用户名: 密码: 验证码:
施氮对高产夏玉米源库代谢特征的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是我国重要的粮食和饲料作物,研究玉米高产理论对于确保我国粮食安全具有重大意义。本文设置施氮方式和施氮量两组试验,研究了氮肥使用对高产夏玉米源库代谢特征的调节作用。施氮方式试验共设5个处理:①不施肥(CK);②种沟施肥(T1):随播种开沟施入磷酸二铵300 kg/hm2、KCl300 kg/hm2和尿素750 kg/hm2;③种沟施肥+小口期追氮(T2):随播种开沟施入磷酸二铵300 kg/hm2、KCl 300 kg/hm2,小喇叭口期追施尿素750 kg/hm2;④种沟施肥+拔节期追氮+大喇叭口期追氮(T3):随播种开沟施入磷酸二铵300 kg/hm2、KCl300 kg/hm2,拔节期追施尿素300 kg/hm2,大喇叭口期追施尿素450 kg/hm2;⑤控释肥(T4):随播种开沟施入1333 kg/hm2控释肥(N: P2O5:K2O=22:9:9),尿素232 kg/hm2,KCL 100.05 kg/hm2。施氮量试验共设4个处理:①不施氮肥(N0);②施氮量300 kg/hm2:基施尿素323 kg/hm2+大口期追施尿素323 kg/hm2(N1)③施氮量375kg/hm2:基施尿素323 kg/hm2+大口期追施尿素485kg/hm2(N2)④施氮量375kg/hm2:基施尿素323 kg/hm2+大口期追施尿素323kg/hm2+吐丝期追施尿素162kg/hm2(N3)。通过测定叶片的光合特性、蔗糖磷酸合成酶(SPS)、硝酸还原酶(NR)、蔗糖含量等指标,研究氮肥对源端活力的调节效应;通过测定籽粒蔗糖合成酶(SS)、酸性转化酶(AI)、淀粉积累等指标,研究氮肥对库活性的调节作用;通过测定活性氧清除酶系统和膜脂过氧化作用,研究氮肥对叶片衰老的调节作用;并利用15N示踪技术,探讨了不同氮肥运筹对玉米氮素分配与利用的影响。主要结果如下:
     1、施用氮肥对夏玉米群体的生长发育的影响
     不同施氮量处理使玉米的叶面积指数、地上部干重、株高、穗位高、茎粗均有不同程度地提高;不同施肥方式比较,以T3处理(种沟施肥+拔节期追氮+大喇叭口期追氮)的调节效果最显著,其次是T4处理(控释肥)。
     2、施用氮肥对夏玉米源端同化物供应能力的调节作用
     叶片的叶绿素含量大小为:T3>T4>T2>T1>CK,光系统II(PSII)最大光化学量子产量、光系统I(IPSII)实际光化学量子产量(ΦPSII)、光化学猝灭(qP))、光合速率和气孔导度也表现出了一致的变化规律。说明,T3处理(种沟施肥+拔节期追氮+大喇叭口期追氮)较其他处理更有利于延缓玉米叶片衰老,提高叶片叶绿素含量和光系统II(PSII)潜在活性及光系统II(PSII)光化学的最大效率,从而降低光能热耗散,使叶片所吸收的光能较充分地用于光合作用,增加光系统II(PSII)天线色素对光能的捕获量及其效率,积累更多的同化物。
     蔗糖磷酸合成酶(SPS)活性的大小依次为:T3>T4>T2>T1>CK ,说明T3处理(种沟施肥+拔节期追氮+大喇叭口期追氮)的施肥方式更有利于叶片中蔗糖的积累,增大了源的同化物供应能力。因此,同一生育时期各施肥方式相比,T3处理的蔗糖含量较高。
     高产条件下,在施氮量150kg.hm-2~300 kg.hm-2范围内,增加氮肥用量穗位叶硝酸还原酶(NR)活性呈增高的趋势,到400 kg.hm-2则有所下降。
     上述试验结果表明,使用氮肥,尤其是采用T3(种沟施肥+拔节期追氮+大喇叭口期追氮)施肥方式,不仅可以提高叶片的叶绿素含量,增强PSII的光化学活性,增加CO2同化能力,而且可以提高叶片的硝酸还原酶(NR)、蔗糖磷酸合成酶(SPS)活性和可溶性糖含量,从而提高源端的物质供应能力,为实现高产奠定基础。
     3、施用氮肥对夏玉米库活性的调节效应
     施用氮肥可以显著提高夏玉米籽粒蔗糖合成酶(SS)和酸性转化酶(AI)活性,在籽粒发育阶段,除授粉后45d外,各施氮处理的蔗糖合成酶(SS)、酸性转化酶(AI)活性均与其对照达到了显著差异水平。不同的施肥方式相比,以T3处理(种沟施肥+拔节期追氮+大喇叭口期追氮)的酶活性较高,其次是T4处理(控释肥)。
     在授粉后5d~45d籽粒可溶性糖含量和淀粉含量呈增加趋势,且5d~15d淀粉含量增加迅速,蔗糖含量和蛋白质含量呈下降趋势,且5d~15d蔗糖含量下降迅速,说明蔗糖含量的下降与淀粉的大量合成有关。各个施氮处理均可促进籽粒灌浆,减少败育,增加穗粒数,提高产量,尤其是“种沟施肥+拔节期追氮+大喇叭口期追氮”的效果最显著。
     4、不同施肥方式对夏玉米的氮素分配与利用的影响
     研究比较了不同产量水平下(高产田与中产田)施氮处理对玉米氮素分配、利用的影响。结果表明,各施氮处理均以籽粒中氮素吸收量、分配率和利用率最高,其后是叶、茎、根。从全株和籽粒的氮素吸收量来看,高产田随着氮肥用量的增加呈先增后减的趋势,以HM(高产田、中等施氮量)处理最高,而中产田则随施氮量的增加而增加,以MH(中产田、高施氮量)处理最高。茎叶的氮素吸收量随氮肥用量的增加而增加。但不同地力水平下,玉米的氮肥利用率均随施氮量的增加而降低。根据本文试验结果,并综合考虑产量、氮肥利用率、养分转运及环境污染等因素,高产田夏玉米的施氮量应控制在300kg.hm-2以内,中产田施氮量应控制在300~400 kg.hm-2之间。
     5、提出了使用氮肥对夏玉米源库代谢调控及高产机理模式
     选用具有高产潜力的玉米品种,通过合理氮肥运筹,调节源、库活性,增强源供应能力和库储存能力,实现玉米高产高效。
