用户名: 密码: 验证码:
心脏房颤导管射频消融损伤的有限元仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心房颤动是最常见的心律失常病症,其发病率随着年龄增加而升高,其严重并持久的并发症严重威胁着人类健康。目前,导管射频消融技术在房颤的治疗中得到了广泛的应用,其原理是利用射频电流的热效应使电极接触部位生物组织变性失活从而切断异常电兴奋的传导路径。射频消融治疗的损伤区域(又称为毁损灶)尺寸是评估消融效果最重要的指标,利用有限元仿真方法对房颤导管射频消融治疗进行仿真计算温度分布和损伤区域尺寸是当前研究的热点,其对手术规划和设备制造都有重要意义。
     本论文利用有限元建模方法对心脏房颤导管射频消融的损伤区域尺寸进行仿真研究,全面分析影响消融损伤结果的各种因素,然后从热力学方程角度进行探讨,首次引入双曲线(Hyperbolic)热传递方程进行仿真,紧接着针对心脏的几何结构,提出新的特异性建模方法,最后,将本文的仿真结果与已有的平台实验结果进行对比验证。本论文的研究工作,为实现实际临床可用的射频消融仿真平台提供了一套方法,并为进一步的研究提供了参考。
     本论文主要开展了以下研究工作:
     论文首先详细介绍了房颤的发生机制、临床危害以及治疗方案,并描述了导管射频消融治疗房颤的机理、设备及手术过程。此外,论文系统地回顾了国内外心脏射频消融仿真工作的历史及现状,并深入分析了当前研究的热点及存在的问题。
     基于威斯康星大学麦迪逊分校John G. Webster小组建立的射频消融模型,论文建立了圆柱形的有限元仿真模型,并利用Pennes热力学方程进行了仿真研究。在此基础上,论文选择适当的射频消融损伤区域测量标准,并系统地分析了影响消融结果的因素,如模型尺寸,消融时间、施加电压、对流系数、电极接触状态和组织材质属性等。
     目前绝大多数研究都是采用傅立叶热传递公式推导而来的Pennes方程,但傅立叶热传递公式是宏观连续意义上的现象学定律,没有考虑实际情况下热量传播速度的影响,对于快速加热过程并不完全适用。针对这一问题,论文全面探讨了心脏射频消融模型适用的热力学方程,并首次引入了从非傅立叶热传递公式出发推导得出的双曲线(Hyperbolic)方程,该方程能够有效地反映心脏消融过程中热量传播实际情况。在此基础上,论文对心脏射频消融模型分别用Pennes方程和Hyperbolic方程进行仿真对照。通过对比两种方程的仿真结果,发现在射频消融的某些时间段,两种方法得到的消融损伤区域的面积差异能够达到20%。理论和实验表明,应用Hyperbolic方法能够更好的模拟心脏射频消融中的热量传递过程。
     为了更真实准确地模拟心脏射频消融手术的实际情况,论文提出了一种基于心脏真实解剖结构的建模方案。该方案利用真实病人的CT心脏数据,通过设定不同的电极消融场景,建立特异性的消融模型。在此基础上,论文通过综合使用MATLAB和COMSOL进行相应的有限元仿真,并与基于常规模型的仿真进行比较分析。实验结果发现,由于心脏各处几何结构的差异以及导管与心脏表面接触方式的不同,仿真获得的损伤区域存在显著的不同。此外,仿真获得的损伤区域不再是各向同性的简单形状,这反映了真实心脏解剖结构的不规则性。论文提出的这种新的建模方法为建立真正临床可用的消融仿真平台奠定了基础。
     论文最后将本文的仿真结果与荷兰埃因霍温理工大学Sytske Foppen在2009年进行的平台实验结果进行了对比,结果表明两者之间具有很好的吻合度,从而验证了本文提出的建模方法和仿真方法的有效性和准确性,也表明了基于真实解剖解剖的建模有可能获得更为准确的仿真结果。
Atrial Fibrillation (AF) is the most common cardiac arrhythmia and its prevalence in a statistical population increases with age. Its persistent significant symptoms are very dangerous to people health. Catheter radiofrequency ablation (RFA) is now widely applied in clinic as a therapy for AF. Electric current from RFA ablates small areas of abnormal tissue to cut the accessory pathway. The lesion size of RFA is the most important criteria to evaluate ablation result. Many studies have focused on finite element method (FEM) to calculate temperature distribution and determine lesion size during RF catheter surgery and it has great value in surgery plan and medical ablation instrument invention.
