用户名: 密码: 验证码:
有机电致发光二极管的界面行为及其对器件性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的电致发光器件,有机电致发光二极管(OLED:Organic Light Emitting Device)具有驱动电压低、节能环保、响应速度快以及面光源等特点,能够应用在固态照明、平板显示器以及LCD的背光源。目前,OLED产业化应用还存在一些问题,尤其是OLED的性能和稳定性。利用荧光效率较高的有机发光分子,设计局限激子的多层器件结构及采用金属阴极和ITO阳极的界面修饰等手段,已经被证明是提高器件效率非常有效的方法。本论文首先对发光层内分子-分子间界而分析,提出了改善平衡载流子、最大限度地提高激子产生和复合几率的方法;其次,从有机-有机层界面角度,开发出带有纳米柱界面模式的发光层结构器件,通过扩大激子复合区范围、提高外部模式的光取出提高器件的发光效率;论文最后,讨论了因OLED界面劣化导致OLED失效的机理,提出了有效避免长期驱动情况下的OLED老化途径。
     该论文的具体研究内容如下:
     首先,调查了两种磷光发光分子掺杂的有机薄膜的空穴-电子的传导特性以及发光特性。本文研究不同掺杂浓度的CBP:Ir(ppy)3薄膜的单载流子特性,发现当Ir(PPY)3的掺杂浓度为10%时,有助于提高CBP:Ir(ppy)3薄膜的空穴迁移率,抑制电子的传输能力,这将有助于构建载流子平衡的高效率发光器件。通过器件结构优化,本文制备低效率滚降(roll-off)的绿光磷光OLED,在100cd/m2的低亮度下器件的最大电流效率为52.5cd/A,而在10000cd/m2的高亮度下器件的电流效率也高于30.0cd/A。另外,本文分别选用两种材料作为磷光发光层和三线态激子的空间阻隔层,分析了空间阻隔层对基于Pt-4磷光OLED发光效率的激子限制作用,结果发现:选择三重态能级较高的空间阻隔层材料和电子传输层材料,能有效抑制发光层中发光分子的三重态能量传递到相邻功能层中,减少了能量传递过程中的损失,最终得到了低效率roll-off的磷光OLED。
     其次,通过优化绿色磷光OLED的异质界面结构,对发光层/空穴传输层界面或者阴极/有机层界面进行研究,通过纳米柱修饰来优化界面结构,实现提高器件发光效率的目的。本文以典型的绿色磷光器件结构ITO/NPB/CBP:Ir(ppy)3/TPBi/Alq3/LiF/Al为研究对象,在CBP:Ir(ppy)3发光层两侧制备了具有两种不同纳米柱阵列模式的器件,实验结果发现:纳米柱的导入在有效增加发光层激子复合区的范围的前提下,还可以在一定程度上提高光的取出效率,而纳米柱的高度和个数直接决定着器件的发光效率。
     最后,本文研究探讨了OLED在过程中劣化机理,采用斜切方法分析施加电压后OLED的各斜切点的光致退化效果。通过测试每个点的光致发光强度,与未进行加速老化驱动OLED进行对比研究,我们发现:OLED工作过程中,在能级势垒较大的异质界面区域内发生轻微的衰减,而器件内各有机功能层均没有出现明显的衰减。此外,本文也分析热引起的OLED退化以及热退化的特征和发光面积的影响。
The Organic Light-Emitting Diodes (OLEDs) can be widely applied to the solid-state lighting, flat panel displays, as well as the LCD backlight source because its low power-consumption, fast response and surface-emitting characteristics. There are still some problems to be solved for industry applications of OLED, especially for those related to OLED efficiency and lifetime. The uses of light emitting material with high fluorescent efficiency, the multilayer structure controlling exciton recombination and interfacial modification through metal cathode or ITO anode, have been proven to be a very effective method to improve the efficiency of the device. Firstly, molecule-molecule interface in light-emitting layers has been studied. Through optimized device structure and improved carrier balance device, the study aims at maximizing the probability of exciton generation and recombination. Secondly, from the viewpoint of organic layer-organic layer interface, we have developed a device with a light emitting layer structure of the nanopillar, and improved light out-coupling to some degree. Finally, the characteristics and mechanism of device degradation due to interfacial degradation has been proposed to avoid the degradation of device driven under a long operation time.