Maize (Zea mays L.) is one of the important grain crops and high-quality feeds in China. It play an significant role in ensuring food safety to research the mazie high-yielding theory. In order to research the regulation of Nitrogen application on source-sink metabolism on high-yield maize.
     In order to research the regulation of Nitrogen application on source-sink metabolism on high-yield maize.
     Five treatments were included in nitrogen fertilizer application patterns experiment, i. e. no nitrogen fertilizer, basal application in seed channel (diammonium phosphate, 300 kg/hm2, KCl, 300 kg/hm2, and urea, 750 kg/hm2), basal application in seed channel (diammonium phosphate, 300 kg/hm2 and KCl, 300 kg/hm2)+ topdressing at 9 full expansion leaves stage(urea, 750 kg/hm2), basal application in seed channel (diammonium phosphate, 300 kg/hm2 and KCl, 300 kg/hm2)+ topdressing at 6 full expansion leaves stage(urea, 300 kg/hm2) + topdressing at 12 full expansion leaves stage(urea, 450 kg/hm2), and applying controlled release nitrogen fertilizer in seed channel (N: P2O5:K2O=22:9:9, 1333 kg/hm2, urea, 232 kg/hm2, and KCl, 100.05 kg/hm2). The treatments were expressed as T0, T1, T2, T3 and T4, respectively. Four treatments were included in nitrogen fertilizer application rates experiment, i. e. 0 kg/hm2, 300 kg/hm2(urea, basal application, 323 kg/hm2 + topdressing at 12 full expansion leaves stage, 323 kg/hm2), 375 kg/hm2(urea, basal application, 323 kg/hm2 + topdressing at 12 full expansion leaves stage, 485 kg/hm2), and 375 kg/hm2(urea, basal application, 323 kg/hm2 + topdressing at 12 full expansion leaves stage, 323 kg/hm2+topdressing at silking stage, 162 kg/hm2). The treatments were expressed as N0, N1, N2, and N3, respectively. The photosynthesis characteristic, sucrose phosphate synthase (SPS), nitrate reductase (NR), and sucrose content in maize leaf were determined to study the regulative effects of nitrogen fertilizer on“source”ability. The sucrose synthase (SS), acid invertase (AI), and starch accumulative characteristic in grain were determined to study the regulative effects of nitrogen fertilizer on“sink”ability. The endogenous oxygen radicals scavenging enzymes systems and membrane lipid peroxidation were determined to study the regulative effects of nitrogen fertilizer on leaf senescence. And the effects of nitrogen fertilizer on nitrogen use and distribution were studied by using 15N tracer technique.
