用户名: 密码: 验证码:
大气压低温等离子体射流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压低温等离子体射流是近年来蓬勃发展的一种新型大气压低温气体放电技术,是目前国际上等离子体科学和技术领域的重要研究热点之一。大气压低温等离子体射流在开放空间中产生,由于其气体温度低、化学活性强、无污染等独特的技术优势,在众多领域(生物医学、材料、环境等)有着广阔的应用前景。本文以大气压低温等离子体射流为研究对象,在以下几个方面开展了研究工作:
     1.适合于生物医学领域的大气压低温等离子体射流发生装置的研制。(i)研制了两种适合于生物医学等需要低温处理领域的大气压低温等离子体射流发生装置,采用介质阻挡放电结构将高电压电极与放电区域、以及工作区域在空间上隔离,避免了电弧放电的产生以及提高了装置的使用安全性,产生的射流可长达11cm,这是当时国际上报道的最长等离子体射流,同时人体的手指能够直接安全地与等离子体射流接触;(ii)通过等效电路分析发现,其中一种射流发生装置在施加40kHz、峰值7kV交流电压时,射流与人体的手指接触时手指承受的电压在安全范围内(<36V),证实了该装置在临床医学应用的安全性;(iii)同时,基于多气流通道的结构,实现了同时产生多个等离子体射流的技术,有效地扩大了射流处理面积。
     2.等离子体射流长度的可控制性研究。通过改变放电条件,研究了外部空间的空气、电源参数(电压幅值、电压脉宽、频率)、工作气体流速等对等离子体射流长度的影响。(i)研究结果表明外部空间的空气对射流的延伸有明显的负面影响,在纯工作气体环境中产生的射流长度要远大于外部空间中的射流,分析发现主要是由于空气分子能够有效促使射流中储能粒子,例如激发态或亚稳态的He或Ar原子(工作气体为氦气或氩气)、以及高能电子的快速消失而导致;(ii)建立流体模型并模拟工作气体的流场发现,在层流状态下射流顶端的工作气体最低含量必须达到一定值时射流才能继续延伸,这导致了当射流顶端的工作气体含量低于产生等离子体的最低值时,升高施加电压幅值不能有效地增大射流的长度;(iii)通过流体模拟发现,工作气体流速对射流长度的影响可分为三个阶段,层流、层流向湍流转化、湍流阶段,射流长度在气流开始从层流向湍流状态转化时达到最大;(iv)通过分析不同阶段的等离子体射流长度,得到射流长度和喷嘴直径的比值,与气流雷诺数的分布趋势,该分布趋势有助于我们对射流发生装置的设计,以及在不同工作气体流速、不同喷嘴尺寸时对射流流场状态的预测以及射流长度的控制。
     3.等离子体射流产生机理的研究。采用高速拍摄以及时空分辨光谱技术对等离子体射流的产生过程进行了研究,获取了等离子体子弹的时空动态传播行为的详细信息。(i)研究发现等离子体子弹的传播速度与N+2391.4nm谱线强度在相近空间位置达到最大,表明等离子体子弹的传播速度直接与其中的电荷量相关;(ii)首次发现当等离子体子弹在接触一根空心绝缘介质管、介质管中通有工作气体时能够在介质管中产生另一个快速向外部空间传播的等离子体子弹的现象,进一步分析表明第二个等离子体子弹的产生是由第一个等离子体子弹中的电荷积累在介质管表面形成的强空间电场导致;(iii)研究结果表明等离子体子弹的产生和传播直接与其中的电荷量相关,电荷量越高,等离子体子弹在前方形成的局部空间电场越强,子弹的传播速度越高、传播距离越大,最终形成的等离子体射流越长。
     4.等离子体射流基本参数(电子温度和电子密度)的诊断研究。通过绝对辐射光谱和高分辨率光谱测量,对等离子体射流的电子温度和电子密度进行了诊断研究。(i)由氦原子能级密度的分布趋势发现射流等离子体处于极度非热平衡状态,首次得到对应于氦原子低能级区域的电子激发温度高达1.2eV,远高于高能级区域的电子激发温度(0.3eV);(ii)同时研究表明氦原子高能级区域的密度分布处于萨哈热平衡状态,低能级区域的密度分布远偏离于萨哈平衡状态;(iii)建立了一种谱线轮廓的组合拟合方法,针对射流中的氦原子和氢原子谱线轮廓进行了分析以及拟合,首次获得了射流电子密度的空间分布非均匀特性,其中射流中心区域的电子密度可达1.2×10~(21)m~(-3),比射流边缘区域高一个量级。
     5.等离子体射流化学特性的诊断研究。采用激光诱导荧光技术,定量确定了等离子体射流中OH分子和O原子的绝对密度及其空间分布。(i)通过考虑激光诱导荧光测量中重要的分子转动和振动能量传输过程,建立了更加准确的定量诊断射流等离子体中OH分子密度的方法;(ii)研究结果表明,随着工作气体中水分子或者氧气含量的增加,射流中OH分子或者O原子的产生逐渐向靠近出气端口的强放电区域集中,强放电区域中OH分子或O原子的密度呈现先增加、后减小的变化趋势;(iii)当工作气体中混合0.3%H2O或0.3%O2时,射流中OH分子或O原子密度达到最高,分别为5.5×10~(19)m~(-3)和2.4×10~(22)m~(-3)。
As a new gas discharge technology generating low-temperature plasmas at atmosphericpressure, atmospheric pressure low-temperature plasma jets have received vigorous devel-opments in recent years, and become one of the hot research issues in plasma science andtechnology. As some unique technical advantages of this type of gas discharge, such as gen-eration in open space, low gas temperature, advanced plasma chemistry, pollution-free andetc., it has great application potentials in various fields, like biomedicine, material science,environment, etc. In this dissertation, comprehensive investigations of atmospheric pressurelow-temperature plasma jets are carried out and the details are presented as follows:
     1. Development of atmospheric pressure low-temperature plasma jet setups for biomed-ical applications.(i) Two different types of plasma jet setups are developed for plasma treat-ments in biomedical field (or other fields need low-temperature processing). Based on themechanism of dielectric barrier discharge, the high-voltage electrode is covered by dielectricmaterial, which successfully avoids the generation of arc discharge and greatly improves theoperation safety of plasma jet setups. One of the setups is able to generate a plasma jet witha length up to11cm, which is the longest plasma jet generated in open air ever reported inthe world at that time. Human fingers can directly contact with the plasma jets generated bythese setups;(ii) Through analyzing the equivalent circuit of the case when a human finger iscontacting with the plasma jet generated by sine-wave high-voltages with frequency40kHzand amplitude7kV, it is found that the voltage dropped on the human body is at the safetyrange (<36V), which proves that the safety of the plasma jet is high enough for biomed-ical applications;(iii) A setup which can simultaneously generate multiple plasma jets isdeveloped based on the configuration with multiple gas channels, which greatly increasesthe treatment area of plasma jets.
     2. Investigations of the control of plasma jet length. Experimental research on theeffects of the air in open space, parameters of power supply (applied voltage amplitude,pulse duration, frequency), and gas velocity on the plasma jet length is carried out.(i)It is found out that the diffused air has a significant adverse influence on the generationof plasma jet in open space. The jet length generated in a pure working gas environmentis much larger than that of the jet in open air. Analysis shows that the adverse effect ofdiffused air is resulted by the fast quenching of energy-saving species, such as excited ormetastable He or Ar atoms (with helium or argon working gas) and high-energy electronsby air molecules;(ii) Through the fluid simulation of working gas, it is found out that when the gas flow is at laminar mode, the plasma jet can continue propagating in the open spaceonly when the working gas in the top-area of plasma jet achieves a specific ratio. Whenthe ratio of working gas is lower than the specific value, the length of plasma jet will notperform an obvious rise when the applied voltage is increased.(iii) The fluid simulationshows that the change of plasma jet length can be divided into three regimes with the riseof the working gas velocity, namely the laminar regime, transition regime from laminar toturbulent, and turbulent regime. The plasma jet achieves its maximal length when the gasflow starts to change to the turbulent mode from laminar mode;(iv) Based on the analysisof the influence of gas velocity on the plasma jet length, it is found out that the curvesof jet length versus gas velocity at different diameters of setup nozzles can be unified ina map of the jet Reynolds number versus the dimensionless ratio between jet length andnozzle diameter. The map is helpful for the design of jet setups and allows us to predict theflow pattern of plasma jet in order to estimate and control the plasma jet length at differentgeometrical size of setup nozzles.
