrated in otoliths, As, Na, Co and Fe are slightly concentrated, Cr and Au are not concentrated. Through the LA-ICPMS analysis of the otoliths, different chemical composition of increments in the otoliths appears to the systemicly change in the specific position, indicating it may reflect the changing characteristics of water in the specific interval. The wild carp otoliths thermoluminescence characteristics in the different water has the obvious difference, manifesting the difference of peak temperature (in particular second peak temperature). The second half width of carp otoliths in Heilongjiang province is respectively 60 and 62, the Miyun Reservoir is 62 and 55.5, but the value of Baiyang Lakes is 69. The overall characteristics of thermoluminescence has line with the analysis of entire otolith trace element and the water characteristic.Above all, it is feasible that the mineralogy characteristic of wild carp otolith appraise and dynamicly monitor the quality of the airtight lake. The trace element characteristics of entire otolith and the thermoluminescence characteristic can also be used to appraise the quality of water. Moreover, the trace element characteristics of otolith increments may be take a sign to dynamicly monitor the quality of lake. This research has an important signification to understand the otolith characteristic wild carps live in different environment, develop the quality appraisal of economic water, dynamically monitor the quality of water, enrich life mineralogy, the origin mineralogy and the environment mineralogy theory.
引文
[1] Abee-Lund J H J. 1988. Otolith shape discriminates between juvenile Atlantic Salmon, Salmo salar L., and brown trout, Salmon trutta L [J]. J fish Biol, 33:899~903.
    [2] Alhossaini M and Pitecher T J. 1988. The relation between daily ring, body length and environmental factors in plaice, Pleuronectes platessa, juvenile otoliths[J].J fish Biol, 33(3):409~4189.
    [3] Anderle H, Steffan I, Wild E, et al. 1998. Detection and dosimetry of irradiated biominerals with thermoluminescence, radiolyoluminescence and electron spin resonance measurements: comparison of methods [J]. Radiation Measurements, 29 (5): 531~551.
    [4] Bacon C R, Weber P K, Larsen K A, et al. 2004. Migration and rearing histories of Chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths [J]. Can. J. Fish. Aquat. Sci., 61: 2425~2439.
    [5] Becker K. 1973. Solid-state dosimetry. CRC Press, Cleveland.
    [6] Bradford M J and Geen G H. 1992. Growth estimates from otolith increment width of juvenile Chinook Salm on Onconhynchus tshnwyischa reared in changing environments[J].J fish Biol,41:825~832.
    [7] Brothers E B, Mathews C P and Lasker R. 1976. Daily growth increments in otoliths from larval and adult fishes[J].Fish Bull U S,74:1~8.
    [8] Campana S E and Neilson J D. 1982. Daily growth increments in otoliths of starry flounder, Platichthys stellatus, and the influences of some environm ental variables in their production [J]. Can J Fish Aquat Sci,39:937~942.
    [9] Campana S E. 1984. Interactive effects of age and environm entalm odifiers on the production of daily growth increments in otoliths of plainfin midshipman Porichthys notatus[J].Fish Bull U S,82:165~177.
    [10] Campana S E and Neilson J D. 1985. Microstructure offish otoliths [J]. Can J Fish Aquat Sci, 42:1014~1032.
    [11] Campana S E, Fowler A J and Jones C M. 1994. Otolith elemental fingerprint for stock identification of atlantic cod (Gadus morhua) using laser ablation ICPMS[J]. Can J Fish Aquat Sci, 51:1942~1950.
    [12] Campana S E, Chouinard G A, Hanson J M, et al. 2000. Otolith elemental fingerprints as biological tracers of fish stocks [J]. Fish Resource, 46, 343~357.
    [13] Campana S E and Thorrold S R. 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations [J]. Canadian Journal of Fish Aquatic Science, 58:30~38.
    [14] Ceffen A J. 1982. Otolith ring deposition in relation to growth rate in the herring (Clupea harengus) and turbot (Scophthal mus maximus) larvae [J]. Mar Biol (Berl), 71:317~326.
    [15] Chen R. 1984.Kinetics of Thermoluminescence Glow Peaks. CR C Press.
    [16] Cooke D W, Rhodes J F, Santi R S, et al.1980.J.Chem.Phys.
    [17] David A and Simon R. 2001. Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer) [J]. Journal of Experimental Marine Biology and Ecology, 264:47-65.
    [18] Edmonds J S, Moran M J, Caputi N, et al. 1989. Trace-element analysis of fish sagittae asan aid to stock identification: pink snapper (Chrysophrys auratus) in western Australian waters [J]. Can J Fish Aquat Sci, 46(1): 50-54.
    [19] Fowler A J and Doherty P J. 1992. Validation of annual growth increments in the otoliths of two species of damelfish from the sollthern Great Barrier [J]. Reef. Aust. J. Mar. Freshwater Res., 43:1057-1068.