     The main results were as follows:
     1. Effects on summer maize population growth after nitrogen application
     The LAI, above ground dry matter, plant and ear height, and stem diameter were increased by nitrogen fertilizer. By comparing the nitrogen fertilizer application patterns, T3 showed greatest regulative effects, followed by T4.
     2. Regulation of“source”assimilation applicating ability on summer maize after nitrogen application
     The order of the chlorophyll content, Fv/Fm,ΦPSII, qP, photosynthetic rate, and stomatal conductance was T3>T4>T2>T1>CK, which showed T3, by compared with other nitrogen fertilizer application patterns, has the greatest positive effects on delaying leaf senescence, increasing chlorophyll content, and increasing potential activity and maximum photochemical efficiency of PSⅡ.The light thermal dissipation was decreased and the catch and efficiency of PSⅡwas increased by T3 treatment, which resulted more assimilate accumulated under T3.
     The greatest SPS activity was under T3, followed by T4, T2, T1, and CK, respectively, which suggested T3 was benefit to most sucrose accumulated in leaf and“source”ability to support assimilate. As a result, sucrose content under T3 was greatest, by compared with other nitrogen fertilizer application patterns at same stage. And under high-yield condition, with the nitrogen fertilizer application rate increasing, NR activity in ear leaf was increased when application rate between 150kg.hm-2 and 300 kg.hm-2, and then decreased when application rate beyond 400 kg.hm-2.
     The results suggested applying nitrogen fertilizer, especially using T3 application pattern, not only increase chlorophyll content, photochemical efficiency of PSⅡ, and CO_2 assimilation capacity in leaf, but also increased NR activity, SPS activity, and soluble sugar content in leaf, and then increased“source”ability to support assimilate, which was beneficial to obtain maize high-yield.
     3. Regulatory effects on“sink”ability of summer maize after nitrogen application
     Applying nitrogen fertilizer can increase SS and AI activity in grain significantly. During grain developing period, except 45d after pollination, by comparing with CK, SS and AI activity in grain increased significant under every applying nitrogen treatment. Compared with other nitrogen application patterns, T3 treatment increased SS and AI activity in grain greatest, followed by T4. From 5d to 45d after pollination, the content of soluble sugar and starch increased while the content of sucrose and protein decreased. And during 5d~15d after pollination, starch content increased sharply and sucrose content decrease sharply in grain, which suggested sucrose content decrease was relative to starch production. The grain filling rate, grains per ear, and yield were increased under all applying nitrogen fertilizer treatments, especially under T3 treatment.
     4. Effects on nitrogen distribution and utilization of summer mazie in different nitrogen application approaches
     The effects of nitrogen fertilizer application rates on nitrogen using and distribution in summer maize under high- and middle-yield conditions were determined. The results showed the order of nitrogen uptake, distribution ratio, and use efficiency was same: grain>leaf>stem>root. Under high-yield condition, with nitrogen fertilizer application rate increased, nitrogen uptake by plant and grain was increased first, and then decreased, and the peak occurred under HM treatment. But under middle- yield condition, they increased with nitrogen fertilizer application rate and the peak occurred under MH treatment. The nitrogen uptake by stem increased and nitrogen use efficiency decreased with nitrogen fertilizer application rate under two yield conditions. Based on the results, taken yield, nitrogen use efficiency, nutrition transport, and environmental pollution into account, the recommended nitrogen application rate was under 300kg.hm-2 in high-yielding field and 300~400 kg.hm~(-2) in general-yielding field.
     5. Indicated the pattens of high-yield summer maize source-sink metabolism and high-yield mecaniques after nitrogen application
     Select high-yield maize variety and apply nitrogen fertilizer scientific can regulate“source”and“sink”activity, and increase the“source”support ability and“sink”storage ability, which result the high-yield and efficiency maize production.
引文
[1]肖文一.饲用植物栽培与利用[M].北京:农业出版社,1991.36-41.
    [2]赵立臣.春玉米高产施肥营养生理研究进展[J].农业与技术,2003,23(6):90-91.
    [3]曹显祖,朱庆森.水稻品种的库源特征及其类型划分的研究[J].作物学报,1987,13(4):265-272
    [4]李绍长,董志新,田永浩.北疆四个玉米品种的源库特征及其类型划分的研究[J].石河子大学学报(自然科学版),1998,2(2):99-105
    [5]陆卫平,陈国平,郭景伦,等.不同生态条件下玉米产量源库关系的研究[J].作物学报,1997,23(6):727-733
    [6]陆卫平,卢家栋,童长兴,等.玉米灌浆结实期产量源库关系的研究[J].江苏农学院学报,1996,17(4):23-26.