     In the dissertation, FEM study on lesion size is performed in cardiac RFA. and various influencing factors are evaluated, then heat transfer equations suitable for RFA procedure are investigated and hyperbolic heat equation is applied to the model for the first time, furthermore a novel method is proposed to create specified ablation model based on heart anatomy, finally the modeling method is validated with published platform experiment result. The research in the dissertation proposes a method to develop RFA simulation platform in clinic and provides a reference for further study.
     The main content of the dissertation is followings:
     AF disease is introduced including its cause, signs, symptoms and therapy guidelines, and then cardiac catheter RFA is presented such as physical mechanism, instruments and surgery procedure. At last, recent progress in related FEM research on lesion size estimation is reviewed systematically and hot research topics are discussed.
     A3D cylinder ablation model is created based on the research by the John G. Webster group in University of Wisconsin-Madison. Pennes heat transfer equation is adopted to perform FEM simulation and the lesion size determination criteria is studied. Furthermore, lesion size influencing factors are evaluated one by one, such as model radius, ablation duration, voltage, convective coefficients, electrode contact status and tissue physical properties, etc.
     Most of studies adopt Pennes heat equation which is derived from Fourier theory. Fourier theory is based on macroscopical phenomenon and it doesn't consider heat wave propaganda speed, so it is not suitable for rapid heating procedure. In the dissertation, study is performed on the heat transfer equations suitable for RFA procedure and hyperbolic heat equation derived from Non-Fourier heat theory is applied and it takes the thermal wave behavior into account. In RFA model, FEM is adopted to study the model with corresponding Pennes heat equation and hyperbolic heat equation. Different convection coefficients and voltages are applied to simulate different conditions. The results show that the lesion size difference ratio can reach20%in some periods of ablation. The difference is significant and the methodological study shows that hyperbolic method is more suitable for RFA model.
     In order to simulate ablation for actual surgery procedure, a novel method is proposed to create specified ablation model suitable for heart anatomy. FEM analysis study is performed based on cardiac CT data. At first, one detailed cardiac ablation model is created with CT heart inner surface mesh, and various electrode contact status can be specified by user selection. Then COMSOL scripts were called by MATLAB to perform FEM analysis. The temperature profile and ablation lesion size are estimated after simulation. It shows that ablation results vary obviously with electrode insertion angles and penetration depths. Besides, the lesion region shape is not isotropy due to complex and atactic heart chamber anatomy. The method lays the foundation of the RFA simulation platform in clinic.
     Finally, a comparison is carried out between the model in the dissertation with the published platform experiment result by Sytske Foppen in Eindhoven University of Technology,2009. It shows that simulation result is consistent with that of the experiment. It validates the modelling method and indicates that the specified model based on heart anatomy will make results more precise.
引文
[1]黄从新.马长生,杨延宗,et al.心房颤动:目前的认识和治疗建议(二) [J].中华心律失常学杂志,2006,10(3):167-97.
    [2]KANNEL W B, ABBOTT R D, SAVAGE D D, et al. Epidemiologic features of chronic atrial fibrillation:the Framingham study [J]. N Engl J Med,1982,306(17): 1018-22.
    [3]周自强,胡大一,陈捷,et al.中国心房颤动现状的流行病学研究[J].中华内科杂志,2004,7):491-4.
    [4]FOPPEN S. Experimental and Numerical Analysis of Lesion Growth during Cardiac Radiofrequency Ablation [D]. Netherlands; Eindhoven University of Technology,2009.
    [5]陈新,张澍,等.心房颤动:目前认识和治疗建议[J].中华心律失常学杂志,2001,5(2):69-94.
    [6]HAISSAGUERRE M, SHAH D C, JAIS P, et al. Electrophysiological breakthroughs from the left atrium to the pulmonary veins [J]. Circulation,2000. 102(20):2463-5.
    [7]GERSTENFELD E P, CALLANS D J, DIXIT S,et al. Incidence and location of focal atrial fibrillation triggers in patients undergoing repeat pulmonary vein isolation: implications for ablation strategies [J]. J Cardiovasc Electrophysiol,2003,14(7): 685-90.
    [8]HAISSAGUERRE M, JAIS P, SHAH D C, et al. Catheter ablation of chronic atrial fibrillation targeting the reinitiating triggers [J]. J Cardiovasc Electrophysiol. 2000,11(1):2-10.
    [9]MOE G K, RHEINBOLDT W C, ABILDSKOV J A. A Computer Model of Atrial Fibrillation [J]. Am Heart J,1964,67(200-20.