     3. Research on the generation mechanisms of plasma jets. Detailed information of thegeneration processes of plasma bullet are obtained through high-speed nanosecond imagingtechnology and time-and-space resolved optical emission spectroscopy measurements.(i)It is found out that the plasma bullet achieves its maximal propagation velocity at a similarposition in the open space where the emission intensity of N+2391.4nm line also gets itspeak. This demonstrates that the propagation velocity of plasma bullet is directly related tothe density of charged particles inside the bullet;(ii) When the plasma bullet contacts witha dielectric tube and the tube is fed with working gas, a second plasma bullet is generatedinside the tube and propagating fast toward the open space. Analysis shows that the gen-eration of the second plasma bullet is induced by the strong space electric-field formed bythe charged particles of the first plasma bullet accumulated on the tube surface;(iii) Theseresults demonstrate that the generation and propagation of the plasma bullet is directly in-duced by the strong local space electric-filed in front of the bullet-like ionization volume,the more charged particles inside the volume, the stronger the local space electric-field isformed, and the faster and larger distance the bullet can propagate, and finally the longerplasma jet is generated.
     4. Diagnostic investigations on the basic parameters, namely the electron temperatureand electron density of the plasma jet, are carried out through absolute and high-resolutionoptical emission spectroscopy measurements.(i) It is found out that the electron excitationtemperature for the low-part of helium atomic state distribution function (ASDF) is around1.2eV, much higher than that of the high-part of helium ASDF (0.3eV). The jet plasma isworking at an extreme non-equilibrium state;(ii) Meanwhile, it shows that the high-part of helium ASDF is almost following the Saha equilibrium, but the low-part is far away fromthe Saha equilibrium;(iii) The plasma electron density is determined by profile-fitting ofthe helium and hydrogen lines through a composition profile-fitting method. The spatiallynon-uniform characteristic of electron density in the plasma jet is studied. A high electrondensity up to1.2×10~(21)m~(-3)is characterized for the discharge core in the jet center, whichis of an order of magnitude larger than that of the discharge area in the jet edge.
     5. Diagnostic investigations of the plasma jet chemistry are performed through theadvanced laser-induced fluorescence (LIF) spectroscopy measurements. The absolutedensities of OH and O radicals, and their spatial distribution in the plasma jet are deter-mined.(i) A calculation model is developed in this dissertation for determining the OHdensity in plasma jet with a higher accuracy. The model includes several important physicalmechanisms affecting the generation of LIF photons and is able to provide a true OHdensity in plasma sources.(ii) It shows that with increase of the admixtures of water oroxygen molecules, the distribution of OH or O radicals in the plasma jet gradually shrinkto the discharge core close to the gas outlet. The generation of OH or O radicals performa up-and-down behavior with the rise of the contents of water or oxygen molecules inworking gas;(iii) The density of OH or O radicals achieve their maximum densities of5.5×10~(19)m~(-3)and2.4×10~(22)m~(-3)respectively when the admixtures of water or oxygenmolecules are both of0.3%.
引文
[1] Coulomb M. Mem. Acad. Royale des Sci. de Paris,1785.
    [2] Crookes W. Phil Trans. Pt.,1879.
    [3] Langmuir I. Oscillations in ionized gases. Proc. Nat. Acad. Sci. U.S.,1928,14(8):628.
    [4] Lieberman M A. Principles of plasma discharges and materials processing.(2nd ed. New Jersey:John Wiley Sons Inc),2005.
    [5] Boyd T J M, Sanderson J J. The Physics of Plasmas.(Cambridge: Cambridge University Press),2003.
    [6] K H. Becker K H S R J B. Non-Equilibrium Air Plasmas at Atmospheric Pressure.(Institute ofPhysics Publishing, London),2005.
    [7]等离子体2010委员会著,王文浩译.等离子体科学.科学出版社,2010.
    [8]胡希伟.等离子体理论基础.北京大学出版社,2006.
    [9]葛袁静,张广秋,陈强.等离子体科学技术及其在工业中的应用.中国轻工业出版社,2011.
    [10] Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasmas: A review. SpectroshimicaActa Part B-Atomic Spectroscopy,2006,61(1):2–30.
    [11] Kogelschatz U. Atmospheric-pressure plasma technology. Plasma Physics and Controlled Fusion,2004,46(12B):B63–B75.
    [12] Kogelschatz U, Eliasson B, Egli W. From ozone generators to flat television screens: history andfuture potential of dielectric-barrier discharges. Pure and Applied Chemistry,1999,71(10):1819–1828.
    [13] Kogelschatz U, Eliasson B, Egli W. Dielectric-barrier discharges. Principle and applications. Jour-nal De Physique Iv,1997,7(C4):47–66.
    [14] Massines F, Gouda G. A comparison of polypropylene-surface treatment by filamentary, homo-geneous and glow discharges in helium at atmospheric pressure. Journal of Physics D-appliedPhysics,1998,31(24):3411–3420.
    [15] Bartnikas R. Note on ac discharges between metallic-dielectric electrodes in helium. Journal ofApplied Physics,1969,40(4):1974–1976.
    [16] Montie T, Kelly-Wintenberg K, Roth J. An overview of research using the one atmosphere uniformglow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactionson Plasma Science,2000,28(1):41–50.
    [17] Roth J, Rahel J, Dai X, et al. The physics and phenomenology of one atmosphere uniform glowdischarge plasma (OAUGDP) reactors for surface treatment applications. Journal of Physics D-applied Physics),2005,38(4):555–567.
    [18] Descoeudres A, Hollenstein C, Demellayer R, et al. Optical emission spectroscopy of electricaldischarge machining plasma. Journal of Physics D-applied Physics,2004,37(6):875–882.
    [19] Descoeudres A, Hollenstein C, Walder G, et al. Time-resolved imaging and spatially-resolvedspectroscopy of electrical discharge machining plasma. Journal of Physics D-applied Physics,2005,38(22):4066–4073.
    [20] Laroussi M, Akan T. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. PlasmaProcesses Polymers,2007,4(9):777–788.
    [21] Schutze A, Jeong J Y, Babayan S E, et al. The atmospheric-pressure plasma jet: A review andcomparison to other plasma sources. IEEE Transactions on Plasma Science,1998,26(6):1685–1694.
    [22] Teschke M, Kedzierski J, Finantu-Dinu E G, et al. High-speed photographs of a dielectric barrieratmospheric pressure plasma jet. IEEE Transactions on Plasma Science,2005,33(2):310–311.
    [23] Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmosphericplasma jets. Applied Physics Letters,2008,93(11):111501.
    [24] Lu X P, Jiang Z H, Xiong Q, et al. An11cm long atmospheric pressure cold plasma plume forapplications of plasma medicine. Applied Physics Letters,2008,92(8):081502.
    [25] Laroussi M, Hynes W, Akan T, et al. The plasma pencil: A source of hypersonic cold plasmabullets for biomedical applications. IEEE Transtractions on Plasma Science,2008,36(4):1298–1299.