    [7]陈国平,郭景伦,王忠孝,等.玉米库源关系的研究[J].玉米科学,1998,6(4):36—39
    [8]吴盛黎,顾明,宋碧,等.不同生态条件下高原玉米产量的源库关系[J].山地农业生物学报,1998,17(5):249—256
    [9]薛吉全,詹道润,鲍巨松,等.不同株型玉米物质生产和群体库源特征的研究[J].西北植物学报,1995,15(3):234—239
    [10]薛吉全,马国胜,路海东,等.密度对不同类型玉米源库关系及产量的调控[J].西北植物学报,2001,21(6):1162—1168。
    [11]董树亭,高荣歧,胡昌浩,等.玉米花粒期群体光合性能与高产潜力研究[J].作物学报,1997,23(3):319-325
    [12]胡昌浩,董树亭,岳寿松,等.高产夏玉米群体光合速率与产量关系的研究[J].作物学报,1993,19(1):63-68
    [13]田中明.从源-库关系剖析水稻丰产性[J].国外农学参考资料(广东省农科院科技情报室),1981,(1):12-14
    [14]陆卫平,陈国平.不同生态条件下玉米产量源库关系的研究[J].作物学报,1997,23(6):727-733
    [15]陆卫平,卢家栋.玉米灌浆结实期产量源库关系的研究[J].江苏农学院学报,1996,17(4):23-26
    [16]王婷,饶春富.减源缩库与玉米产量关系的影响[J].玉米科学,2000,8(2):67-69
    [17]威昌瀚.大穗型水稻物质生产特性及产量能力关系的研究[J].作物学报,1986,12(1):121-127
    [18] Allison J C S. The production and distribution of dry matter in maize after flowering[J].Ann Bot N S,1966,30:365-381
    [19] King R W,I F Wardlaw ,L T Evans. Effect of assimilate utilization on photosynthetic rate in wheat [J]. Planta,1967,77:261-276
    [20]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001
    [21]李潮海,刘奎.不同产量水平玉米杂交种生育后期光合效率比较分析[J].作物学报,2002,28(3):37
    [22]关义新,林葆凌,碧莹光.氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响.植物营养与肥料学报[J],2002,6(2):152-158
    [23] Lu C,Zhang J,Zhang Q,et al Modification of photosystemⅡphotochemistry in nitrogen deficient maize and wheat plants[J]. Plant physiology,2001,158(11):1423-1430
    [24]孙年喜,宗学凤,王三根.不同供氮水平对玉米光合特性的影响[J].2005,27(2):389-392,396
    [25]李潮海,刘奎,周苏玫,等.不同施肥条件下夏玉米光合对生理生态因子的响应[J].作物学报,2002,28(2):265-269
    [26]王空军,董树亭,胡昌浩,等.我国1950s~1990s推广的玉米品种叶片光合特性演进规律研究[J].植物生态学报,2001,26 2 :247-251
    [27]沈秀瑛,戴俊莹,胡安畅.玉米群体冠层特征与光截获量及产量关系的研究[J].作物学报,1993,19(3):246-252
    [28]胡昌浩,董树亭,岳寿松,等.高产夏玉米群体光合速率与产量关系的研究[J].作物学报,1993,19(1):63-69
    [29]东先旺,刘树堂.夏玉米超高产群体光合特性的研究[J].华北农学报,1999,14(2):1-5
    [30]梁振兴,历雁鸣.冬小麦生育期间叶片叶绿素含量的消长变化[J].北京农业大学学报,1992,18(增刊):16-20
    [31]牛立元,茹振钢.小麦叶片叶绿素含量系统变化规律研究[J].麦类作物,1999,19(2):36-39
    [32]吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响[J].中国农业科学,1995,28(增刊):104-107
    [33]何萍,金继运,林葆.玉米高产施肥营养生理研究进展[J].玉米科学,1998,6(2):72-76
    [34]杨玉画,褚清河,杜慧玲.施肥比例及施肥量对玉米吸肥的影响及增产机理[J].山西农业科学,2004,32(4):33-36
    [35] Champigny ML, Foyer CH.. Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis. Basis for a new concept[J]. Plant Physiology, 1992,100, 7–12
    [36] Foyer CH, Noctor G, Lelandais M, Lescure JC, Valadier MH, Boutin JP, Horton P. Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize[J]. Planta, 1994, 192, 211–220.