     The main research contents include the following three aspects. By investigating on the carrier transporting ability and the light emitting characteristics of the phosphorescent material doped organic thin film, we have found that10%of the Ir(ppy)3doped hole-only device can improve the conductivity of holes, whereas it inhibits the transport of electrons. For the film of Ir(ppy)3doped CBP with different concentrations, its fluorescence lifetime and PL emission are varied, which is mainly caused by the exciton quenching. According to optimized device structure, we have prepared a low efficiency roll-off green phosphorescent OLED. At low luminance, the maximum current efficiency reached52.5cd/A, and at the high brightness of10000cd/m2the device efficiency is also higher than30.0cd/A. Further, the triplet exciton space barrier layer has been designed for achieving a Pt-4based phosphorescent OLED. We found that the species and thickness of the carrier transporting materials adjacent to light-emitting layer can effectively affect the transfer of the triplet energy to the adjacent function layers; thereby reducing the loss of energy and efficiency roll-off at high luminance. The triplet-triplet annihilation of exciton is different for different phosphorescent emttiers, in which that of Ir complex is heavier than that of Pt complex.
     Next, by patterning the light-emitting layer/carrier transporting layer interface with nanopillar for the device,ITO/NPB/CBP:Ir(ppy)3/TPBi/Alq3/LiF/Al, the enhancement in light extraction efficiency of the device has been demonstrated. Nanopillars were prepared on both sides of the light emitting layer of the device having two different nano-pillar array modes with varied number and height. We have found that the use of nanopillar could increase the exciton recombination zone, therefore improve the light extraction efficiency to some extent to. In addition, the improvement in light efficiency is the proportion of the height and spacing of the nanopillars.
     Finally, in order to study the impact factor of device deterioration, oblique cutting technology has been used by observing each oblique-cutting point of light-induced degradation. By testing the PL intensity of each point for operated device compared to device without operated, we found that except a slight degradation at the interface device between the light emitting layer and a hole transport layer, the device has no significant degradation. The author also studied the PL decay at70℃, the results showed that in addition to the carrier injection layer/transport layer interface, temperature had no effect on the device degradation. We concluded that the degradation of the device at high temperatures is mainly because the carrier accumulation at the interface with energy barrier, as well as a low glass transition temperature. The effects of heat-induced degradation characteristics and active light-emitting area have been studied too.
引文
[1]Pope M., Kallmann H. P., Magnante P.,Light Emission from Organic Material[J]. Chem. Phys,1963, 38(8):2042-2043
    [2]Tang C. W., Vanslyke S. A., Organic Electroluminenscent Diodes[J]. Appl. Phys. Lett.,1987,51(12): 913-915
    [3]Burroughes J. H., Bradley D. D. C., Brown A. R., etc., Light-emitting Diodes Basedon Conjugate Polymers[J]. Nature,1990,347:539-541
    [4]Gustafsson G., Cao Y., Heeger A. J., etc., Flexible Light-emitting Diodes Made from Soluble Conducting Polymers[J]. Nature,1992,357:477-479
    [5]Cao Y., Treacy G. M., Smith P., etc., Solution-cast Films of Polyaniline:Optical-quality Transparent Electrodes[J]. Appl. Phys. Lett.,1992,60(22):2711-2713
    [6]Gu G., Sken Z., Burrows P. E., etc., Transparent Organic Light Emitting Device[J]. Adv. Mater.,1997, 9(9):725-728
    [7]吕斯骅,朱印康.近代物理实验技术(Ⅰ)[M].北京:高等教育出版社,1991:144-188
    [8]尚世铉,单锦安.近代物理实验技术(Ⅱ)[M].北京:高等教育出版社,1993:315-351
    [9]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005:57-58
    [10]Bharathan J., Yang Y., Polymer electroluminescent devices processed by inkjet printing:I. Polymer light-emitting logo[J]. Appl. Phys. Lett.,1998,72:2660-2662
    [11]Adachi C., Tokito S., Tsutsui T., etc., Organic Electroluminescent Device with a Three-layer structure [J]. Appl. Phys. Lett.,1988,27:269-271
    [12]Aziza H., Popovic Z. D., Study of organic light emitting devices with a 5,6,11,12-tetraphenylnaphthacene (rubrene)-doped hole transport laye[J]. Appl. Phys. Lett.,2002,80(12): 2180-2183
    [13]Baigent D. R., Marks R. N., Greenham N. C.,etc., Conjugated polymer light-emitting diodes on silicon substrates[J]. Appl. Phys. Lett.,1994,65(12):2636-2639
    [14]Bulovic V., Tian P., Burrows R. E., etc., A surface-emitting vacuum-deposited organic light emitting device[J]. Appl. Phys. Lett.,1997,70(22):2954-2955
    [15]Dobbertin T., Kroeger M., Heithecker D., etc., Inverted top-emitting organic light-emitting diodes using sputter-deposited anodes[J]. Appl. Phys. Lett.,2003,82(2):284-286
    [16]Dobbertln T., Werner O., Meyer J., etc., Inverted hybrid organic light-emitting device with polyethylene dioxythiophene-polystyrene sulfonate as an anode buffer layer[J]. Appl. Phys. Lett.,2003,83(24): 5071-5073
    [17]Miyashita T., Naka S., Okad H., Proceedings of ID W'04, P 1421, Dec 8-10,2004, Niigata,Japan.