    [10]WINFREE A T. Electrical instability in cardiac muscle:phase singularities and rotors [J]. J Theor Biol,1989,138(3):353-405.
    [11]项爱国.如何治疗房颤[J].求医问药,2011,7(12-3.
    [12]侯发琴.心房颤动的射频消融治疗进展[J].心血管康复医学杂志.2010.19(3):334-6.
    [13]杨延宗,常栋,心房颤动导管消融临床获益新进展——2011盘点,洛阳心脏网,http://www.ly365heart.com/html/201232/23459758.shtml
    [14]周茂胜,常欣.射频消融原理及应用[J].当代医学,2009,15(21):18-9.
    [15]PULMONARY VEIN ABLATION,http://www.a-fib.com/PVA%28PV1%29.htm
    [16]Atrial Fibrillation, Washington Heart Rhythm Associates, http://www.washingtonhra.com/41.html
    [17]Atrial Fibrillation, Washington Heart Rhythm Associates, http://www.washingtonhra.com/41.html
    [18]EPT1000XP射频消融仪,(?)http://www.epfan.com/html/Equinments/RFGenerators/20100601411.html
    [19]Radiofrequency ablation catheter, Metronic, http://www.medicalexpo.com/prod/medtronic/radiofrequency-ablation-catheters-70691-441872.html
    [20]TACLAS J E, NEZAFAT R, WYLIE J V, et al. Relationship between intended sites of RF ablation and post-procedural scar in AF patients, using late gadolinium enhancement cardiovascular magnetic resonance [J]. Heart Rhythm,2010,7(4): 489-96.
    [21]TUNGJITKUSOLMUN S, WOO E J, CAO H, et al. Thermal-electrical finite element modelling for radio frequency cardiac ablation:effects of changes in myocardial properties [J]. Med Biol Eng Comput,2000,38(5):562-8.
    [22]HAEMMERICH D, TUNGJITKUSOLMUN S, STAELIN S T, et al. Finite-element analysis of hepatic multiple probe radio-frequency ablation [J]. IEEE Trans Biomed Eng,2002,49(8):836-42.
    [23]BERJANO E J, ALIO J L, SAIZ J. Modeling for radio-frequency conductive keratoplasty:implications for the maximum temperature reached in the cornea [J]. Physiol Meas,2005,26(3):157-72.
    [24]OVERMYER K M, PEARCE J A, DEWITT D P. Measurements of temperature distributions at electro-surgical dispersive electrode sites [J]. J Biomech Eng,1979, 101(1):66-7.
    [25]KIM Y, WEBSTER J G. TOMPKINS W J. Simulated and Experimental Studies of Temperature Elevation Around Electrosurgical Dispersive Electrodes [J]. Biomedical Engineering, IEEE Transactions on,1984, BME-31(11):681-92.
    [26]WILEY J D, WEBSTER J G. Analysis and Control of the Current Distribution under Circular Dispersive Electrodes [J]. Biomedical Engineering, IEEE Transactions on.1982, BME-29(5):381-5.
    [27]EREZ A, SHITZER A. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation [J]. J Biomech Eng.1980, 102(1):42-9.
    [28]HAINES D E, WATSON D D. Tissue heating during radiofrequency catheter ablation:a thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall [J]. Pacing Clin Electrophysiol,1989.12(6):962-76.
    [29]LABONTE S. A computer simulation of radio-frequency ablation of the endocardium [J]. IEEE Trans Biomed Eng,1994.41(9):883-90.
    [30]LABONTE S. Numerical model for radio-frequency ablation of the endocardium and its experimental validation [J]. IEEE Trans Biomed Eng,1994,41(2):108-15.
    [31]SHAHIDI A V, SAVARD P. A finite element model for radiofrequency ablation of the myocardium [J]. IEEE Trans Biomed Eng,1994,41(10):963-8.
    [32]KAOUK Z. VAHID SHAHIDI A. SAVARD P, et al. Modelling of myocardial temperature distribution during radio-frequency ablation [J]. Med Biol Eng Comput, 1996,34(2):165-70.
    [33]PANESCU D. WHAYNE J G, FLEISCHMAN S D. et al. Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation [J]. IEEE Trans Biomed Eng,1995.42(9):879-90.
    [34]CAO H, SPEIDEL M A. TSAI J Z. et al. FEM analysis of predicting electrode-myocardium contact from RF cardiac catheter ablation system impedance [J]. IEEE Trans Biomed Eng,2002,49(6):520-6.