    [37] Brown RH. A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution[J]. Crop Sci , 1978,18:93-98
    [38] Oaks A. Efficiency of Nitrogen Utilization in C3 and C4 Cereals[J]. Plant Physiol.,1994, 106: 407-414
    [39] Osaki, M., Shinano, T. and Tadano, T. Effect of nitrogen, phosphorus, or potassium deficiency on the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase and chlorophyll in several field crops[J]. Soil Sci. Plant Nutr., 1993, 39:417-425.
    [40] Osaki, M., Shinano, T. and Tadano, T.. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops[J]. Soil Sci. Plant Nutr., 1991,37:117–128.
    [41] Fukayama H, Tsuchida H, Agarie S, et al. Significant accumula-tion of C(4)-specific pyruvate, orthophosphate dikinase in a C(3) plant, rice[J]. Plant Physiol, 2001, 127 (3): 1136~1146
    [42] Jeanneau M., Vidal J. Gousset-Dupont A., et al. Manipulating PEPC levels in plants[J]. J. Exp. Bot. 2002,53:1837-1845.
    [43]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664
    [44]宋建民,田纪春,赵世杰.小麦光合碳、氮代谢平衡调节酶研究进展[J].麦类作物学报,1997 ,17(6) : 52- 55.
    [45] Castleden, C.K., N. Aoki, V.J. Gillespie, E.A. MacRae, W.P. Quick, P. Buchner, C.H. Foyer, R.T. Furbank, J.E. Lunn. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses[J]. Plant Physiol. 2004, 135:1753–1764
    [46] Sarquís J.I., Gonzalez H , Sánchez de Jiménez E, et al. Physiological traits associated with mass selection for improved yield in a maize population[J]. Field Crops Research, 1998,56(3):239-246
    [47] Sarquís J.I., Gonzalez H , Dunlap JR. Yield response of two cycles of selection from a semiprolific early maize (Zea mays L.) population to plant density, sucrose infusion and pollination control[J]. Field Crops Research, 1998, 55(1-2): 109-116
    [48] Rocher JP, Prioul JL, Lecharny A, Reyss A, Joussaume M. Genetic variability in carbon fixation, sucrose-P-synthase and ADPglucose pyrophosphorylase in maize plants of differing growth rate[J]. Plant Physiol,1989, 89: 416–420
    [49] Causse M, Rocher JP, Pelleschi S, et al. Sucrose Phosphate Synthase: An Enzyme with Heterotic Activity Correlated with Maize Growth[J]. Crop Science, 1995, 35:995-1001
    [50] Causse M, Rocher JP, Henry AM, et al. Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key enzyme loci[J]. Molecular Breeding, 1995, 1: 259-272
    [51] Prioul J-L, Pelleschi S, Séne M, Thévenot C, Causse M, de Vienne D, Leonardi A. From QTLs for enzyme activity to candidate genes in maize[J]. J Exp Bot , 1999, 50: 1281–1288
    [52]张振清.光合碳在叶片淀粉和蔗糖间分配的调节[J].植物生理学通讯, 1989(6):1-6
    [53] Steven C, Huber, Huber JL. In vitro phosphorylation and inactivation of spinach leaf sucrose-phosphate synthase by an endogenous protein kinase[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 1991, 1091(3):393-400
    [54] Smith AM, Bettry M, Bedford ID. Evidence that the rb locus alters the starch content of developing pea embryos through an effect on ADP glucose pyrophosphorylase[J]. Plant Physiol., 1989, 89:1279-1284
    [55] Muller-Rober B, Sonnewald U, Willmitzer L. Inhibition of the ADP glucose phrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protain genes[J]. EMBO. J., 1992,11:1229-1238
    [56] Stark DM, Timmerman KP, Barry GI, et al. Regulation of the amount of starch in tissues by ADP-glucose pyrophosphorylase[J]. science, 1992,(258):287-292
    [57] Cazetta JO, Seebauer JR, Below FE. Sucrose and nitrogen supplies regulate growth of maize kernels[J]. Annals of Botany, 1999,84:747-754
    [58] Hannah LC, Greene TW. Maize seed weight is dependent on the amount of endosperm ADP-glucose pyrophosphorylase[J]. Journal of Plant Physiology,1998,152: 649-652.
    [59] Lin TP,Casvar T,Sommevile CR et al. A starch deficient mutant of Arabidopsis thaliana with low ADP glucose pyrophosphorylase activity lacks one of the two subunits of the enzyme[J]. Plant physiol., 1988,88:1175-1181
    [60] Okita TW, Nakata PA, Anderson JM, Sowokinos J, Preiss J. The subunit structure of potato tuber ADP-glucose py-rophosphorylase[J]. Plant Physiol, 1990, 93(2): 785-790
    [61] Plaxton WC, Preiss J. Purification and properties of nonproteolytic degraded ADP glucose pyrophosphorylase from maize endosperm[J]. Plant Physiol., 1987,83:105-112
    [62]向春阳,田秀平,董炳友,等.氮高效玉米主要性状的遗传分析[J].遗传,2005,27(3):387-390.