    [18]Kho S., Sohn S. Y., Jung D. G., etc., Appl Phys Part,2003,42:552-555
    [19]Chu T. Y., Chen S. Y., Chen C-J.,Highly efficient and stable inverted bottom-emission organic light emitting devices[J]. Appl. Phys. Lett.,2006,89(5):053503-053505
    [20]Zheng X. Y. Wu Y. Z., Efficiency Improvement of Organic Light Emitting Diodes Using 8-hydroxy-quinolinato Lithium as an Electron Injection Layer[J].Thin Solid Films,2005,478(2):252-255
    [21]Cao Y., Park K. T., Hsieh B. R., etc., Energy Level Bending and Alignment at the Interface Ca and a Phenylene V inylene Oligomer[J]. Appl. Phys. Lett.,1996,69(8):1080-1082
    [22]Park N. G., Kwak M. Y, Kim B. O., etc. Effects of Indium-Tin-Oxide Surface Treatment on Organic Light-emitting Diodes[J]. Appl. Phys.,2002,41:1523-1526.
    [23]Wu C. C., Wu C. I., Sturm J. C., etc., Surface Modification of Indium Tin Oxide by Plasma Treatment:an Effective Method to Improve the Efficiency, Rightness, and Reliability of Organic Light Emitting Devices[J]. Appl. Phys. Lett.,1997,70(11):1348-1350
    [24]Nuesch F., Rothberg L. T., Forsythe E. W., etc., A Photoelectron Spectroscopy Study on the Indium Tin Oxide Treatment by Acids[J]. Appl. Phy. Lett.,1999,74(6):880-882
    [25]Le Q. T., Nuesch F., Rothberg L. J., etc., Photo emission Study of the Interface between Phenyldiamine and Treated Indium-tin-oxide[J]. Appl. Phys. Lett.,1999,75(10):1357-1359
    [26]Mason M. G., Hung L. S., Tang C. W., etc., Interfacial Chemistry of Alq3 and LiF with Reactive Metals[J]. J. Appl. Phys.,2001,89(5):2756-2765
    [27]Liu T. H., Chen C. H., Doped red organic electroluminescent devices based on a cohost emitter system[J]. Appl. Phys. Lett.,2003,83(25):5241-5243
    [28]Picciolo L. C., Murata H., Kafafi Z. H., Organic light-emitting devices with saturated red emission using 6, 13-diphenylpentacene[J] Appl. Phys. Lett.,2001,78(16):2378-2380
    [29]Mi B. X., Gao Z. Q., Liu M. W., etc., New polycyclic aromatic hydrocarbon dopants for red organic electroluminescent devices[J]. Mater. Chem.,2002,12(5):1307-1310
    [30]Wu C. C., Lin Y. T., Cho T. Y., etc., Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds[J]. Appl. Phys. Lett.,2002,81(4):577-579
    [31]Baldo M. A., You Y., Forrest S. R.., Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature,1998,395(6698):151-154
    [32]Adachi C., Baldo M. A., Forrest S. R., etc., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. Appl. Phys. Lett.,2001,78(11):1622-1624
    [33]Tsuboyama A., Iwawaki H., Furugori M., etc., Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode[J]. Am. Chem. Soc.,2003, 125(42):12971-12979
    [34]Meerheim R., Walzer K., Pfeiffer M., etc., Ultrastable and efficient red organic light emitting diodes with doped transport layers [J]. Appl. Phys. Lett.,2006,89(6):061111-061113.