    [35]CAO H, TUNGJITKUSOLMUN S. CHOY Y B, et al. Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation [J]. IEEE Trans Biomed Eng,2002,49(3):247-53.
    [36]CAO H, VORPERIAN V R, TSAI J Z, et al. Temperature measurement within myocardium during in vitro RF catheter ablation [J]. IEEE Trans Biomed Eng,2000, 47(11):1518-24.
    [37]CAO H, VORPERIAN V R, TUNGJITKUSOLMUN S, et al. Flow effect on lesion formation in RF cardiac catheter ablation [J]. IEEE Trans Biomed Eng,2001. 48(4):425-33.
    [38]LAI Y C, CHOY Y B, HAEMMERICH D. et al. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures [J]. IEEE Trans Biomed Eng,2004,51(10):1859-64.
    [39]TUNGJITKUSOLMUN S, EJ W, H C, et al. Thermal±electrical finite element modelling for radio frequency cardiac ablation:Effects of changes in myocardial properties [J]. Medical & Biological Engineering & Computing,2000,38(5):562.
    [40]TUNGJITKUSOLMUN S, HONG C, JANG-ZERN T, et al. Using ANSYS for three-dimensional electrical-thermal models for radio-frequency catheter ablation: proceedings of the Engineering in Medicine and Biology Society,1997 Proceedings of the 19th Annual International Conference of the IEEE, F 30 Oct-2 Nov 1997,1997 [C].
    [41]TUNGJITKUSOLMUN S, WOO E J, CAO H. et al. Finite element analyses of uniform current density electrodes for radio-frequency cardiac ablation [J]. IEEE Trans Biomed Eng,2000,47(1):32-40.
    [42]HAEMMERICH D, LEE F T, JR., SCHUTT D J, et al. Large-volume radiofrequency ablation of ex vivo bovine liver with multiple cooled cluster electrodes [J]. Radiology,2005.234(2):563-8.
    [43]HAEMMERICH D, SCHUTT D J, WILL J A, et al. A device for radiofrequency assisted hepatic resection [J]. Conf Proc IEEE Eng Med Biol Soc,2004,4(2503-6.
    [44]HAEMMERICH D, CHACHATI L, WRIGHT A S, et al. Hepatic radiofrequency ablation with internally cooled probes:effect of coolant temperature on lesion size [J]. IEEE Trans Biomed Eng,2003.50(4):493-500.
    [45]TUNGJITKUSOLMUN S, STAELIN S T, HAEMMERICH D, et al. Three-Dimensional finite-element analyses for radio-frequency hepatic tumor ablation [J]. IEEE Trans Biomed Eng,2002,49(1):3-9.
    [46]HAEMMERICH D, STAELIN S T, TUNGJITKUSOLMUN S, et al. Hepatic bipolar radio-frequency ablation between separated multiprong electrodes [J]. IEEE Trans Biomed Eng,2001,48(10):1145-52.
    [47]JAIN M K, WOLF P D, HENRIQUEZ C. Chilled-tip electrode radio-frequency ablation of the endocardium:a finite element study; proceedings of the Engineering in Medicine and Biology Society,1995, IEEE 17th Annual Conference. F 20-25 Sep 1995. 1995 [C].
    [48]JAIN M K, WOLF P D. Finite element analysis predicts dose-response relationship for constant power and temperature controlled radiofrequencg ablation: proceedings of the Engineering in Medicine and Biology Society,1997 Proceedings of the 19th Annual International Conference of the IEEE, F 30 Oct-2 Nov 1997.1997 [C].
    [49]JAIN M K, TOMASSONI G, RILEY R E, et al. Effect of skin electrode location on radiofrequency ablation lesions:an in vivo and a three-dimensional finite element study [J]. J Cardiovasc Electrophysiol,1998,9(12):1325-35.
    [50]JAIN M K, WOLF P D. Effect of electrode contact on lesion growth during temperature controlled radio frequency ablation; proceedings of the Engineering in Medicine and Biology Society,1998 Proceedings of the 20th Annual International Conference of the IEEE, F 29 Oct-1 Nov 1998,1998 [C].
    [51]JAIN M K, WOLF P D. Temperature-controlled and constant-power radio-frequency ablation:what affects lesion growth? [J]. IEEE Trans Biomed Eng, 1999,46(12):1405-12.
    [52]JAIN M K, WOLF P D. A three-dimensional finite element model of radiofrequency ablation with blood flow and its experimental validation [J]. Ann Biomed Eng,2000,28(9):1075-84.
