用户名: 密码: 验证码:
贵州南部桉树引种与施肥效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕贵州桉树人工林培育工作中出现的问题,开展桉树树种、种源、家系和无性系的引种栽培试验研究,通过大田试验观测,依据生长性状进行综合评价,筛选出速生、适应性强的种质材料供生产上应用推广;同时,针对贵州土壤普遍缺硼制约桉树生长的状况,开展硼不同施用量的梯度试验,根据生长性状和叶片养分分析,找出促进桉树生长的合理施硼量;此外,还进行了不同季节施肥对桉树生长影响的研究。通过系列研究,选出适合贵州发展的优良树种和优质材料,扩大生产群体,降低种植风险;同时为桉树的速生丰产提供技术支持,促进贵州桉树的稳步发展,提高林分产量。经多年观测和分析初步结论如下:
     (1)贵州桉树引种距今已有70余年的历史,在黔中、黔南、黔东南和黔西南展开引种与保存的实地调查,60年代前后引种的桉树,保存至今的仅有大叶桉、柠檬桉和窿缘桉3个种,三个树种的耐寒性较差,均分布在贵州南部热量充足的都柳江、南盘江和红水河流域,并且以四旁树为主零星保存;90年代以种植油材两用的直杆蓝桉为主,耐寒性和速生性较好,分布范围也较广但经营不善,短期高强度采收后放弃经营,保存者林相很差。
     (2)树种/种源筛选试验中,对参试的23个树种/种源中保存率大于50%的19个树种/种源的单点和2个试验点13个树种/种源的各年度方差分析结果表明,所有生长性状和形质性状在树种/种源间均存在显著或极显著差异。39个月生时,采用综合指数法评选出优良树种/种源8个,分别是邓恩桉、柳桉、巨桉13023、直杆蓝桉、柠檬桉和尾叶桉3个种源;通过2点稳定性评价分析,柳桉最不稳定,在高水肥条件下可获得理想的生长量,其次是邓恩桉、尾叶桉10144、巨桉13023在良好环境条件下生长表现好;稳定性较高的是尾叶桉17841号种源,适合广泛栽培,但该种源耐寒性较差,推广应用时要注意立地选择;巨桉20758号种源耐瘠薄能力较强,在较差立地上生长表现可能较好。
     (3)贵州中部引种的邓恩桉种源/家系试验林中,第二年的树高生长节律观测、分析表明,15个种源的树高生长曲线均呈双峰曲线,即邓恩桉树高生长5月开始进入速生期,7月上旬达到峰值,在当地气温最高而降水相对较少的7月下旬~8月上旬高生长出现减缓的现象,曲线下降,8月上旬降雨量增加,高生长加快,形成第二个生长高峰,之后生长随着温度的降低和雨量的减少而减缓直到停止生长。说明水热平衡和同步是维持邓恩桉速生的基础。15个种源78个家系各年生长性状方差分析结果显示:树高、胸径和单株材积在种源、家系间均达极显著差异水平。试验的家系遗传力为0.0322~0.3535,呈低到中度遗传,表明性状受遗传控制的影响较小,而受环境的影响更大;而且所有性状家系遗传力均大于单株遗传力,说明通过在家系层次上的选择比基于单株的选择更能获取较大的遗传增益。按标准差法对参试种源和家系进行评价,选出优良种源3个,种源遗传增益为3.543~11.983%;优良家系9个,入选率11.53%,遗传增益在0.446~9.913%之间,说明通过种源和家系选择各性状均可获得较大的增益。
     (4)无性系试验中,试验Ⅰ174个无性系各年度方差分析结果表明,无性系间各生长性状差异达极显著水平。4.5年生时,筛选出单株材积大于广泛栽培无性系DH32-29(对照)的优良无性系有11个;试验Ⅱ在4.5年时,从经过前期选择的5个无性系和4个已推广无性系中选出了平均单株材积高于总体均值的4个无性系,其中有2个是尚未推广的无性系,为当地桉树营造林提供了更多的候选材料。
     (5)无性系试验Ⅲ直接引进华南地区表现优良的11个无性系在2个海拔高度进行对比试验,高海拔试验林的生长优于低海拔试验林,平均树高、胸径、单株材积和蓄积量比低海拔的分别高12.51%、34.47%、109.04%和89.13%,生长最好的无性系Eg5的年蓄积量为45.66 m3/hm2,比其余无性系高11.7%~87.5%。稳定性分析表明,生长量大于总体均值的Eg5、DH32-29、GL-9、DH32-22和Eg6等5个优良无性系的回归系数bi>1,说明好的无性系基因型为立地条件越好,生长越有利类型。
     (6)对上述无性系选择试验Ⅰ~Ⅲ的早期与晚期年度生长性状相关分析结果表明,2.5年生各生长性状与后期的生长性状的相关关系紧密,说明2.5年生生长性状对后期具有较好的预测性,为桉树无性系的早期选择提供了依据。
     (7)不同硼肥施用量对桉树生长影响试验结果表明,从0.5 a开始,有B处理的树高和胸径均显著大于对照,说明基肥施硼有利于促进尾巨桉的早期生长;有B处理间,不同B水平对尾巨桉胸径生长影响较小,有B处理的胸径显著高于对照,但各施B处理间胸径差异不显著;施B对树高生长的影响较大,处理间树高生长差异显著,2.5 a生以前,高B处理的树高生长大于低B处理,以L5值最大;4.5 a生时,与对照相比,林分蓄积量增幅最大的是L_(10),其次是l_5,即每株施5~10 g硼砂林分蓄积量可增加44.72~64.56%,而且还可获得较优的干形和分枝。
     (8)对无性系DH32-29进行不同施肥季节与施用量试验结果表明:冬季施肥能够促使桉树迅速进入速生期,延长生长时间,提高桉树的生长量,在相同甚至低肥量的情况下,无性系的生长明显优于夏季施肥的处理。这与夏季雨量大,养分地表流失和向下淋溶都会明显高于冬季相关。无性系的单株材积生长在年施肥量300g(F2)时达到峰值,并未随着施肥量的增加而增加,2.5年生时,高肥处理F5(450g)的单株材积是各施肥处理中最小的,仅比对照略高,说明施肥量过大并不一定能促进桉树速生快长,因此施肥要适当,过量则有抑制生长的危险。