    [20] Fuiman L A and Hoff G R. 1995.Natural variation in elemental composition of sagittae from red drum [J].J fish B N, 47:940-955.
    [21] Gallahar N K and Kingsford M J. 1996. Factors influencing Sr/Ca ratios in otoliths of Girella elevate: an experimental investigation [J]. Journal of Fish Biology, 48:174-186.
    [22] Gao Y W and Beamish R J. 1999. Isotopic composition of otoliths as a chemical tracer in population identification of sockeye salmon (Oncorhynchus nerka)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 56: 2062-2068.
    [23] Gao Y W. 1999. Microsampling offish otoliths: a comparison between DM 2800 and Dremel in stable isotope analysis. Env. Biol. Fish., 55:443-448.
    [24] Hanson P J and Zdanowicz V S. 1999.Elemental comparison of otoliths from Atlantic croaker along estuarine pollution gradient [J]. Journal of Fish Biology, 54:656-668.
    [25] Kalish J M. 1990. Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and non-anadromous salmonids. Fish. Bull., 88: 657-666.
    [26] Kalish J M. 1991. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. Prog. Sen, 75: 191-203.
    [27] Kalish J M. 1991.Oxygen and carbon stable isotopes in the otoliths of wild and laboratory reared Australian salmon (Arripis trutta). Mar Biol, 110: 37-47.
    [28] Kevin O F, David G R, Nobumichi S, et al.1998. Strontium calcium ratios in Atlantic salmon (Salmosalar L.) otoliths and observations on growth and maturation [J]. Canadian Journal of Fish Aquatic Science, 55:1158-1168.
    [29] Krampitz G and Graser G 1988.Molecular mechanism of biom ineralization in the formation of calcified shedslls [J]. Angew Chem, 27:1145-1156.
    [30] Kriegseis W and Scharmann A.1980. Nucl.Instrum.Meth.
    [31] Lecomte-Finiger R. 1992. The crystalline ultrastructure of otoliths of the eel, Anguilla Anguilla L. Journal of fish Biology, 40:181~190.
    [32] Lyman T. 1935.Phys.Rev.48, 149.
    [33] Maria C.1998. Casas Increment formation in otoliths of slow-growing winter flounder (Pleuronectes americanus) larvae in cold water [J]. Can J fish Aquat Sci, 55:162~169.
    [34] McKeever S W S.1993.固体热释光.蔡干钢,吴方,王所亭译.北京:原子能出版社.
    [35] Meekan P J, Dodson J J, Good S P, et al. 1998. Otolith and fish size relationships,measurement error, and size-selective mortality during the early life of Atlantic salmon(Salmo salar L.)[J].Can J Fish Aquat Sci,55:1663~1673.
    [36] Morris J A, Rulifson R A and Toburen L H. 2003. Life history strategies of striped bass, Morone saxatilis, populations inferred from otolith microchemistry. Fish Res, 62: 53~63.
    [37] Mugiyn Y, Watabe N, Yamada J, et al. 1981. Diurnal rhythm in otolith formation in the goldfish, Carassius auratus [J]. Comp Biochem Physiol, 68A:659~6621.
    [38] Neilson J D and Geen G H. 1982. Otoliths of Chinook salmon (Oncorhynchus tshawytscha):daily growth increments and factors in fluencing their production[J].Can J Fish Aquat Sci, 39:1349~1357.
    [39] Pannella G. 1971. Fish otoliths: daily growth layers and periodical patterns [J]. Science, 173:1124~1126.
    [40] Radtke R L. 1989. Strontium-calcium concentration ratios in fish otoliths as environmental indicators[J]. Comp Biochem Physiol, 92A: 189~193.
    [41] Radtke R L, Townsend D W, Scott D,et al. 1990. Strontium: Calcium concentration ratios in otoliths of herring larvae as indicators of environmental histories [J]. Environmental Biology of Fish, 27:51~61.
    [42] Radtke R L, Hubold G, Folsom S D, et al. 1993. Otolith structural and chemical analysis: the key to resolving age and growth of the Antarctic silverfish, Pleuragramma antarcticum [J]. Antarctic Science, 5(1):51~62.
    [43] Randy Brown and Kenneth P. 1999. Severin Elemental distibution within polym orphic inconnu (Stenodus leucichthys) otoliths is affected by crystal structure [J]. Can J fish Aquat Sci, 56(10): 1898~1903.
    [44] Reznick D, Lindbeck E and Bryga H. 1989. Slower growth results in larger otoliths,an experiment test with guppies Poecilia reticulata[J].Can J Fish Aquat Sci,46:108~112.
    [45] Sako A, O'Reilly C M, Hannigan R, et al. 2005. Variations in otolith elemental compositions of two clupeid species, Stolothrissa tanganicae and Limnothrissa miodon in Lake Tanganyika. Geochemistry-Exploration, Environment, Analysis., 5(1):91~97.