    [53]BERJANO E J, SAIZ J, FERRERO J M. Radio-frequency heating of the cornea: theoretical model and in vitro experiments [J]. IEEE Trans Biomed Eng,2002,49(3): 196-205.
    [54]BERJANO E J, SAIZ J, ALIO J L, et al. Ring electrode for radio-frequency heating of the cornea:modelling and in vitro experiments [J]. Med Biol Eng Comput, 2003.41(6):630-9.
    [55]BERJANO E J, HORNERO F. Thermal-electrical modeling for epicardial atrial radiofrequency ablation [J]. IEEE Trans Biomed Eng,2004,51(8):1348-57.
    [56]BERJANO E J, HORNERO F. A cooled intraesophageal balloon to prevent thermal injury during endocardial surgical radiofrequency ablation of the left atrium:a finite element study [J]. Phys Med Biol,2005,50(20):N269-79.
    [57]BERJANO E J, HORNERO F. What affects esophageal injury during radiofrequency ablation of the left atrium? An engineering study based on finite-element analysis [J]. Physiol Meas.2005.26(5):837-48.
    [58]HORNERO F. BERJANO E J. Esophageal temperature during radiofrequency-catheter ablation of left atrium:a three-dimensional computer modeling study [J]. J Cardiovasc Electrophysiol,2006,17(4):405-10.
    [59]GOPALAKRISHNAN J. A mathematical model for irrigated epicardial radiofrequency ablation [J]. Ann Biomed Eng,2002,30(7):884-93.
    [60]洪焦,高宏建.吴水才.脑组织射频消融的有限元仿真与分析[J].北京生物醫學工程.2012,31(1):6.
    [61]郑龙坡,蔡郑东,牛文鑫,et a1.热力学有限元方法研究骨组织热传导的三维空间分布[J].中国组织工程研究与临床康复,2008.12(39):7665-8.
    [62]冯洁.白景峰,陈亚珠.射频消融治疗房颤的热损伤有限元分析[J].中国医学物理学杂志.2007.24(3):193-6.
    [63]徐晓菲,白景峰.陈亚珠.水冷式射频消融过程中水冷温度对热损伤的影响[J].北京生物医学工程.2008,27(4):393-5.
    [64]范晓筠.白景峰.陈亚珠.单针水冷式射频消融过程中组织热损伤区域的有限元分析[J].中国医学物理学杂志.2007,24(3):3.
    [65]方祖祥,罗强.射频消融中温度场建立的探讨[J].上海生物医学工程.1997,18(2):6-13.
    [66]方祖祥,严立韬.射频消融时组织加热的热动力学模型及初步分析[J].中国医疗器械杂志.1995,19(4):197-202.
    [67]罗强,方祖祥.射频导管消融中温度场模型的建立[J].中国心脏起搏与心电生理杂志,1998,12(2):104-6.
    [68]PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm [J]. J Appl Physiol,1948,1(2):93-122.
    [69]WEINBAUM S, JIJI L M.A new simplified bioheat equation for the effect of blood flow on local average tissue temperature [J]. J Biomech Eng,1985,107(2): 131-9.
    [70]WEINBAUM S, XU L X, ZHU L, et al. A new fundamental bioheat equation for muscle tissue:Part Ⅰ--Blood perfusion term [J]. J Biomech Eng,1997,119(3):278-88.
    [71]WULFF W. The Energy Conservation Equation for Living Tissue [J]. Biomedical Engineering, IEEE Transactions on,1974, BME-21(6):494-5.
    [72]刘静.王存诚.生物传热学[M].第一版ed.北京:科学出版社,1997.
    [73]J.C.切托(美).生物传热学基础[M].北京:科学出版社,1991.
    [74]刘伟.生物组织传热及其若干应用研究[D];华中科技大学,2004.
    [75]龙驭球.有限元法概论[M].高等教育出版社,1991.
    [76]刘齐文.大型有限元分析软件的架构设计及其核心框架的实现[D];武汉理工大学,2010.
    [77]有限单元法,http://baike.baidu,coin/view/1528215.htm?fromTaglist
    [78]THOMAS S P, GUY D J, BO YD A C, et al. Comparison of epicardial and endocardial linear ablation using handheld probes [J]. Ann Thorac Surg,2003,75(2): 543-8.
    [79]AUPPERLE H, DOLL N. WALTHER T. et al. Histological findings induced by different energy sources in experimental atrial ablation in sheep [J]. Interact Cardiovasc Thorac Surg,2005.4(5):450-5.