    [35]Mi B. X., Wang P. F., Gao Z. Q., etc.. Strong luminescent iridium complexes with C^N= N structure in ligands and their potential in efficient and thermally stable phosphorescent OLEDs[J]. Adv. Mater.,2008, 21(3):339-343.\
    [36]Adachi C., Kwong R. C., Djurovich P., etc., Endothermic energy transfer:A mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J]. Appl. Phys. Lett.,2001,79(13): 2082-2084
    [37]Yeh S. J., Wu M. F., Chen C. T., etc.. New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices[J]. Adv. Mater.,2005,17(3):285-289
    [38]Adachi C., Baldo M. A., Thomphon M. E., etc., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J]. Appl. Phys. Lett.2001,90(10):5048-5052
    [39]Tao Ran, Qiao Juan, Duan Lian, etc., Blue Phosphorescence Materials for Organic Light-Emitting Diodes[J]. Progress in Chemistry,2010,22(12):2255-2267
    [40]Adachi C., Baldo M. A., Thompson M. E., etc.,High-efficiency organic electrophosphorescent devices with tris (2-phenylpyridine) iridium doped into electron-transporting materials[J]. Appl. Phys. Lett.,2000, 77(6):904-906
    [41]Gao Z. Q.,Mi B. X., Tam H. L., etc., High Efficiency and Small Roll-Off Electrophosphorescence from a New Iridium Complex with Well-Matched Energy Levels[J].Adv. Mater.,2008,20(4):774-778
    [42]Spreitzer H., Becker H., Kluge E.,etc.,Soluble Phenyl-Substituted PPVs-New Materials for Highly Eficient Polymer LEDs[J]. Adv. Mater.,1998(10):1340-1343
    [43]Nishida J N, Murai S, Fujiwara E etc. Preparation, Chara-cterization,and FET Properties of Novel DicyanopyrazinoquinoxalineDerivatives[J]. organic letters,2004(6):2007-2010.
    [44]Liu Y, Yu G, Zhu D.,Synthesis and characterization of new poly(cya-noterephthalylidene)s for light-emiting diodes[J].Synthetic.Metals,2001 (122):401-408.
    [45]Schwartz G., Pfeiffer M., Reineke, S., etc., Harvesting triplet excitons from fluorescent blue emitters in white organic light-emitting diodes[J]. Advanced Materials,2007(19):3672-3676
    [46]Nakayama T., Hiyama K., Furukawa etc., Development of phosphorescent white OLED with extremely high power efficiency and long lifetime[J]. SID Symposium Digest of Technical Papers,2007,38(1):1018-1021
    [47]Hughes G., Bryce M. R., Electron-transporting materials for organic electroluminescent and electrophosphorescent devices [J]. Journal of Materials Chemistry,2005 (15):94-98
    [48]Hirose Y., Kahn A., Aristov V., etc.,Chemistry diffusion and electronic properties of a metal/organic semiconductor contact:In/perylenetetracarboxylic dianhydride[J]. Applied Physics Letters,1996(68): 217-219
    [49]Chan M. Y., Lai S. L., Fung M. K., etc., Efficient CsF/Yb/Ag cathodes for organic light-emiting devices[J]. Applied Physics Letters,2003(82):1784-1786
    [50]Braun D., Heeger A. J., Visible light emission from semiconducting polymer diodes[J]. Applied Physics Letters,1991(58):1982-1984
    [51]Nakamura A., Tada T., Mizukami M., etc.,Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode[J]. Applied Physics Letters,2004,84,130-132
    [52]Stossel M., Staudigel J.,Steuber F., etc.,Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting devices[J]. Applied Physics A,1999(68):387-390
    [53]Haskai E. I., Curioni A., Seidler P. F., etc., Lthium-aluminum contacts for oganic li ght-emiting devices[J]. Applied Physics Letters,1997(71):1151-1153
    [54]Ganzorig C., Suga K., Fujihira M., Alkali metal acetates as effective electron injection layers for organic electroluminescent devices[J]. Materials Science and Engineering B,2001(85):140-143