This paper focuses on the selection of introduced Eucalyptus species, provenances, families and clones for plantation management in Guizhou Province, China. Germplasm materials with characteristics of fast-growing, cold-resistance and strong adaptability were selected through overall evaluation of the field experiments for extended planting and promotion; Meanwhile, taking into account the general lack of boron in soils of Guizhou, one of the main factors restricting eucalyptus growth, a test of application of boron at different concentrations was carried out to find out the appropriate rate of application of boron by analizing the growth traits and nutrient contents of the leaves of Eucalyptus tree species. In addition, the effects of fertilization at different seasons were studied to find out the proper fertilizatiing seasons for eucalyptus plantations. All these studies provided Guizhou with good planting materials, appropriate rate of fertilizer applications and low risk of planting for the development of Eucalyptus plantations. The results of the studies are summarized below:
     (1) Eucalypts were first intrduced into Guizhou more than 70 years ago. Among the species introduced in 1960s, only three species, Eucalyptus robusta, E. citriodora and E. exserta, are survived in river basins of Liujiang, Nanpanjiang and Hongshuihe rivers in Southern Guizhou with comparitive rich in heat resources as they are not cold-resistant. E. globulus, a species introduced in 1990s, can survived in Southern and Central Guizhou as it is more cold-resistant.
     (2) The results of analysis of variance (ANOVA) of yearly grwoth traits and form quality traits conducted for 19 species/provenances with more than 50% survival rate in a species/provenance trial and 13 species/provenances in two species/provenance trials showed that the grwoth traits and form quality traits were significantly different. At the age of 39 months, 8 species/provenances, Eucalyptus dunnii, E. saligna Smith, E. grandis Seedlot No.13023, E. globulus, E. citriodora and three provenance of E. urophylla, were selected through eveluation by using synthetic index method. Analysis of statability of growth performance of trials plantations at two sites reaveled E. saligna was the most unstable,which performed well in fertile soil with high water content, followed by Eucalyptus dunnii, provenance 10144 of E. uroppylla and provenance 13023 of E. grandis which performed well under good environmental conditions. Provenance 17841 of E. urophylla, the provenance most suitable for extensive growing, is less cold-resistant and careful selection of planting sites is needed for extended planting. Provenance 20758 of E. grandis performed well in infertile soils.