    [80]SAPARETO S A, DEWEY W C. Thermaldosedetermination in cancertherapy [J]. International Journal of radition oncology, biology, physics 1984 10(6):787-14.
    [81]范晓筠,白景峰,陈亚珠.单针水冷式射频消融过程中组织热损伤区域的有限元分析[J].中国医学物理学杂志,2007,24(3):197-9.
    [82]HAEMMERICH D, WEBSTER J G. Automatic control of finite element models for temperature-controlled radiofrequency ablation [J]. Biomed Eng Online,2005,4(1): 42.
    [83]XIAOYI M, RAHUL M. Comparison of methods in approximation of blood flow in finite element models on temperature profile during RF ablation; proceedings of the Engineering in Medicine and Biology Society,1998 Proceedings of the 20th Annual International Conference of the IEEE, F 29 Oct-1 Nov 1998,1998 [C].
    [84]TUNGJITKUSOLMUN S. HAEMMERICH D, CAO H, et al. Modeling bipolar phase-shifted multielectrode catheter ablation [J]. IEEE Trans Biomed Eng,2002. 49(1):10-7.
    [85]CHANG I A, NGUYEN U D. Thermal modeling of lesion growth with radiofrequency ablation devices [J]. Biomed Eng Online,2004.3(1):27.
    [86]SOLAZZO S A, LIU Z, LOBO S M, et al. Radiofrequency ablation:importance of background tissue electrical conductivity--an agar phantom and computer modeling study [J]. Radiology,2005,236(2):495-502.
    [87]COMSOL Multiphysics,http://baike.baidu.com/view/3917438.htm
    [88]RABBAT A. Tissue resistivity [J]. Elecrrical Impedance Tomography,1990,
    [89]INCROPERA F P, DEWITT D P. Fundamentals of Heat and Mass Transfer [M]. New York:Wiley,1985.
    [90]TANGWONGSAN C, WILL J A, WEBSTER J G, et al. In vivo measurement of swine endocardial convective heat transfer coefficient [J]. IEEE Trans Biomed Eng, 2004,51(8):1478-86.
    [91]FOSTER K R, SCHWAN H P. Dielectric properties of tissues and biological materials:a critical review [J]. Crit Rev Biomed Eng,1989,17(1):25-104.
    [92]BHAVARAJU N C, VALVANO J W. Thermophysical Properties of Swine Myocardium [J]. International Journal of Thermophysics,1999,20(2):665-76.
    [93]傅立叶定律.http://baike.baidu.com/view/1173409.htm
    [94]莽珊珊.强瞬态热冲击下轴对称弹性体的热弹耦合问题研究[D];南京理工大学,2004.
    [95]CHENG K C. Historical development of convective heat transfer from Newton to Eckert (1700-1960) [M]//HWANG G J. Transport Phenomena in Thermal Control. New York; Hemisphere.1989:3-35.
    [96]张浙,刘登瀛.非傅里叶热传导研究进展[J].力学进展,2000,30(3):446-56.
    [97]JOSEPH D, PREZIOSI L. Heat waves [J]. Rew Mod Phys,1989,61(1):41-3.
    [98]ROMERO-GARCIA V. TRUJILLO M, RIVERA M J. et al. Hyperbolic Heat Transfer Equation for Radiofrequency Heating:Comparison between Analytical and COMSOL solutions [M]. the Proceedings of the COMSOL Conference 2009. Milan. 2009.
    [99]TRUJILLO M, RIVERA M J, LOPEZ MOLINA J A, et al. Analytical thermal-optic model for laser heating of biological tissue using the hyperbolic heat transfer equation [J]. Mathematical Medicine and Biology,2009,26(3):187-200.
    [100]L PEZ MOLINA J A, RIVERA M J, TRUJILLO M, et al. Including the effect of the thermal wave in theoretical modeling for radiofrequency ablation [M]//MAGJAREVIC R. XII Mediterranean Conference on Medical and Biological Engineering and Computing. Springer Berlin Heidelberg.2010:521-4.
    [101]RIVERA M J. LOPEZ MOLINA J A, TRUJILLO M, et al. Analytical validation of COMSOL Multiphysics for theoretical models of Radiofrequency ablation including the Hyperbolic Bioheat transfer equation [J]. Conf Proc IEEE Eng Med BiolSoc,2010,3214-7.
    [102]KAMINSKI W. Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure [J]. Journal of Heat Transfer,1990,112(3):555-60.
    [103]MITRA K. KUMAR S, VEDEVARZ A. et al. Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat [J]. Journal of Heat Transfer,1995. 117(3):568-73.