    [26] Leveille V, Coulombe S. Design and preliminary characterization of a miniature pulsed RF APGDtorch with downstream injection of the source of reactive species. Plasma Sources Science Tech-nology,2005,14(3):467–476.
    [27] Jeong J Y, Babayan S E, Tu V J, et al. Etching materials with an atmospheric-pressure plasma jet.Plasma Sources Science Technology,1998,7(3):282–285.
    [28] Hong Y C, Uhm H S. Air plasma jet with hollow electrodes at atmospheric pressure. Physics ofPlasmas,2007,14(5):053503.
    [29] Hong Y C, Kang W S, Hong Y B, et al. Atmospheric pressure air-plasma jet evolved from mi-crodischarges: Eradication of E. coli with the jet. Physics of Plasmas,2009,16(12):123502.
    [30] Mohamed Y, Uhm H. US Patent7572998B2Patent, May,2009.
    [31] Wu S Q, Lu X P, Xiong Z L, et al. A Touchable Pulsed Air Plasma Plume Driven by DC PowerSupply. IEEE Transactions on Plasma Science,2010,38(12):3404–3408.
    [32] Hong Y C, Uhm H S. Microplasma jet at atmospheric pressure. Applied Physics Letters,2006,89(22):221504.
    [33] Ni T L, Ding F, Zhu X D, et al. Cold microplasma plume produced by a compact and flexiblegenerator at atmospheric pressure. Applied Physics Letters,2008,92(24):241503.
    [34] Yamazaki H, Ohshima T, Tsubota Y, et al. Microbicidal activities of low frequency atmosphericpressure plasma jets on oral pathogens. Dental Materials Journal,2011,30(3):384–391.
    [35]卢新培.等离子体射流及其医学应用.高电压技术,2011,(6):1416–1425.
    [36] Xiong Z, Lu X P, Feng A, et al. Highly effective fungal inactivation in He+O2atmospheric-pressure nonequilibrium plasmas. Physics of Plasmas,2010,17(12):123502.
    [37] Wende K, Landsberg K, Lindequist U, et al. Distinctive Activity of a Nonthermal Atmospheric-Pressure Plasma Jet on Eukaryotic and Prokaryotic Cells in a Cocultivation Approach of Ker-atinocytes and Microorganisms. IEEE Transactions on Plasma Science,2010,38(9):2479–2485.
    [38] Rupf S, Lehmann A, Hannig M, et al. Killing of adherent oral microbes by a non-thermal atmo-spheric plasma jet. Journal of Medical Microbiology,2010,59(2):206–212.
    [39] Marchal F, Robert H, Merbahi N, et al. Inactivation of Gram-positive biofilms by low-temperatureplasma jet at atmospheric pressure. Journal of Physics D-applied Physics,2012,45(34):345202.
    [40] Lu X, Cao Y, Yang P, et al. An RC Plasma Device for Sterilization of Root Canal of Teeth. IEEETransactions on Plasma Science,2009,37(5):668–673.
    [41]于红.大气压下等离子体失活微生物的机理研究:[PhD Dissertation].2006.
    [42] Lee H J, Jung H, Choe W, et al. Inactivation of Listeria monocytogenes on agar and processedmeat surfaces by atmospheric pressure plasma jets. Food Microbiology,2011,28(8):1468–1471.
    [43]刘红霞,陈杰瑢.低温等离子体灭菌研究与应用进展.现代预防医学,2009,(14):2695–2698.
    [44]孙潇,张月婷,张花利, et al.等离子体在食品杀菌中的研究现状与展望.保鲜与加工,2010,(6):46–50.
    [45] Goree J, Liu B, Drake D. Gas flow dependence for plasma-needle disinfection of S-mutans bacte-ria. Journal of Physics D-applied Physics,2006,39(16):3479–3486.
    [46] Froehling A, Baier M, Ehlbeck J, et al. Atmospheric pressure plasma treatment of Listeria in-nocua and Escherichia coli at polysaccharide surfaces: Inactivation kinetics and flow cytometriccharacterization. Innovative Food Science Emerging Technologies,2012,13:142–150.
    [47] Bayliss D L, Walsh J L, Shama G, et al. Reduction and degradation of amyloid aggregatesby a pulsed radio-frequency cold atmospheric plasma jet. New Journal of Physics,2009,11(11):115024.
    [48]杨平.新型等离子体射流对粪肠球菌的灭菌实验研究:[Master Thesis].2010.
    [49]熊紫兰,卢新培,曹颖光.等离子体医学.中国科学:技术科学,2011,(10):1279–1298.
    [50]董晓宇.大气压冷等离子体对Klebsiella pneumoniae灭菌机制和诱变研究:[PhD Dissertation].2010.
    [51] Laroussi M, Tendero C, Lu X, et al. Inactivation of bacteria by the plasma pencil. Plasma Processesand Polymers,2006,3(6-7):470–473.
    [52] Deng X T, Shi J J, Kong M G. Physical mechanisms of inactivation of Bacillus subtilis sporesusing cold atmospheric plasmas. IEEE Transactions on Plasma Science,2006,34(4):1310–1316.
    [53] Lee J K, Kim M S, Byun J H, et al. Biomedical Applications of Low Temperature AtmosphericPressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching. Japanese Journal of AppliedPhysics,2011,50(8):08JF01.
    [54]石兴民,张冠军,许桂敏, et al.等离子体射流对医疗器械的消毒效果研究.高电压技术,2009,(3):632–635.
    [55] Whittaker A G, Graham E M, Baxter R L, et al. Plasma cleaning of dental instruments. Journal ofHospital Infection,2004,56(1):37–41.
    [56] Lee H W, Nam S H, Mohamed A A H, et al. Atmospheric Pressure Plasma Jet Composed of ThreeElectrodes: Application to Tooth Bleaching. Plasma Processes and Polymers,2010,7(3-4):274–280.
    [57] Kaushik N K, Kim Y H, Han Y G, et al. Effect of jet plasma on T98G human brain cancer cells.Current Applied Physics,2013,13(1):176–180.
    [58] Volotskova O, Hawley T S, Stepp M A, et al. Targeting the cancer cell cycle by cold atmosphericplasma. Scientific Reports,2012,2:636.
    [59] Kim G C, Lee H J, Shon C H. The Effects of a Micro plasma on Melanoma (G361) Cancer Cells.February,2009,628–632.
    [60] Fridman G, Shereshevsky A, Jost M M, et al. Floating electrode dielectric barrier discharge plasmain air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chemistry andPlasma Processing,2007,27(2):163–176.
    [61] Kim J Y, Kim S O, Wei Y Z, et al. A flexible cold microplasma jet using biocompatible dielectrictubes for cancer therapy. Applied Physics Letters,2010,96(20):203701.
    [62] Kim C H, Kwon S, Bahn J H, et al. Effects of atmospheric nonthermal plasma on invasion ofcolorectal cancer cells. Applied Physics Letters,2010,96(24):243701.
    [63] Kim G J, Kim W, Kim K T, et al. DNA damage and mitochondria dysfunction in cell apoptosisinduced by nonthermal air plasma. Applied Physics Letters,2010,96(2):021502.
    [64] Stoffels E, Kieft I E, Sladek R E J. Superficial treatment of mammalian cells using plasma needle.Journal of Physics D-applied Physics,2003,36(23):2908–2913.
    [65] Yan X, Zou F, Zhao S, et al. On the Mechanism of Plasma Inducing Cell Apoptosis. IEEETransactions on Plasma Science,2010,38(9):2451–2457.
    [66]闫旭.大气压低温等离子体抑制HepG2细胞增殖的机制研究:[PhD Dissertation].2011.