    [55]Adachi C.,Tokito S., Tsutsui T.,etc.,Organic electroluminescent device with a three-layer structure[J]. Japanese Journal of Applied Physics,1988(27):L713-L71
    [56]Hao Y. Y., Meng W. X., Xu H. X., etc., White organic light-emitting diodes based on a novel Zn complex with high CRI combining emission from excitons and interface-formed electroplex[J]. Organic Electronics,2011(12):136-142
    [57]Huang F., Niu Y. H., Zhang Y., etc., Neutral Surfactant as Electron-Injection Material for High-Efficiency Polymer Light-Emitting Diodes[J]. Advanced Materials,2007(19):2010-2014
    [58]Huang F., Zhang Y., Liu M. S., etc., Electron-Rich Alcohol-Soluble Neutral Conjugated Polymers as Highly Efficient Electron-Injecting Materials for Polymer Light-Emitting Diodes[J]. Advanced Functional Materials,2009(19):2457-2466
    [59]Choong V. E.,Shi S., Curless J.,etc.,Organic light-emitting diodes with a bipolar transport layer[J]. Applied Physics Letters,1999(75):172-174
    [60]Yang J.,Shen J., Doping effects in organic electroluminescent devices[J]. Journal of Aapplied Physics, 1998(84):2105-2111
    [61]Ma D. G., Lee C. S., Lee S. T.,etc.,Improved efficiency by a graded emissive region in organic light-emitting diodes[J]. Applied Physics Letters,2002,80(19):3641-3643
    [62]Kondakov D. Y., Lenhart W. C., Nichols W F., Operational degradation of organic light-emitting diodes: Mechanism and identification of chemical products[J]. Journal of Aapplied Physics,2007,101,024512
    [63]Hung L. S., Organic electroluminescent device with a non-conductive fluorocarbon polymer layer. US, 620807[P].2001
    [64]Veinot J. G., Marks T. J., Toward the Ideal Organic Light-Emitting Diode.The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers[J]. Accounts of Chemical Research, 2005,38:632-643
    [65]Kato S.,Designing Interfaces That Function to Facilitate Charge Injection in OrganicLight -Emiting Diodes[J]. Aournal of the American Chemical Society,2005(127):11538-11539
    [66]Kim J. S., Friend R. H., Burroughes J. H., Spin-cast thin s emiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes[J]. Applied Physics Letters,2005(87):023506-023509
    [1]Shen Y., Malliaras G. G., Charge injection into organic semiconductors[J]. Spectrum,2000,13(1):9-11
    [2]Bassler H., Charge transport in disordered organic photoconductors a monte carlo simulation study.Phys. Stat. Sol. (B),1993,175(1),15-56
    [3]Gill W. D., Drift mobilities in amorphous charg-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole[J]. J. Appl. Phys.,1972,43(12),5033-5040
    [4]Parker I. D., Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. J. Appl. Phys.,1994,75(3),1656-1666.
    [5]Nikitenko V. R., Arkhipov V. I., Tak Y. H., etc., The overshoot effect in transient electroluminescence from organic bilayer light emitting diodes:Experiment and theory[J]. J. Appl. Phys.,1997,81(11): 7514-7526
    [6]Goliney I. Y., Modeling of performance characteristics of OLED[J]. Syn. Met.,2000,359:111-112
    [7]Pinner D. J., Friend R. H., Tessler N., Transient electroluminescence of polymer light emitting diodes using electrical pulses[J] J. Appl. Phys.,1999,86(9):5116-5131
    [8]Scott J. C., Malliaras G. G., Charge injection and recombination at the metal-organic interface[J]. Chemical physics letters.,1999,299(2):115-119
    [9]Tokito S., Taga Y., Organic electroluminescent materials and device made from such materials. R&D Review Toyota Institute,1998,33(3):65-67.