    [46] Secor D H and Dean J M. 1989. Somatic growth effects on the otolith-fish size relationship in youg pond-reared striped bass, Morone saxatilis [J]. Can J Fish Aquat Sci, 46:113~121.
    [47] Secor D H. 1992. Application of otolith microche mistry analysis to investigate anadromy in Chesapeake Bay striped bass US Nation. Mar. Fish.Serv.Fish.Bull, 90:798~806.
    [48] Taubert B D and Coble D W. 1977. Daily rings in otoliths of three species of Lepom is and Tilapia mossambica [J]. J Fish Res Broad Can, 34:332~340.
    [49] Townsend P D, Blanke J H, Price E W, et al. 1983. Radiat. Eff.
    [50] Townsend D W, Radtke R L, Morrison M A, et al. 1989. Recruitment imolications of larval herring ocerwintedng distribution in the Gulf of Maine, inferred using a new otolith technique [J]. Mar Ecol Progr Ser, 55: 1~13.
    [51] Townsend D W, Radtke R L, Corwin S, et al. 1992. Strontium:calcium ratios in juvenile atlantic herring Clupea harengus L.otolith as function of water temperature[J]. Exp.Mar.Biol.Ecol. 160:131~140.
    [52] Tzeng W N and Yu S Y. 1992. Effects of starvation on the form ation of daily grow th increments in the otoliths of milk fish Chanos chanos (F.) larvae [J]. J fish Biol, 40:39~48.
    [53] Tzeng W N. 1994. Temperature effects on the incorporation of strontium in otolith of Japanese eel Anguillajaponica. J. Fish Biol., 45: 1055~1066.
    [54] Umezawa A and Tsukamoto K. 1990. Factors in fluencing otolith increment form ation in Japanese eel, Anguilla japanica T., and Selvers [J]. J fish Biol, 36:241~249.
    [55] Volk E C, Wissmar R C, Simenstad C, et al. 1984. Relationship between otolith microstructure and the growth of juvenile chum salm on (Oncorhynchus keta) under different prey rations [J]. Can J Fish Aquat Sci, 41: 126~133.
    [56] Wright P J, Talbot C and Thorpe J E. 1992. Otolith calification in Atlantic salm on parr, Salmo salar L., and its relation to photoperiod and calcium metabolism [J]. J fish Biol, 40:779~790.
    [57] 富丽静,解玉浩,李勃.1997.大银鱼耳石日轮与生长的研究.中国水产科学,4(2):21~27.
    [58] 龚革联,刘顺生.2003.复杂地质背景中的热释光应用初步研究.核技术,26(1):69~71.
    [59] 李国武,熊明,施倪承,等.2003.SMART APEX-CCDX射线单晶衍射仪的粉晶衍射新技术及应用.地学前缘.10(2):492~494.
    [60] 李盛华,李虎侯,曹王敏贤.1995.利用中颗粒热释光进行古陶鉴证的尝试.核技术,18(3):176~178.
    [61] 罗秉征,卢继武,黄颂芳.1985.东海带鱼春、夏和秋季产卵群体的生殖周期特性和种群问题[J].动物学报,31:348~358.
    [62] 林年丰.1991.医学环境地球化学.吉林科学技术出版社.
    [63] 刘昌利.1995.浅析鱼鳞年轮的成因.六安师专学报,1995(2).
    [64] 南京大学地质学系岩矿教研室.1978.结晶学与矿物学.地质出版社.
    [65] 欧阳健明.2005.生物矿物及其矿化过程.化学进展,17(4):749~756.
    [66] 宋天锐,等.1994.沉积鲕石和尿路结石若干特征的对比研究[J].岩石矿物学杂志,13(2):149~158.
    [67] 王守森,白敦衍,林春培,等.1996.热释光剂量测量在放射外科的应用.中国医学物理学杂志,13(2):99~101.
    [68] 解玉浩.1995.鱼类耳石日轮.生物学通报,30(11):22~23.
    [69] 解玉浩,李勃.1995.鸭绿江香鱼耳石日轮与生长的研究[J].动物学报,41(2):125~132.
    [70] 殷名称.1995.鱼类生态学.中国农业出版社.
    [71] 张国华,但胜国,苗志国,等.1999.六种鲤科鱼类耳石形态以及在种类和群体识别中的应用[J].水生生物学报,23(6):683~688.
    [72] 张治国,王卫民.2001.鱼类耳石研究综述[J].湛江海洋大学学报,21(4):77~83.
    [73] 郑文莲.1981.我国鲹科等鱼类耳石形态的比较研究[A].中国鱼类学会,鱼类学论文集(第二辑)[C].北京:科学出版社,39~54.
    [74] 朱旗,夏立启,等.2002.鱼类耳石微结构的计算机自动识别[J].水生生物学报,26(6):600~604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700