    [63] Muchow R C. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment.I. Leaf growth and leaf nitrogen[J]. Field Crops Res., 1988, 18:1–16.
    [64] Muchow R C, Sinclair T R. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum[J]. Crop Sci., 1994, 34:721–727.
    [65] Schultz JA, Juvik JA. Current models for starch synthesis and the sugary enhancer1(se1) mutation in Zea mays[J]. Plant physiology and biochemistry, 2004,42:457-464
    [66] James M.G., Robertson D.S., Meyers A.M.. Characterization of the maize gene sugary1, a determinant of starch composition in kernels[J]. Plant Cell,1995,7: 417–429.
    [67] Juvik J.A., La Bonte D.R.. Single-kernel analysis for the presence of the sugary enhancer (se) gene in sweet corn[J]. HortScience,1988, 23 (2):384–386.
    [68] Katzir N., Tzuri G., Meir A., et al. RAPD analysis of two pairs of su1se/su1Senear-isogenic lines for the identification of chromosomal regions affecting the sugary enhancer phenotype[J]. Maydica, 1999,44:149–153.
    [69] Kurilich A.C., Juvik J.A.. Quantification of carotenoid and tocopherol antioxidants in Zea mays[J]. Agric. Food Chem., 1999, 47 (5):1948–1955.
    [70] Okita TW. Is there an alternative pathway for starch synthesis?[J]. Plant physiol, 1992,100:560-564
    [71] Muller-Rober B, Kossmann J. Approaches to influence starch quantity and starch quality in transgenic plants[J]. Plant Cell Environ.,1994,17:601-612
    [72] Hannah LC, Nelson OE. Characterization of ADP-glucose pyrophosphorylase from shrunken-2 and brittle-2 mutants of maize[J]. Biochem Genet, 1976,14: 547-560
    [73]包劲松.基因工程改良作物淀粉品质[J].上海农业学报,1998,14(1):90-96
    [74] Villand P., Olsen O.A., Kleczkowski L.A.. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana[J]. Plant Mol Biol, 1993,23:1279–1284.
    [75] Mu C, Harn C, Ko Y, et al. Association of a 76kDa polypeptide with soluble starch synthase activity in maize (cvB73) endosperm[J]. Plant J., 1994,6:151-159
    [76]薛应龙.植物生理实验手册[M].上海:上海科学技术出版社,1985
    [77] Tischner R. Nitrate uptake and reduction in higher and lower plants[J]. Plant Cell and Environment , 2000 , 23:1005~1024
    [78] Singletary GW, Doehlert DC, Wilson CM, Muhitch MJ, Below FE. Response of enzymes and storage proteins of maize endosperm to nitrogen supply[J]. Plant Physiol.,1990, 94: 858–864
    [79] Singaram P., Kamalakumari K. Effect of continuous application of different levels of fertilizers and farm yard manure on enzyme dynamics of soil[J]. Mad. Agric. J.,2000, 87(4, 6): 364-365.
    [80]孙宝启.硝酸还原酶与氮素利用的关系及其在作物遗传育种中的应用[J].北京农业大学学报, 1993 , 19(3) : 29 - 33.