    [10]Kido J., Kimura M., Nagai K., Multilayer white light-emitting organic electroluminescent device[J]. Science,1995,267:1332-1334
    [11]Ammermann D., Bohler A., Schobel J. Kowaslkey, W. Annual report,1996
    [12]Troadec D., Veriot G., Antony R., etc., Organic light-emitting diodes based on multilayer structures [J]. A. Synth. Met.,2001,124(1):49-51
    [13]Burin A. L.,Ratner M. A., Exciton migration and cathode quenching in organic light emitting diodes[J]. The Journal of Physical Chemistry A,2000,104(20):4704-4710
    [14]Savaidis S. P., Stathopoulos N. A., Simulation of light emission from planar multilayer OLEDs, using a transmission-line model[J]. IEEE Journal of Quantum Electronics,2009,45(9):1089-1099
    [15]Kim J. S., Ho P. K.. H., Greenham N. C., etc., Electroluminescence emission pattern of organic light-emitting diodes:Implications for device efficiency calculations[J]. J. Applied Physics,2000,88 (2):1073-1081
    [16]Badano A., Kanicki J., Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices[J]. Journal of Applied Physics,2001,90(4):1827-1830
    [17]Ziebarth J. M., McGehee M. D. A., theoretical and experimental investigation of light extraction from polymer light-emitting diodes[J]. Journal of Applied Physics,2005,97(6):064502-0645029
    [18]Chen X. W., Choy W. C. H., He S., Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes[J]. Journal of Display Technology,2007,3(2):110-117
    [1]Baldo M. A., Brien D. F., You Y.,etc., Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature,1998,395:151-154
    [2]Adachi C., Baldo M. A., Thompson M. E.,etc. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J. Appl. Phys.,2001,90(10):5048-5051
    [3]Watanabe S., Ide N., Kido J., High-e□ciency green phosphorescent organic light-emitting devices with chemically doped layers[J]. Japan. J. Appl. Phys.,2007,46(3 A):1186-1188
    [4]Tanaka D., Sasabe H., Li Y. J., etc., Ultra high efficiency green organic light-emitting devices[J]. Japanese J. Appl. Phys.2007,46(1):L10-L12
    [5]D'Andrade B. W., Esler J., Lin C, etc., Realizing white phosphorescent 100Im/WOLED efficacy[J]. Organic Light Emitting Materials and Devices Ⅻ,2008,70510Q
    [6]Reineke S., Lindner F., Schwartz G., etc.,White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature,2009,459:234-238
    [7]D'Andrade B. W., Brooks J., Adamovich V., etc. White Light Emission Using Triplet Excimers in Electrophosphorescent Organic Light-Emitting Devices[J] Adv Mater,2002,14(15):1032-1036
    [8]Baldo M.A., Lamansky S., Burrows P. E., etc., Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl Phys Lett,1999,75(1):4
    [9]Baldo M. A., Adachi C., Forrest S. R., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. Phys Rev B,2001,90(10):5048-5051
    [10]Giebink N. C, Forrest S.R., Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes[J]. Phys Rev B,2008,77(23):235215-235218
    [11]Setoguchi Y., Adachi C., Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers[J]. J Appl Phys,2010,108(6):064516-064523
    [12]Zang F. X., Sum T. C., Huan A. C. H., etc., Reduced efficiency roll-off in phosphorescent organic light emitting diodes at ultra high current densities by suppression of triplet-polaron quenching[J]. Appl Phys Lett,2008,93(2):023309-023312
    [13]Reineke S., Walzer K., Leo K., Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Phys Rev B,2007,75:125328
    [14]Zhou X., Qin D. S., Pfeiffer M., etc., High-efficiency electrophosphorescent organic light-emitting diodes with double light-emitting layers[J]. Appl Phys Lett,2002,81(21):4070-4072
    [15]Kim S. H., Jang J., Yook K.S., etc., Stable efficiency roll-off in phosphorescent organic light-emitting diodes[J]. Appl Phys Lett,2008,92(2):023513-023513-3
    [16]Matsushima T., Adachi C., Carrier injection and transport characteristics of copper phthalocyanine thin films under low to extremely high current densities[J]. Appl Phys Lett,2006,88(3):033508-033511
    [17]Lee J., Chopra N., Eom S. H., etc., Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices[J]. Appl Phys Lett,2008, 93(12):123306
    [18]Su S. J., Gonmori E., Sasabe H., etc., Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off[J]. Adv Mater,2008,20(21):4189-4194
    [19]Gather M. C., Kohnen A., Meerholz K. White Organic Light-Emitting Diodes[J]. Adv Mater,2011, 23(2):233-248
    [20]Sun Y., Giebink N. C., Kanno H., etc., Management of singlet and triplet excitons for efficient white organic light-emitting devices[J]. Nature,2006,440:908-912
    [21]Schwartz G., Pfeiffer M., Reineke S., etc.. Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light-Emitting Diodes[J]. Adv Mater,2007,19(21):3672-3676.