    [67] Vandamme M, Robert E, Pesnel S, et al. Antitumor Effect of Plasma Treatment on U87GliomaXenografts: Preliminary Results. Plasma Processes and Polymers,2010,7(3-4):264–273.
    [68] Sosnin E A, Stoffels E, Erofeev M V, et al. The effects of UV irradiation and gas plasma treatmenton living mammalian cells and bacteria: A comparative approach. IEEE Transactions on PlasmaScience,2004,32(4):1544–1550.
    [69] Dobrynin D, Fridman G, Friedman G, et al. Physical and biological mechanisms of direct plasmainteraction with living tissue. New Journal of Physics,2009,11(11):115020.
    [70] Lee H W, Kim G J, Kim J M, et al. Tooth Bleaching with Nonthermal Atmospheric PressurePlasma. Journal of Endodontics,2009,35(4):587–591.
    [71] Kong M G, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review. New Journalof Physics,2009,11(5):115012.
    [72] Henle E S, Linn S. Formation, prevention, and repair of DNA damage by iron hydrogen peroxide.Journal of Biological Chemistry,1997,272(31):19095–19098.
    [73] Laroussi M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas:Review, analysis, and prospects. IEEE Transactions on Plasma Science,2002,30(4):1409–1415.
    [74] Sladek R E J, Stoffels E. Deactivation of Escherichia coli by the plasma needle. Journal of PhysicsD-applied Physics,2005,38(11):1716–1721.
    [75] Morfill G E, Shimizu T, Steffes B, et al. Nosocomial infections-a new approach towards preventivemedicine using plasmas. New Journal of Physics,2009,11:115019.
    [76] Shimizu T, Steffes B, Pompl R, et al. Characterization of microwave plasma torch for decontami-nation. Plasma Processes and Polymers,2008,5(6):577–582.
    [77] Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine. Plasma Processes and Poly-mers,2008,5(6):503–533.
    [78] Nie Q Y, Cao Z, Ren C S, et al. A two-dimensional cold atmospheric plasma jet array for u-niform treatment of large-area surfaces for plasma medicine. New Journal of Physics,2009,11(11):115015.
    [79] Fan Q Q, Qian M Y, Ren C S, et al. Discharge Characteristics of a Cold-Atmospheric-PlasmaJet Array Generated With Single-Electrode Configuration. IEEE Transactions on Plasma Science,2012,40(6):1724–1729.
    [80] Kim J Y, Shim J B, Kim S O. Surface Modifications of Rapid Hydrothermal Synthesized ZnONanowires on PET Substrate by Cold Plasma Jet Array. IEEE Transactions on Plasma Science,2011,39(11):2300–2301.
    [81] Lu X, Laroussi M. Dynamics of an atmospheric pressure plasma plume generated by submicrosec-ond voltage pulses. Journal of Applied Physics,2006,100(6):063302.
    [82] Shi J J, Zhong F C, Zhang J, et al. A hypersonic plasma bullet train traveling in an atmosphericdielectric-barrier discharge jet. Physics of Plasmas,2008,15(1):013504.
    [83] Yousfi M, Eichwald O, Merbahi N, et al. Analysis of ionization wave dynamics in low-temperatureplasma jets from fluid modeling supported by experimental investigations. Plasma Sources Scienceand Technology,2012,21(4):045003.
    [84] Sands B L, Leiweke R J, Ganguly B N. Spatiotemporally resolved Ar (1s5) metastable measure-ments in a streamer-like He/Ar atmospheric pressure plasma jet. Journal of Physics D-appliedPhysics,2010,43(28):282001.
    [85] Schaefer J, Sigeneger F, Foest R, et al. On plasma parameters of a self-organized plasma jet atatmospheric pressure. European Physical Journal D,2010,60(3):531–538.
    [86] Schneider S, Lackmann J W, Narberhaus F, et al. Separation of VUV/UV photons and reactiveparticles in the effluent of a He/O2atmospheric pressure plasma jet. Journal of Physics D-appliedPhysics,2011,44(29):295201.
    [87] Shashurin A, Shneider M N, Dogariu A, et al. Temporal behavior of cold atmospheric plasma jet.Applied Physics Letters,2009,94(23):231504.
    [88] Daotan T, Chunsheng R, Dezhen W, et al. The Interactions of Two Cold Atmospheric Plasma Jets.Plasma Science Technology,2009,11(3):293–296.
    [89] Sousa J S, Niemi K, Cox L J, et al. Cold atmospheric pressure plasma jets as sources of singletdelta oxygen for biomedical applications. Journal of Applied Physics,2011,109(12):123302.
    [90] Stollenwerk L, Amiranashvili S, Boeuf J P, et al. Measurement and3D simulation of self-organizedfilaments in a barrier discharge. Physical Review Letters,2006,96(25):255001.
    [91] Stonies R, Schermer S, Voges E, et al. A new small microwave plasma torch. Plasma SourcesScience Technology,2004,13(4):604–611.
    [92] Urabe K, Ito Y, Tachibana K, et al. Behavior of N+2ions in he microplasma jet at atmosphericpressure measured by laser induced fluorescence spectroscopy. Applied Physics Express,2008,1(6):066004.
    [93] Urabe K, Morita T, Tachibana K, et al. Investigation of discharge mechanisms in helium plasmajet at atmospheric pressure by laser spectroscopic measurements. Journal of Physics D-appliedPhysics,2010,43(9):095201.
    [94] Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasmajet. Journal of Physics D-applied Physics,2010,43(7):075201.
    [95] Walsh J L, Kong M G. Frequency effects of plasma bullets in atmospheric glow discharges. IEEETransactions On Plasma Science,2008,36(4):954–955.
    [96] Walsh J L, Kong M G. Room-temperature atmospheric argon plasma jet sustained with submi-crosecond high-voltage pulses. Applied Physics Letters,2007,91(22):221502.
    [97] Walsh J L, Shi J J, Kong M G. Contrasting characteristics of pulsed and sinusoidal cold atmo-spheric plasma jets. Applied Physics Letters,2006,88(17):171501.
    [98] Xiong Q, Lu X, Liu J, et al. Temporal and spatial resolved optical emission behaviors of a coldatmospheric pressure plasma jet. Journal of Applied Physics,2009,106(8):083302.
    [99] Xiong Q, Lu X, Xian Y, et al. Experimental investigations on the propagation of the plasma jet inthe open air. Journal of Applied Physics,2010,107(7):073302.
    [100] Xiong Q, Nikiforov A Y, Lu X P, et al. High-speed dispersed photographing of an open-air argonplasma plume by a grating-ICCD camera system. Journal of Physics D-applied Physics,2010,43(41):415201.
    [101] Xiong Z, Lu X, Xian Y, et al. On the velocity variation in atmospheric pressure plasma plumesdriven by positive and negative pulses. Journal of Applied Physics,2010,108(10):103303.
    [102] Xiong Z, Lu X, Xiong Q, et al. Measurements of the Propagation Velocity of an Atmospheric-Pressure Plasma Plume by Various Methods. IEEE Transactions on Plasma Science,2010,38(4):1001–1007.
    [103]钱沐杨.预电离双高压电极大气压冷等离子体射流实验研究:[PhD Dissertation].2011.
    [104]聂秋月.大气压冷等离子体射流实验研究:[PhD Dissertation].2010.
    [105] Mericam-Bourdet N, Laroussi M, Begum A, et al. Experimental investigations of plasma bullets.Journal of Physics D-applied Physics,2009,42(5):055207.
    [106] Naidis G V. Modelling of streamer propagation in atmospheric-pressure helium plasma jets. Jour-nal of Physics D-applied Physics,2010,43(40):402001.
    [107] Sakiyama Y, Graves D B, Jarrige J, et al. Finite element analysis of ring-shaped emission profilein plasma bullet. Applied Physics Letters,2010,96(4):041501.