    [104]HAISSAGUERRE M, GENCEL L, FISCHER B, et al. Successful catheter ablation of atrial fibrillation [J]. J Cardiovasc Electrophysiol,1994,5(12):1045-52.
    [105]FUSTER V. RYDEN L E,CANNOM D S, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation-executive summary:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation) [J]. Eur Heart J.2006.27(16): 1979-2030. [106] LIP G Y, TSE H F. Management of atria] fibrillation [J]. Lancet,2007, 370(9587):604-18.
    [107]PAPPONE C,ORAL H, SANTINELLI V, et al. Atrio-esophageal fistula as a complication of percutaneous transcatheter ablation of atrial fibrillation [J]. Circulation. 2004,109(22):2724-6.
    [108]DONG J, DICKFELD T, DALAL D, et al. Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation [J]. J Cardiovasc Electrophysiol,2006.17(5): 459-66.
    [109]NADEMANEE K, MCKENZIE J. KOSAR E, et al. A new approach for catheter ablation of atrial fibrillation:mapping of the electrophysiologic substrate [J]. J Am Coll Cardiol,2004,43(11):2044-53.
    [110]肖承伟.Ensite3000测量心房食道间距离及在心房颤动导管消融应用的研究[D];南昌大学,2009.
    [111]BERJANO E J. Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future [J]. Biomed Eng Online,2006,5(24.
    [112]DI GIRONIMO G, FRANCIOSA P, GERBINO S. A RE-CAE methodology for re-designing free shape objects interactively [J]. International Journal on Interactive Design and Manufacturing,2009,3(4):273-83.
    [113]FRANCIOSA P, GERBINO S. PATALANO S. Advanced User-Interaction with GUIs in MatLAB [M]//ASSI D A. Engineering Education and Research Using MATLAB.InTECH.2011.
    [114]LIU J. RETTMANN M E, HOLMES D R,3RD, et al. A piecewise patch-to-model matching method for image-guided cardiac catheter ablation [J]. Comput Med Imaging Graph,2011,35(4):324-32.
    [115]REDWOOD A B, CAMP J J, ROBB R A. Semiautomatic segmentation of the heart from CT images based on intensity and morphological features. San Diego. CA, USA, F,2005 [C]. SPIE.
    [116]FIELD D A. Laplacian smoothing and Delaunay triangulations [J]. Communications in Applied Numerical Methods,1988,4(6):709-12.
    [117]DESBRUN M, MEYER M, SCHR DER P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow [M]. Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.1999:317-24.
    [118]TAUBIN G. A signal processing approach to fair surface design [M]. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM.1995:351-8.
    [119]LIU X. BAO H, HENG P, et al. Volume Preserved Multiresolution Mesh Modeling [J]. Chinese Journal of Computers,2000,9):911-6.
    [120]何晖光,田捷,等.网格模型化简综述[J].软件学报,2002,13(12):2215-24.
    [121]KALVIN A D, TAYLOR R H. Superfaces:polygonal mesh simplification with bounded error [J]. Computer Graphics and Applications, IEEE,1996,16(3):64-77.
    [122]TURK G. Re-tiling polygonal surfaces [M]. Proceedings of the 19th annual conference on Computer graphics and interactive techniques. ACM.1992:55-64.
    [123]HECKBERT, S. P, GARLAND, et al. Survey of polygonal surface simplification algorithms.; proceedings of the Proceedings of the SIGGRAPH'97, F, 1997 [C].
    [124]SCHMITT F J M, BARSKY B A, DU W-H. An adaptive subdivision method for surface-fitting from sampled data [M]. Proceedings of the 13th annual conference on Computer graphics and interactive techniques. ACM.1986:179-88.
    [125]WILLIAM J SCHROEDER, JONATHAN A ZARGE, LORENSEN W E. Decimation of triangle meshes [J]. COMPUTER GRAPHICS,1992,26(65-.
    [126]HOPPE H, DEROSE T, DUCHAMP T, et al. Mesh optimization [M]. Proceedings of the 20th annual conference on Computer graphics and interactive techniques. Anaheim, CA; ACM.1993:19-26.
    [127]GARLAND M, HECKBERT P S. Surface simplification using quadric error metrics [M]. Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.1997:209-16.
    [128]HOPPE H. New quadric metric for simplifying meshes with appearance attributes [M]. Proceedings of the 10th IEEE Visualization 1999 Conference (VIS'99). IEEE Computer Society.1999.