    [22]Bakken N., Wang Z., Li J., Highly efficient white organic light-emitting device using a single emitter[J]. J Photon Energy,2012,2:021203
    [23]Williams E.L., Haavisto K., Li J., etc., Excimer-based white phosphorescent organic light-emitting diodes with nearly 100% internal quantum efficiency[J]. Adv Mater,2007,19(2):197-202
    [24]Yang X., Wang Z., Madakuni S., etc., Efficient Blue-and White-Emitting Electrophosphorescent Devices Based on Platinum (Ⅱ)[1,3-Difluoro-4,6-di (2-pyridinyl) benzene] Chloride[J]. Adv Mater,2008,20(12):2405-2049
    [25]Wei B., Liu J. Z., Zhang Y., etc., Stable, Glassy, and Versatile Binaphthalene Derivatives Capable of Efficient Hole Transport, Hosting, and Deep-Blue Light Emission[J]. Adv Funct Mater,2010,20(15): 2448-2458
    [26]Holmes R. J., Forrest S. R., Tung Y. J., etc., Blue organic electrophosphorescence using exothermic host-guest energy transfer[J]. Appl Phys Lett,2003,82(15):2422-2424
    [27]Lei G., Wang L., Qiu Y., Multilayer organic electrophosphorescent white light-emitting diodes without exciton-blocking layer[J]. Appl Phys Lett,2006,88(10):3508-3511
    [28]Tanaka D., Sasabe H., Li Y. J., etc., Ultra high efficiency green organic light-emitting devices[J]. Jpn J Appl Phys,2007,46(1):L10-L12
    [1]Sun Y., Giebink N.C., Kanno H.,etc, Management of singlet and triplet excitons for efficient white organic light-emitting devices[J] Nature,2006,440:908-912
    [2]Adachi C, Kwong R., Forrest S.R., Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film[J] Org. Electron.,2001,2(1):37-43
    [3]Segal M., Singh M., Rivoire K. Etc., Extrafluorescent electroluminescence in organic light-emitting devices[J] Nature Mater.,2007,6:374-378
    [4]Sun Y., Forrest S. R., Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids[J]. Nature Photon,2008.2:483-487
    [5]Reineke S., Lindner F., Schwartz G.,etc, White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature,2009,459:234-238
    [6]Patel N, Cina K. S J, Burroughes H., IEEE J. Sel. Top. Quantum Electron,2002,8:346.
    [7]Meerholz K., Muller D. C., Outsmarting Waveguide Losses in Thin-Film Light-Emitting Diodes[J].Adv. Funct. Mater.,2001,11(4):251-253
    [8]Tsutsui T., Aminaka E., Lin C. P., Extended Molecular Design Concept of Molecular Materials for Electroluminescence:Sublimed-Dye Films, Molecularly Doped Polymers and Polymers with chromophores. Philos[J]. Trans. R. Soc.London, Ser. A,1997,355:801-814.
    [9]Matterson B. J., Lupton J. M., Safonov A. F., etc. Increased efficiency and controlled light output from a microstructured light-emitting diode[J]. Adv. Mater,2001,13(2):123
    [10]Riel H., Karg S., Beierlin T., etc. Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling[J], Appl. Phys. Lett.,2003,82(3):466-468
    [11]Adachi C, Baldo M. A., Thompson M. E.,etc., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J. Appl. Phys.,2001,90(10):5048-5051
    [12]Lee J., Park Y., Kim D. Y., etc., High efficiency organic light-emitting devices with AI/NaF cathode[J]. Appl Phys Lett,2003,82(2):173-175
    [13]Liao L. S., Slusarek W. K., Hatwar T. K., etc.. Tandem Organic Light-Emitting Diode using Hexaazatriphenylene Hexacarbonitrile in the Intermediate Connector[J]. Adv. Mater.,2008,20(2): 324-329
    [1]Yook S. K., Jeon S. O., Joo C. W., etc., Correlation of lifetime and recombination zone in green phosphorescent organic light-emitting diodes[J]. Appl. Phys. Lett.,2009,94(9):093501-093503
    [2]Giebink N. C., D'Andrade B. W., Weaver M. S., etc., Direct evidence for degradation of polaron excited states in organic light emitting diodes[J]. Appl. Phys. Lett.,2009,105(12):124514-124521
    [3]Fehse K., Meerheim R., Walzer K., etc., Lifetime of organic light emitting diodes on polymer anodes[J]. Appl. Phys. Lett.,2008,93(8):083303-0803306
    [4]Wong F. L., Fung M. K., Tao S. L., etc., Long-lifetime thin-film encapsulated organic light-emitting diodes[J]. Appl. Phys. Lett.,2008,104(1):014509-014513