    [81]申丽霞,王璞,张红芳,等.施氮对夏玉米不同部位籽粒灌浆的影响[J].作物学报,2005,31(4): 532-534
    [82]王巍.双穗型玉米穗发育特点及其调节的研究[J].玉米科学,2002,10(2):71-75,77
    [83]赵宏伟,邹德堂,马凤鸣.施氮量对不同品种春玉米穗位叶蔗糖合成的影响.土壤肥料科学,2005,21(10):196-199
    [84]郭中义,孟祥锋,张明,王守刚.施用氮磷钾肥对夏玉米产量和品质的影响.土壤肥料,2004,1:25-26
    [85]郑培尧.作物生理学导论.北京:北京农业大学出版社,1992:349
    [86]郭d财,冯伟,赵会杰,等.水分和氮素运筹对冬小麦生育后期光合特性及产量的影响[J].西北植物学报,2003,23(9):1512-1517
    [87] Gardner FP, Valle, MC Coudde. Yield characteristics of ancient race of maize compared to amodernhybrid[J].AgronomyJournal,1990,82:864-868
    [88]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000
    [89]刘恩科,赵秉强,胡昌浩,李秀英,张夫道.长期不同施肥制度对玉米产量和品质的影响[J].中国农业科学,2004,37(5):711-716
    [90]杜长玉,纪玉虎,张淑芳.施用不同肥料对玉米产量和生理指标影响的研究[J].内蒙古草业,2004,16(1):22-23
    [91]刘征,娄翠芝,牛春丽.夏玉米高产栽培最佳施肥方式探讨[J].安徽农业科学,2000,28(6): 779,781
    [92]王静,蔡叶.玉米平衡配套施肥技术研究[J].耕作与栽培,2000,(4):41,55
    [93]罗海波.分次施肥对不同基因型玉米生长发育和产量的影响[J].耕作与栽培,2003,(5):39,45
    [94]卢树昌,刘惠芬,李文君.北方潮土区夏玉米施磷效果的研究[J].d津农学院学报,2000,7(4):7-10
    [95]刘景芝.大民钾王拌种对玉米的增产效应[J].安徽农业科学,2000,28(5):647-649
    [96]黄忠文.玉米施用钾肥效应初探[J].农业与技术,2005,25(2)127-128
    [97]何景友,安景文,刘慧颖,王秀娟.兴城地区土壤钾素状况及施钾肥对玉米的影响[J].杂粮作物,2003,23(2):107-108
    [98]黄绍文,孙桂芳,金继运,左余宝,何萍.氮、磷和钾营养对优质玉米籽粒产量和营养品质的影响[J].植物营养与肥料学报,2004,10(3):225-230
    [99]赵利梅,王贵平,高炳德,孟德.氮磷钾平衡施肥对春玉米籽粒建成及品质形成影响的研究[J].内蒙古农业大学学报,2000,12(21):16-20
    [100]阮培均,马俊,梅艳,等.不同密度与施氮量对玉米品质的影响[J].中国农学通报,2004,20(6):147-149
    [101]关义新,马兴林,凌碧莹.种植密度与施氮水平对高淀粉玉米郑单18淀粉含量的影响[J].玉米科学,2004,12(专刊):101-103
    [102]黄艳胜.不同施肥量对春玉米品质与产量影响的研究[J].中国林副特产,2002,(2):4,25
    [103]索全义,赵利梅,迟玉亭,等.氮肥对春玉米籽粒建成及品质形成的影响[J].内蒙古农业大学学报(自然科学版),2000,(1):30-33
    [104]李金洪,李伯航.矿质营养对玉米籽粒营养品质的影响[J].玉米科学, 1995, 3 (3) : 54-58
    [105]蒋忠怀,王经武,王瑞舫,郑丕尧.营养元素对高油一号玉米生长发育及籽粒品质影响的研究[J].中国农业科学,1990 , 23 (3) : 37-43
    [106] Genter C F, Eheart J F, Linkous W N. Effects of location, hybrid,fertilizer and rate of planting on the oil and protein contents of corn grain[J]. Agronomy Journal, 1956, 48: 63-67
    [107]刘开昌,胡昌浩,董树亭,等.高油玉米需磷特性及磷素对籽粒营养品质的影响[J].作物学报,2001,27(2):267-272
    [108]何萍,金继运,李文娟,等.施磷对高油玉米和普通玉米吸磷特性及品质的影响[J].中国农业科学2005,38(3):538-543
    [109]何萍,金继运,李文娟,等.施钾对高油玉米和普通玉米吸钾特性及籽粒产量和品质的影响[J].植物营养与肥料学报,2005,11(5):620-626
    [110]梁秀兰,林英春,年海,解丽霞.低磷胁迫对不同基因型玉米主要生理生化特性的影响[J].作物学报,2005,31(5):667-669
    [111]岳海,孙敏,吴忠华.不同肥料处理对小黑麦幼苗生长状况及生理功能的影响[J].山西师范大学学报(自然科学版),2004,18(3):81-85
    [112]杨晴,李雁鸣,等.不同施氮量对小麦旗叶衰老特性和产量性状的影响[J].河北农业大学学报,2002,25(4):20-24
    [113]孙群,梁宗锁,等.氮对水分亏缺下玉米幼苗膜脂过氧化及光合速率的影响[J].西北农业学报,2001,10(1):7-10
    [114] Bauhus J. C and N mineralization in an acid forest soil along a gap-stand gradient[J]. Soil Biology and Biochemistry, 1996, 30 (10-11): 1333~1341
    [115] Dilly O, Blume HP, Sehy U, Jimenez M, Munch JC. Variation of stabilized, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices[J]. Chemosphere, 2003, 52: 557~569
    [116]赵世杰,刘华山,董新纯主编.植物生理学实验指导[M].北京:中国农业科技出版社,1998
    [117]黄维南.植物生理实验手册(薛应龙主编)[M].上海:上海科学技术出版社,1985:180-190.