    [108] Wu S, Huang Q J, Wang Z, et al. The Effect of Nitrogen Diffusion From Surrounding Air onPlasma Bullet Behavior. IEEE Transactions On Plasma Science,2011,39(11):2286–2287.
    [109] Naidis G V. Simulation of streamers propagating along helium jets in ambient air: Polarity-inducedeffects. Applied Physics Letters,2011,98(14):141501.
    [110] Jiang C, Chen M T, Gundersen M A. Polarity-induced asymmetric effects of nanosecond pulsedplasma jets. Journal of Physics D-applied Physics,2009,42(23):232002.
    [111] Zhu Y, Takada T, Inoue Y, et al. Dynamic observation of needle-plane surface-discharge using theelectro-optical Pockels effect. IEEE Transactions on Dielectrics and Electrical Insulation,1996,3(3):460–468.
    [112] Yi W, Williams P. Experimental study of streamers in pure N2and N2/O2mixtures and a13cmgap. Journal of Physics D-applied Physics,2002,35(3):205–218.
    [113] Algwari Q T, O’Connell D. Plasma Jet Interaction With a Dielectric Surface. IEEE Transactionson Plasma Science,2011,39(11):2368–2369.
    [114] Sarron V, Robert E, Dozias S, et al. Splitting and Mixing of High-Velocity Ionization-Wave-Sustained Atmospheric-Pressure Plasmas Generated With a Plasma Gun. IEEE Transactions OnPlasma Science,2011,39(11):2356–2357.
    [115] Douat C, Fleury M, Laroussi M, et al. Interactions Between Two Counterpropagating PlasmaBullets. IEEE Transactions on Plasma Science,2011,39(11):2298–2299.
    [116] Xiong Y, Takashiman K, Adamovich I, et al. Simulation of high pressure ionization waves instraight and circuitous dielectric channels. in: Proceedings of64th Gaseous Electronics Confer-ence, Salt Lake City, UT,2011.
    [117] Kushner M. Interaction of high pressure plasmas with their boundaries: channels, tubes, liquidsand tissue. in: Proceedings of30th International Conference on Phenomena in Ionized Gases,Belfast, UK,2011.
    [118] Lu X P, Jiang Z H, Xiong Q, et al. A single electrode room-temperature plasma jet device forbiomedical applications. APPLIED PHYSICS LETTERS,2008,92(15):151504.
    [119] Lu X, Ye T, Cao Y, et al. The roles of the various plasma agents in the inactivation of bacteria.Journal of Applied Physics,2008,104(5):053309.
    [120] Lu X, Xiong Z, Zhao F, et al. A simple atmospheric pressure room-temperature air plasma needledevice for biomedical applications. Applied Physics Letters,2009,95(18):181501.
    [121]卢新培,熊青,熊紫兰, et al.大气压下等离子体喷流的传播. in: Proceedings of第十四届全国等离子体科学会议暨第五届中国电推进技术学术研讨会,大连,2009.
    [122] Yan X, Zou F, Lu X P, et al. Effect of the atmospheric pressure nonequilibrium plasmas on theconformational changes of plasmid DNA. Applied Physics Letters,2009,95(8):083702.
    [123] Xiong Z, Lu X P, Feng A, et al. Highly effective fungal inactivation in He+O-2atmospheric-pressure nonequilibrium plasmas. Physics of Plasmas,2010,17(12):123502.
    [124] Chen L W, Wei Y, Zuo X, et al. The atmospheric pressure air plasma jet with a simple dielectricbarrier. Thin Solid Films,2012,521:226–228.
    [125] Cheng C, Liu P, Xu L, et al. Development of a new atmospheric pressure cold plasma jet generatorand application in sterilization. Chinese Physics,2006,15(7):1544–1548.
    [126]程诚.大气压射流冷等离子体的产生和特性研究:[PhD Dissertation].2006.
    [127]江南,曹则贤.大气压冷等离子体射流研究进展.物理,2011,(11):734–741.
    [128] Jiang N, Yang J L, He F, et al. Investigation of Helium Atmospheric Pressure Plasma Jet bySchlieren Visualization. IEEE Transactions On Plasma Science,2011,39(11):2284–2285.
    [129] Jiang N, Ji A L, Cao Z X. Atmospheric pressure plasma jet: Effect of electrode configuration, dis-charge behavior, and its formation mechanism. Journal of Applied Physics,2009,106(1):013308.
    [130]江南,曹则贤.一种大气压放电氦等离子体射流的实验研究.物理学报,2010,(5):3324–3330.
    [131] Zhu W C, Wang B R, Yao Z X, et al. Discharge characteristics of an atmospheric pressure radio-frequency plasma jet. Journal of Physics D-applied Physics,2005,38(9):1396–1401.
    [132] Zhu W C, Li Q, Zhu X M, et al. Characteristics of atmospheric pressure plasma jets emerging intoambient air and helium. Journal of Physics D-applied Physics,2009,42(20):202002.
    [133] Li Q, Zhu X M, Li J T, et al. Role of metastable atoms in the propagation of atmospheric pressuredielectric barrier discharge jets. Journal of Applied Physics,2010,107(4):043304.
    [134] Li Q, Zhu W C, Zhu X M, et al. Effects of Penning ionization on the discharge patterns ofatmospheric pressure plasma jets. Journal of Physics D-applied Physics,2010,43(38):382001.
    [135] Li Q, Li J T, Zhu W C, et al. Effects of gas flow rate on the length of atmospheric pressurenonequilibrium plasma jets. Applied Physics Letters,2009,95(14):141502.
    [136] Cheng C, Zhang L Y, Zhan R J. Surface modification of polymer fibre by the new atmosphericpressure cold plasma jet. Surface Coatings Technology,2006,200(24):6659–6665.
    [137]孙姣,张家良,王德真, et al.一种新型大气压毛细管介质阻挡放电冷等离子体射流技术.物理学报,2006,(1):344–350.
    [138]陈慧黠.介质阻挡放电等离子体对酵母细胞作用机理及诱变研究:[PhD Dissertation].2010.
    [139] Nie Q Y, Ren C S, Wang D Z, et al. Simple cold Ar plasma jet generated with a floating electrodeat atmospheric pressure. Applied Physics Letters,2008,93(1):011503.
    [140]汤道坦.大气压冷等离子体射流双管相互作用的研究:[Master Thesis].2009.
    [141] Shao X J, Zhang G J, Li Y X, et al. Behaviors of Plasma Bullet Propagation and Effects of GasFlow Rate. IEEE Transactions On Plasma Science,2011,39(11):2336–2337.
    [142] Chang Z S, Zhang G J, Shao X J, et al. Diagnosis of gas temperature, electron temperature,and electron density in helium atmospheric pressure plasma jet. Physics of Plasmas,2012,19(7):073513.
    [143]马跃,张冠军,许桂敏, et al.介质阻挡放电等离子体射流装置的实验研究.高压电器,2010,(7):36–40.
    [144]邵先军,张冠军,詹江杨, et al.气体流速对大气压氩气等离子体射流影响的实验与仿真.高电压技术,2011,(6):1499–1504.
    [145]邵先军,张冠军,李娅西, et al.大气氛围中氩气等离子体射流的数值模拟.高电压技术,2011,(7):1775–1780.
    [146]张冠军,詹江杨,邵先军, et al.大气压氩气等离子体射流长度的影响因素.高电压技术,2011,(6):1432–1438.
    [147] Baker B C. Designing the embedded temperature circuit to meet the system’s requirements. Sen-sors (Peterborough, NH),2000,17(9):36–48.
    [148] Knake N, Reuter S, Niemi K, et al. Absolute atomic oxygen density distributions in the effluentof a microscale atmospheric pressure plasma jet. Journal of Physics D-applied Physics,2008,41(19):194006.