    [5]Lee J. H., Wu M. H., Chao C. C., etc., High efficiency and long lifetime OLED based on a metal-doped electron transport layer[J]. Chem. Phys. Lett.,2005,416(4-6):234-237
    [6]Han J. M., Han J. W., Chun J. Y., etc., Novel encapsulation method for flexible organic light-emitting diodes using poly (dimethylsiloxane)[J]. Jpn. J. Appl. Phys.,2008,47:8986-8988
    [7]Kim Y., Oh E., Lim H., etc., Mixing effect of hole-injecting and hole-transporting materials on the performance and lifetime of organic light-emitting devices[J]. Appl. Phys. Lett.,2006,88(7): 043504-043506
    [8]Chaskar A., Chen H. F., Wong K. T., Bipolar host materials:a chemical approach for highly efficient electrophosphorescent devices[J]. Adv. Mater.,2011,23(34):3876-3895
    [9]Kong D., Jung H., Kim Y.,etc, Density-of-States Based Analysis on the Effect of Active Thin-film Thickness on Current Stress-induced Instability in Amorphous InGaZnO AMOLED Driver TFTs[J]. SID Digest,2011,42(1):1223-1226
    [10]Aziz H., Popovic Z. D., Hu N. X., etc., Degradation mechanism of small molecule-based organic light-emitting devices[J]. Science,1999,283:1900-1902
    [11]Popovic Z. D., Aziz H., Hu N., etc., Simultaneous electroluminescence and photoluminescence aging studies of tris (8-hydroxyquinoline) aluminum-based organic light-emitting devices[J]. J. Appl. Phys.,2001,89(8):4673-4675
    [12]Lindla F., Boesing M., Zimmermann C., etc., Highly efficient yellow organic light emitting diode based on a layer-cross faded emission layer allowing easy color tuning[J]. Mater. Res. Soc. Symp. Proc, 2009,95(21),213305-213308
    [13]Tang C. W., VanSlyke S. A., Chen C. H. Electroluminescence of doped organic thin films[J]. J. Appl. Phys.,1989,65(9):3610-3617.
    [14]Papadimitrakopoulos F., Zhang X. M., Thomsen D. L., etc., A Chemical Failure Mechanism for Aluminum(Ⅲ) 8-Hydroxyquinoline Light-Emitting Devices[J]. Chem. Mater.,1996,8(7):1363-1365
    [15]Aziz H., Popovic Z. D., Hu N. X., etc., Degradation Mechanism of Small Molecule-Based Organic Light-Emitting Devices[J]. Science,1999,283(5049):1900-1902
    [16]Popovic Z. D., Aziz H., Hu N. X., etc.Simultaneous electroluminescence and photoluminescence aging studies of tris(8-hydroxyquinoline) aluminum-based organic light-emitting devices[J]. J. Appl. Phys.,2001,89(8):4673-4675
    [17]Duan L., Qiao J., Sun Y. D., etc., Strategies to Design Bipolar Small Molecules for OLEDs: Donor-Acceptor Structure and Non-Donor-Acceptor Structure[J]. Adv. Mater.,2011,23(9):1137-1144
    [18]Pinner D. J., Friend R. H., Tessler N., Transient electroluminescence of polymer light emitting diodes using electrical pulses[J]. Journal of Applied Physics,1999,86(9):5116-5130
    [19]Choi S. H., Lee T. I., Baik H. K., etc., The effect of electrode heat sink in organic-electronic devices[J]. Applied Physics Letters,2008,93(18), 183301-183304
    [20]Huang J.S., Blochwitz-Nimoth J., Pfeiffer M.,etc., Influence of the thickness and doping of the emission layer on the performance of organic light-emitting diodes with PiN structure[J]. Journal of Applied Physics,2003,93 (2):838-844
    [21]Wilkinson C. I., Lidzey D. G., Palilis L. C., etc..Enhanced performance of pulse driven small area polyfluorene light emitting diodes [J]. Applied Physics Letters,2001,79 (2):171-173
    [22]Wei B., Furukawa K., Amagai J., etc. A dynamic model for injection and transport of charge carriers in pulsed organic light-emitting diodes[J]. Semiconductor Science and Technology,2004,19 (5): L56-L59
    [23]Matsushima T., Adachi C., Observation of extremely high current densities on order of MA/cm2 in copper phthalocyanine thin-film devices with submicron active areas [J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2007,46 (45-49):1179-1181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700