    [129]LINDSTROM P, TURK G. Fast and memory efficient polygonal simplification; proceedings of the Visualization'98 Proceedings, F 24-24 Oct.1998, 1998 [C].
    [130]HOPPE H. View-dependent refinement of progressive meshes, F,1997 [C]. ACM.
    [131]HOPPE H. Progressive meshes [M]. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM.1996:99-108.
    [132]LOUNSBERY M. DEROSE T D, WARREN J. Multiresolution analysis for surfaces of arbitrary topological type [J]. ACM Trans Graph,1997,16(1):34-73.
    [133]STL一种3D模型文件格式, http://baike.baidu.com/view/332356.h.tm#6
    [134]IGES文件格式标准,(?)Utp://baike.baidu.com/view/1112554.htm
    [135]EICK O J. Factors influencing lesion formation during radiofrequency catheter ablation [J]. Indian Pacing Electrophysiol J,2003,3(3):117-28.
    [136]WOOD M A, GOLDBERG S M, PARVEZ B, et al. Effect of electrode orientation on lesion sizes produced by irrigated radiofrequency ablation catheters [J]. J Cardiovasc Electrophysiol,2009,20(11):1262-8.
    [137]HAINES D E, VEROW A F. Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium [J]. Circulation,1990,82(3):1034-8.
    [138]WITTKAMPF F H, HAUER R N, ROBLES DE MEDINA E O. Control of radiofrequency lesion size by power regulation [J]. Circulation,1989,80(4):962-8.
    [139]HAINES D E. Determinants of Lesion Size During Radiofrequency Catheter Ablation:The Role of Electrode-Tissue Contact Pressure and Duration of Energy Delivery [J]. Journal of Cardiovascular Electrophysiology,1991,2(6):509-15.
    [140]ALBA-MARTINEZ J, TRUJILLO M, BLASCO-GIMENEZ R, et al. Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models [J]. Int J Hyperthermia,2011,27(6):539-48.
    [141]SCHUTT D, BERJ ANO E J, H AEMMERICH D. Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation:a computational modeling study [J]. Int J Hyperthermia,2009,25(2):99-107.
    [142]LIU Z, AHMED M, GERVAIS D. et al. Computer modeling of factors that affect the minimum safety distance required for radiofrequency ablation near adjacent nontarget structures [J]. J Vasc Interv Radiol,2008,19(7):1079-86.
    [143]RIEDER C, KROEGER T, SCHUMANN C, et al. GPU-based Real-Time Approximation of the Ablation Zone for Radiofrequency Ablation [J]. Visualization and Computer Graphics. IEEE Transactions on,2011,17(12):1812-21.
    [144]SARING D, RELAN J, GROTH M, et al.3D segmentation of the left ventricle combining long-and short-axis MR images [J]. Methods Inf Med,2009. 48(4):340-3.
    [145]SARING D, RELAN J, GROTH M, et al. Combination of short-and longaxis MR image sequences for the 3D segmentation of the left ventricle [J]. Stud Health Technol Inform.2008,136(333-8.
    [146]POP M, SERMESANT M, LIU G, et al. Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation [J]. Med Image Anal, 2012.16(2):505-23.
    [147]RELAN J,CHINCHAPATNAM P. SERMESANT M. et al. Coupled personalisation of electrophysiology models for simulation of induced ischemic ventricular tachycardia [J]. Med Image Comput Comput Assist Interv,2010,13(Pt 2): 420-8.
    [148]KONUKOGLU E, RELAN J, CILINGIR U, et al. Efficient probabilistic model personalization integrating uncertainty on data and parameters:Application to eikonal-diffusion models in cardiac electrophysiology [J]. Prog Biophys Mol Biol, 2011,107(1):134-46.
    [149]CAMARA O, SERMESANT M. LAMATA P, et al. Inter-model consistency and complementarity:learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology [J]. Prog Biophys Mol Biol. 2011,107(1):122-33.
    [150]SERMESANT M. CHABINIOK R, CHINCHAPATNAM P, et al. Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT:a preliminary clinical validation [J]. Med Image Anal,2012, 16(1):201-15.
    [151]RELAN J, POP M, DELINGETTE H, et al. Personalization of a cardiac electrophysiology model using optical mapping and MRI for prediction of changes with pacing [J]. IEEE Trans Biomed Eng,2011.58(12):3339-49.
    [152]SARING D. RELAN J. EHRHARDT J, et al. Reproducible extraction of local and global parameters for functional analysis of the left ventricle in 4D MR image data [J]. Methods Inf Med,2009,48(2):216-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700