    [149] Bruggeman P, Leys C. Non-thermal plasmas in and in contact with liquids. Journal of PhysicsD-applied Physics,2009,42(5):053001.
    [150] Nassar H, Pellerin S, Musiol K, et al. N+2/N2ratio and temperature measurements based on thefirst negative N+2/N2and second positive N2overlapped molecular emission spectra. Journal ofPhysics D-applied Physics,2004,37(14):1904–1916.
    [151]张家良.低温等离子体发射光谱学研究:[PhD Dissertation].2002.
    [152]李驰,唐晓亮,邱高.常压射流等离子体发射光谱研究.光谱学与光谱分析,2008,(12):2754–2757.
    [153] Laux C O, Spence T G, Kruger C H, et al. Optical diagnostics of atmospheric pressure air plasmas.Plasma Sources Science Technology,2003,12(2):125–138.
    [154] Fantz U. Emission spectroscopy of molecular low pressure plasmas. Contributions To PlasmaPhysics,2004,44(5-6):508–515.
    [155] Bruggeman P, Verreycken T, Gonzalez M A, et al. Optical emission spectroscopy as a diagnosticfor plasmas in liquids: opportunities and pitfalls. Journal of Physics D-applied Physics,2010,43(12):124005.
    [156] Bruggeman P, Iza F, Guns P, et al. Electronic quenching of OH(A) by water in atmosphericpressure plasmas and its influence on the gas temperature determination by OH(A-X) emission.Plasma Sources Science Technology,2010,19(1):015016.
    [157] Motret O, Hibert C, Pellerin S, et al. Rotational temperature measurements in atmospheric pulseddielectric barrier discharge-gas temperature and molecular fraction effects. Journal of PhysicsD-applied Physics,2000,33(12):1493–1498.
    [158] Verreycken T, Gessel A F H, Pageau A, et al. Validation of gas temperature measurements byOES in an atmospheric air glow discharge with water electrode using Rayleigh scattering. PlasmaSources Science Technology,2011,20(2):024002.
    [159] Penache C, Miclea M, Brauning-Demian A, et al. Characterization of a high-pressure microdis-charge using diode laser atomic absorption spectroscopy. Plasma Sources Science Technology,2002,11(4):476–483.
    [160] Pokrzywka B, Musiol K, Pellerin S, et al. Spectroscopic investigation of the equilibrium state inthe electric arc cathode region. Journal of Physics D-applied Physics,1996,29(10):2644–2649.
    [161] Balcon N, Aanesland A, Boswell R. Pulsed RF discharges, glow and filamentary mode at atmo-spheric pressure in argon. Plasma Sources Science Technology,2007,16(2):217–225.
    [162] Crintea D L, Czarnetzki U, Iordanova S, et al. Plasma diagnostics by optical emission spectroscopyon argon and comparison with Thomson scattering. Journal of Physics D-applied Physics,2009,42(4):045208.
    [163] Kano K, Suzuki M, Akatsuka H. Spectroscopic measurement of electron temperature and densityin argon plasmas based on collisional-radiative model. Plasma Sources Science Technology,2000,9(3):314–322.
    [164] Zhu X M, Chen W C, Pu Y K. Gas temperature, electron density and electron temperaturemeasurement in a microwave excited microplasma. Journal of Physics D-applied Physics,2008,41(10):105212.
    [165] Zhu X M, Pu Y K. Determination of Non-Maxwellian Electron Energy Distributions in Low-Pressure Plasmas by Using the Optical Emission Spectroscopy and a Collisional-Radiative Model.Plasma Science Technology,2011,13(3):267–278.
    [166] Zhu X M, Pu Y K, Balcon N, et al. Measurement of the electron density in atmospheric-pressurelow-temperature argon discharges by line-ratio method of optical emission spectroscopy. Journalof Physics D-applied Physics,2009,42(14):142003.
    [167] Zhu X M, Pu Y K. Optical emission spectroscopy in low-temperature plasmas containing argonand nitrogen: determination of the electron temperature and density by the line-ratio method.Journal of Physics D-applied Physics,2010,43(40):403001.
    [168] Kim J H, Choi Y H, Hwang Y S. Electron density and temperature measurement method byusing emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas. Physicsof Plasmas,2006,13(9):093501.
    [169] Iordanova E, Palomares J M, Gamero A, et al. A novel method to determine the electron tem-perature and density from the absolute intensity of line and continuum emission: applicationto atmospheric microwave induced Ar plasmas. Journal of Physics D-applied Physics,2009,42(15):155208.
    [170] Vries N D, Iordanova E, Hartgers A, et al. A spectroscopic method to determine the electrontemperature of an argon surface wave sustained plasmas using a collision radiative model. Journalof Physics D-applied Physics,2006,39(19):4194–4203.
    [171] Hoyer Y D, Sismanoglu B N, Grigorov K G. Measurements of spatially resolved electron numberdensities and modes temperatures using optical emission spectroscopy of atmospheric pressuremicroplasma jet. European Physical Journal D,2012,66(7):171.
    [172] Sismanoglu B N, Amorim J, Souza-Correa J A, et al. Optical emission spectroscopy diagnosticsof an atmospheric pressure direct current microplasma jet. Spectrochimica Acta Part B-atomicSpectroscopy,2009,64(11-12):1287–1293.
    [173]屠昕,陆胜勇,严建华, et al.大气压直流氩等离子体光谱诊断研究.光谱学与光谱分析,2006,(10):1785–1789.
    [174]吴蓉,李燕,朱顺官, et al.等离子体电子温度的发射光谱法诊断.光谱学与光谱分析,2008,(4):731–735.
    [175]严建华,潘新潮,马增益, et al.直流氩等离子体射流电子温度的测量.光谱学与光谱分析,2008,(1):6–9.
    [176] Griem H R. Spectral Line Broadening by Plasmas.(New York: Academic Press),1974.
    [177] Griem H R. Principles of Plasma Spectroscopy.(Cambridge University Press),1997.
    [178] Gigosos M A, Gonzalez M A, Cardenoso V. Computer simulated Balmer-alpha,-beta and-gammaStark line profiles for non-equilibrium plasmas diagnostics. Spectrochimica Acta Part B-atomicSpectroscopy,2003,58(8):1489–1504.
    [179] Gonzalez M A, Gigosos M A. Tables of dipolar emission and two-photon absorption Lyman-alphaprofiles. Astronomy Astrophysics Supplement Series,2000,145(3):491–494.
    [180] Gonzalez M A, Gigosos M A. Analysis of Stark line profiles for non-equilibrium plasma diagnosis.Plasma Sources Science Technology,2009,18(3):034001.
    [181] Zikic R, Gigosos M A, Ivkovic M, et al. A program for the evaluation of electron number den-sity from experimental hydrogen balmer beta line profiles. Spectrochimica Acta Part B-atomicSpectroscopy,2002,57(5):987–998.
    [182] Ivkovic M, Jovicevic S, Konjevic N. Low electron density diagnostics: development of opticalemission spectroscopic techniques and some applications to microwave induced plasmas. Spec-trochimica Acta Part B-atomic Spectroscopy,2004,59(5):591–605.
    [183] Konjevic N. Plasma broadening and shifting of non-hydrogenic spectral lines; Present status andapplications. Physics Reports-review Section of Physics Letters,1999,316(6):339–401.
    [184] Gonzalez M A, Ivkovic M, Gigosos M A, et al. Plasma diagnostics using the He I447.1nm lineat high and low densities. Journal of Physics D-applied Physics,2011,44(19):194010.
    [185] Ivkovic M, Gonzalez M A, Jovicevic S, et al. A simple line shape technique for electron numberdensity diagnostics of helium and helium-seeded plasmas. Spectrochimica Acta Part B-atomicSpectroscopy,2010,65(3):234–240.