    [118]高俊凤主编.植物生理学实验指导[M].北京:高等教育出版社,2006,143-144.
    [119]李合生.植物生理生化实验原理和技术[M].北京:高教出版社,2000
    [120] Aebi H. catalase. In: Bergmeyer H U. Methods of enzymatic analysis (vol. 2)[M]. New York: Academic Press, 1974:673~684
    [121]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84~90
    [122]赵智中,张上隆,徐昌杰.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J].园艺学报,2001,28:112-118.
    [123]张志良,崔伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003:157-158.
    [124]黄智鸿,王思远,包岩,等.超高产玉米品种干物质积累与分配特点的研究[J].玉米科学,2007,15(3):95~98
    [125]石德成.东北碱化草地主要成分Na2CO3对羊草危害因素分析[J].草业学报,1993,(1):1-5
    [126]许大全.光合作用效率[M].上海科技出版社,2002,29
    [127] Alexander V R, Peter H. Regulation of non-photochemical quenching of chlorophyll fluorescence in plants[J].Aust.J.Plant Physiol.1995,22:221~230
    [128]李立人.核酮糖-1,5-二磷酸羧化酶/加氧酶的结构、功能及组装.余叔文、汤章成主编.植物生理与分子生物学(第二版)[M].北京:科学出版社,1998,223-224.
    [129] Echeverria E, Michael E, Gonzalez P, Paris G, Salerno G. Physicaland kinetic evidence for an association between sucrose-phosphatesynthase and sucrose-phosphate phosphatase[J]. Plant Physiol, 1997, 115: 223-227
    [130] Huber S.C. Role of sucrose-phosphate synthetase in partition of carbon in leaves[J]. Plant Physiology, 1983,71:818-821.
    [131]许智宏,刘春明.植物的遗传转化和基因工程.余叔文、汤章成主编,植物生理与分子生物学(第二版)[M].北京:科学出版社,1998,54-76.
    [132]黄琴,王志敏.禾谷类作物胚乳中淀粉的生物合成[J].中国农业大学学报,4(增刊):1999, 8-15.
    [133] Sanchez E, Rivero R M, Ruiz J M,et al.Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants(Phaseolus vulgaris L.cv.Strike)under high NH4NO3 application rates[J].Scientific Horticulture,2004,99: 237~248.
    [134] Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves:localization,relative proportion and their role in ammonium assimilation or nitrogen transport[J].Planta,2000,211:800~806.
    [135]时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢[J].贵州大学学报(农业与生物科学版),2002,21(2):140-145.
    [136] Kazawa T., Okamoto K. Biosynthesis and metabolism of sucrose. In Preiss J(ed). Biochemistry of plant, Vol3[M]. Academic Press, New York, 1980,pp199-220.
    [137] Whittingham C P, Keys A J, Bird I F. The enzymology of sucrose synthesis in leaves. In Gibbs M, Latzko E(ed), Encyclopedia of plant physiology. New series Vol6. Spring-Veriag Berin, 1979, 313-326.
    [138]吕英民,张大鹏.果实发育过程中糖的积累[J].植物生理学通讯,2000,36(3):258-265.
    [139] Wang F, Smith AG, Brenner ML. Temporal and spatial expression pattern of sucrose synthaseduring tomato fruit development[J]. Plant Physiol, 1994,104:535-540.
    [140]王鹏文,刘鹏飞.玉米灌浆至成熟期四种密度下籽粒内含物变化规律的研究[J].1997,3:41-47
    [141]申丽霞,王璞,张软斌.施氮对不同种植密度下夏玉米产量及籽粒灌浆的影响.植物营养与肥料学报,2005,11(3):314-319
    [142]张凤路,崔彦宏,王志敏,等.去叶影响玉米籽粒发育的生理研究[J].河北农业大学学报,1999,22(3):16-19
    [143]张美莉,刘克礼,高聚林.春玉米胚的建成规律[J].华北农学报,1995,10(4):49-98
    [144] Steven Ball.From glycogen to Amylopectin a model for the biogenesis of the plant starchgranule[J].Cell,1996,86:786-792.
    [145] Dehlert D C, Tsung M K, Felker F C. Enzymes of sucrose and hexose metabolism in the developing kernel of two inbreeds of maize[J]. Plant Physiology,1988,86:1010-1019.
    [146]李伯航,冯光明.玉米栽培生物学基础[M].石家庄:河北科技出版社,1986, 11-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700