    [186] Lara N, Gonzalez M A, Gigosos M A. Stark broadening tables for the helium I492.2line Appli-cation to weakly coupled plasma diagnostics. Astronomy Astrophysics,2012,542:A75.
    [187] Hrycak B, Jasinski M, Mizeraczyk J. Spectroscopic investigations of microwave microplasmas invarious gases at atmospheric pressure. European Physical Journal D,2010,60(3):609–619.
    [188] Qian M Y, Ren C S, Wang D Z, et al. Stark broadening measurement of the electron density in anatmospheric pressure argon plasma jet with double-power electrodes. Journal of Applied Physics,2010,107(6):063303.
    [189] Razzak M A, Takamura S, Saito S, et al. Estimation of Plasma Parameters for Microwave-Sustained Ar/He Plasma Jets at Atmospheric Pressure. Contributions To Plasma Physics,2010,50(9):871–877.
    [190] Souza-Correa J A, Oliveira C, Gomes M P, et al. Electric and spectroscopic properties of argon-hydrogen RF microplasma jets at atmospheric pressure. Journal of Physics D-applied Physics,2010,43(39):395203.
    [191]李雪辰,赵娜,刘卫远, et al.大气压微等离子体射流电子密度研究.光谱学与光谱分析,2010,(7):1756–1758.
    [192] Palomares J M, Iordanova E I, Gamero A, et al. Atmospheric microwave-induced plasmas inAr/H2mixtures studied with a combination of passive and active spectroscopic methods. Journalof Physics D-applied Physics,2010,43(39):395202.
    [193] Lu X P, Laroussi M. Electron density and temperature measurement of an atmospheric pressureplasma by millimeter wave interferometer. Applied Physics Letters,2008,92(5):051501.
    [194] Iordanova E. Poly-diagnostic validation of spectroscopic methods: in-depth monitoring of mi-crowave induced plasmas:[PhD Dissertation].2010.
    [195] Cowan R D, Dieke G H. Self-Absorption of Spectrum Lines. Reviews of Modern Physics,1948,20:418–455.
    [196] Xiong Q, Nikiforov A, Britun N, et al. A simple profile-fitting method to determine the metastableand resonant densities in a cold atmospheric pressure argon plasma jet. Journal of Applied Physics,2011,110(7):073302.
    [197] Niermann B, Boke M, Sadeghi N, et al. Space resolved density measurements of argon and heliummetastable atoms in radio-frequency generated He-Ar micro-plasmas. European Physical JournalD,2010,60(3):489–495.
    [198] Pipa A V, Bindemann T, Foest R, et al. Absolute production rate measurements of nitric ox-ide by an atmospheric pressure plasma jet (APPJ). Journal of Physics D-applied Physics,2008,41(19):194011.
    [199] Stancu G D, Kaddouri F, Lacoste D A, et al. Atmospheric pressure plasma diagnostics by OES,CRDS and TALIF. Journal of Physics D-applied Physics,2010,43(12):124002.
    [200] Wang C, Srivastava N. OH number densities and plasma jet behavior in atmospheric microwaveplasma jets operating with different plasma gases (Ar, Ar/N2, and Ar/O2). European PhysicalJournal D,2010,60(3):465–477.
    [201] Bibinov N, Knake N, Bahre H, et al. Spectroscopic characterization of an atmospheric pressuremu-jet plasma source. Journal of Physics D-applied Physics,2011,44(34):345204.
    [202] Yonemori S, Nakagawa Y, Ono R, et al. Measurement of OH density and air-helium mixtureratio in an atmospheric-pressure helium plasma jet. Journal of Physics D-applied Physics,2012,45(22):225202.
    [203] Es-Sebbar E, Benilan Y, Jolly A, et al. Characterization of an N2flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom den-sities by TALIF. Journal of Physics D-applied Physics,2009,42(13):135206.
    [204] Knake N, Gathen V. Investigations of the spatio-temporal build-up of atomic oxygen inside themicro-scaled atmospheric pressure plasma jet. European Physical Journal D,2010,60(3):645–652.
    [205] Reuter S, Winter J, Schmidt-Bleker A, et al. Atomic oxygen in a cold argon plasma jet: TALIFspectroscopy in ambient air with modelling and measurements of ambient species diffusion. Plas-ma Sources Science Technology,2012,21(2):024005.
    [206] Wagenaars E, Gans T, O’Connell D, et al. Two-photon absorption laser-induced fluorescencemeasurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet. PlasmaSources Science Technology,2012,21(4):042002.
    [207] Xiong Q, Nikiforov A Y, Li L, et al. Absolute OH density determination by laser induced fluo-rescence spectroscopy in an atmospheric pressure RF plasma jet. European Physical Journal D,2012,66(11):281–288.
    [208] Liu Z, Yang X, Zhu A, et al. Determination of the OH radical in atmospheric pressure dielectricbarrier discharge plasmas using near infrared cavity ring-down spectroscopy. European PhysicalJournal D,2008,48(3):365–373.
    [209] Liu Z W, Xu Y, Yang X F, et al. Determination of the HO2radical in dielectric barrier dischargeplasmas using near-infrared cavity ring-down spectroscopy. Journal of Physics D-applied Physics,2008,41(4):045203.
    [210] Li Y S, Sun J, Yao L, et al. Influence of Moisture on Effectiveness of Plasma Treatments ofPolymer Surfaces. Journal of Adhesion Science and Technology,2012,26(8-9):1123–1139.
    [211] Bruggeman P, Schram D C. On OH production in water containing atmospheric pressure plasmas.Plasma Sources Science Technology,2010,19(4):045025.
    [212] Knake N. Buildup of Atomic Oxygen Densities in the Discharge Core of a Micro-Scaled Atmo-spheric Pressure Jet:[PhD Dissertation].2010.
    [213] Knake N, Niemi K, Reuter S, et al. Absolute atomic oxygen density profiles in the discharge coreof a microscale atmospheric pressure plasma jet. Applied Physics Letters,2008,93(13):131503.
    [214] Niemi K, Reuter S, Graham L M, et al. Diagnostic based modeling for determining absolute atomicoxygen densities in atmospheric pressure helium-oxygen plasmas. Applied Physics Letters,2009,95(15):151504.
    [215] Niemi K, Gathen V, Dobele H F. Absolute atomic oxygen density measurements by two-photonabsorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasmajet. Plasma Sources Science Technology,2005,14(2):375–386.
    [216] Reuter S, Niemi K, Gathen V, et al. Generation of atomic oxygen in the effluent of an atmosphericpressure plasma jet. Plasma Sources Science Technology,2009,18(1):015006.
    [217] Dobele H F, Mosbach T, Niemi K, et al. Laser-induced fluorescence measurements of absoluteatomic densities: concepts and limitations. Plasma Sources Science Technology,2005,14(2):S31–S41.
    [218] Ellerweg D, Benedikt J, Keudell A, et al. Characterization of the effluent of a He/O2microscaleatmospheric pressure plasma jet by quantitative molecular beam mass spectrometry. New Journalof Physics,2010,12(1):013021.
    [219] Bruggeman P, Iza F, Lauwers D, et al. Mass spectrometry study of positive and negative ionsin a capacitively coupled atmospheric pressure RF excited glow discharge in He-water mixtures.Journal of Physics D-applied Physics,2010,43(1):012003.
    [220] Xiong Q, Lu X P, Ostrikov K, et al. Pulsed dc-and sine-wave-excited cold atmospheric plasmaplumes: A comparative analysis. Physics of Plasmas,2010,17(4):043506.
    [221] Chen F F. Lecture notes on Langmuir Probe Diagnostics, Mini-Course on Plasma Diagnostics. in:Proceedings of IEEE International Conference on Plasma Science, Jeju, Korea,2003.
    [222] Griem H R. Plasma Spectroscopy.(New York: McGraw-Hill),1964.
    [223] Mullen J J A M. Excitation equilibria in plasmas-a classification:[PhD Dissertation].1986.
    [224] Kong M G, Keidar M, Ostrikov K. Plasmas meet nanoparticles-where synergies can advance thefrontier of medicine. Journal of Physics D-applied Physics,2011,44(17):174018.
    [225] Laux C O, Gessman R J, Kruger C H, et al. Rotational temperature measurements in air andnitrogen plasmas using the first negative system of N+2. Journal of Quantitative SpectroscopyRadiative Transfer,2001,68(4):473–482.
    [226] Herzberg G. Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules.(Krieger),1989.
    [227] Karakas E, Laroussi M. Experimental studies on the plasma bullet propagation and its inhibition.Journal of Applied Physics,2010,108(6):063305.
    [228] Karakas E, Koklu M, Laroussi M. Correlation between helium mole fraction and plasma bul-let propagation in low temperature plasma jets. Journal of Physics D-applied Physics,2010,43(15):155202.
    [229] Sagaut P. Large Eddy Simulation for Incompressible Flows.(Springer, Berlin),2001.
    [230] Lilly D. A proposed modification of the Germano subgrid-scale closure method. Physics of FluidsA-Fluid Dynamics,1992,4(3):633–635.
    [231] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Physicsof Fluids A-Fluid Dynamics,1991,3(7):1760–1765.
    [232] Pouvesle J, Bouchoule A, Stevefelt J. Modeling of the charge transfer afterglow excited by intenseelectrical discharges in high pressure helium nitrogen mixtures. Journal of Chemical Physics,1982,77(2):817–825.
    [233] Niemi K, Waskoenig J, Sadeghi N, et al. The role of helium metastable states in radio-frequencydriven helium-oxygen atmospheric pressure plasma jets: measurement and numerical simulation.Plasma Sources Science Technology,2011,20(5):055005.
    [234] Gordiets B, Ferreira C, Guerra V, et al. Kinetic model of a low-pressure N2-O2flowing glowdischarge. IEEE Transactions on Plasma Science,1995,23(4):750–768.
    [235] NIST2012. Atomic Spectra Database. http://www.nist.gov/pml/data/asd.cfm.
    [236] Iordanova E, Vries N, Guillemier M, et al. Absolute measurements of the continuum radiation todetermine the electron density in a microwave-induced argon plasma. Journal of Physics D-appliedPhysics,2008,41(1):015208.
    [237] Cowan R D, Dieke G H. Self-Absorption of Spectrum Lines. Reviews of Modern Physics,1948,20(2):418–455.
    [238] Zhu X M, Walsh J L, Chen W C, et al. Measurement of the temporal evolution of electron densityin a nanosecond pulsed argon microplasma: using both Stark broadening and an OES line-ratiomethod. Journal of Physics D-applied Physics,2012,45(29):295201.
    [239] Cardenoso V, Gigosos M A. Study of the Stark broadening of the Paschen alpha line in hydrogen.Journal of Physics B-atomic Molecular and Optical Physics,1997,30(15):3361–3368.
    [240] Djurovic S, Cirisan M, Demura A V, et al. Measurements of HβStark central asymmetryand its analysis through standard theory and computer simulations. Physical Review E,2009,79(4):046402.
    [241] Torres J, Palomares J M, Gigosos M A, et al. An experimental study on the asymmetry andthe dip form of the H-beta line profiles in microwave produced plasmas at atmospheric pressure.Spectrochimica Acta Part B-atomic Spectroscopy,2008,63(9):939–947.
    [242] Foley H M. The Pressure Broadening of Spectral Lines. Physics Review,1946,69(11-12):616–628.
    [243] Hofmann S, Gessel A F H, Verreycken T, et al. Power dissipation, gas temperatures and electrondensities of cold atmospheric pressure helium and argon RF plasma jets. Plasma Sources ScienceTechnology,2011,20(6):065010.
    [244] Bol’shakov A A, Cruden B A, Sharma S P. Determination of gas temperature and thermometricspecies in inductively coupled plasmas by emission and diode laser absorption. Plasma SourcesScience Technology,2004,13(4):691–700.
    [245] Salmon J, Laurendeau N. Calibration of laser-saturated fluorescence measurements using Rayleighscattering. Applied Optics,1985,24(1):65–73.
    [246] Miles R B, Lempert W R, Forkey J N. Laser Rayleigh scattering. Measurement Science Technol-ogy,2001,12(5):R33–R51.
    [247] Ono R, Oda T. Dynamics of ozone and OH radicals generated by pulsed corona dischargein humid-air flow reactor measured by laser spectroscopy. Journal of Applied Physics,2003,93(10):5876–5882.
    [248] Ono R, Oda T. Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge.Journal of Physics D-applied Physics,2002,35(17):2133–2138.
    [249] Williams L, Crosley D. Collisional vibrational energy transfer of OH(A2Σ+, v′=1). Journal ofChemical Physics,1996,104(17):6507–14.
    [250] Kienle R, Jorg A, Kohse-Hofinghaus K. State-to-state rotational energy transfer in OH(A2Σ+,v′=1). Applied Physics B: Lasers and Optics,1993,56(5):249–258.
    [251] Kienle R, Lee M, Kohse-Hoeinghaus K. A detailed rate equation model for the simulation ofenergy transfer in OH laser-induced fluorescence. Applied Physics B: Lasers and Optics,1996,B62(6):583–599.
    [252] Rahmann U, Bulter A, Lenhard U, et al. LASKIN-A Simulation Program for Time-ResolvedLIF-Spectra, Internal Report, University of Bielefeld, Faculty of Chemistry, Physical Chemistry I.http://pcl.uni bielefeld.de/laskin.
    [253] Kienle R, Lee M, Kohse-Hoeinghaus K. A scaling formalism for the representation of rotationalenergy transfer in OH(A) in combustion experiments. Applied Physics B: Lasers and Optics,1996,63(4):403–418.
    [254] Luque J, Crosley D R. Lifbase: Database and spectral simulation (version1.5). In SRI In terna-tional Report MP,1999.
    [255] Bruggeman P, Cunge G, Sadeghi N. Absolute OH density measurements by broadband UV ab-sorption in diffuse atmospheric-pressure He-H2O RF glow discharges. Plasma Sources ScienceTechnology,2012,21(3):035019.
    [256] Alden M, Westblom U, Goldsmith J. Two-photon-excited stimulated emission from atomic oxygenin flames and cold gases. Optics Letters,1989,14(6):305–307.
    [257] Agrup S, Alden M. Two-photon laser-induced fluorescence and stimulated emission measurementsfrom oxygen atoms in a hydrogen/oxygen flame with picosecond resolution. Optics Communica-tions,1994,113(1-3):315–323.
    [258] Amorim J, Baravian G, Jolly J. Laser-induced resonance fluorescence as a diagnostic technique innon-thermal equilibrium plasmas. Journal of Physics D-applied Physics,2000,33(9):R51–R65.
    [259] Amorim J, Baravian G, Touzeau M, et al. Two-photon laser induced fluorescence and amplifiedspontaneous emission atom concentration measurements in O2and H2discharges. Journal ofApplied Physics,1994,76(3):1487–1493.
    [260] Amorim J, Baravian G. The two-photon absorption laser induced stimulated emission as a hy-drogen atoms diagnostic tool: modelling and experiment. Optics Communications,2001,192(3-6):277–286.
    [261] Tonokura K, Shafer N, Matsumi Y, et al. Photodissociation of oxygen molecules at226nm in theHerzberg I system. Journal of Chemical Physics,1991,95(5):3394–3398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700