     (3) E. dunnii provenance/family trials was established in Central Guizhou, the survey of tree high growth rhythms showed that the growth curves of 15 provenances tend to be bimodal. E. dunnii started to grow fast in May and reach the peak in early July, while slowdown from late July to early August when the temperature is high and rainfall is low in the trial area; the second peak period of growth occurs in August with increasing rainfall, and then growth becomes slowly due to the decreasing rainfall amd low temperature. Water and heat balance seems to be the basis of maintaining the fast-growing E. dunnii Maiden.The ANOVA of growth traits of 78 families of 15 provenances showed that tree height, DBH and individual volume among provenances and families were significantly different. The heritability of the tested familis is 0.0322-0.3535, a low to medium heritability indicating that the traits are less affected by genetic control but by environmental influence. The heritability of the traits is bigger in famililies than in individuals, this means that larger genetic gain can be obtained while selection is conducted at familiy level. Three provenances are selected according to the standard deviation method, the genetic gains are 3.543-11.983%;9 families or 11.53%, are selected with genetic gainsof 0.446-9.913%.
     (4) The ANOVA of yearly growth traits of 174 clones in the clonal test I indicated that all the growth traits among clones were significantly different. At the age of 4.5 years, 11 fine clones having the individual volume more than the widely cultivated clone DH32-29 were selected. In clonal test II, 4 clones were selected from the 5 ever-selected clones and 4 ever extensively planted clones with individual volimes heigher than the average of the tested clones, of which 2 have not been widespread, thus providing the local people with more lanting materail.
     (5) Eleven fine clones directly introduced from south China were planted at two sites at two altitudes. Experimental results showed that superior to that at low altitude. The average tree height, DBH, individual volume and stand volume of trees at high altitude is are 12.51%, 34.47%, 109.04% and 89.13% higher than tose at low altitude, respectively. The best clone is Eg5 clone with an annual syand volume of 45.66 m3 / hm2, which is 11.7% - 87.5 % higher than the other clones. Analysis of statibility reaveled that the regression coefficient (bi) of 5 clones, Eg5, DH32-29, GL-9, DH32-22 and Eg6,which recorded higher stand volumes than the average, is more than 1, showing that better clone genotype and site conditions are resulted in better tree growth performance.
     (6) Correlation analysis of yearly growth traits of clones in the above three clonal tests at early stage and later stage showed that better growth prediction can be made with use of growth traits at the age of 2.5 years.
     (7) Results from a study on the effects of application rates of boron on the growth performance of Eucalyptus urophylla x E. grandis showed that the height and DBH of six-month-old young trees in plots applied with boron were significantly higher than those in the control, indicting that applicantion of boron benefits the early growth of Eucalyptus urophylla x E. grandis. The differences in DBH of young trees among plots applied with different rates of boron were not significant, while those in tree height were significant. At the age of 2.5 years, tree height in plots applied with higher rates of boron was higher than that in plots applied with lower rates of boron; and the greatest height growth was recorded in the treatment of L5. Low applicaion rate of boron resulted in high mortility of young tress, and thus provided the survived trees with more growth spaces which may lead to greater rates of growth of DBH and height of individual trees during the late stage of growth. At the age of 4.5 years, the greatest standing volume was recorded in the boron application treatment of L10, follwed by L5. Application of boron at 5-10 g per trees resulted in increasing standing volume by 44.72-64.56% and better stem forms and branching.
     (8) Fertilization trials of clone DH32-29 at different rates and in different seasons indicated that fertilization in Winter can lead an early fast growing stage, a longer growing period and higher productivity of Eucalyptus trees than fertilization in Summer, even the fertilization rate is low. This may be due to the loss of fertilizers resulted from soil errosion caused by heavy summer rains. The annual individual volume of clones reached the peak when fertilization rate is 300g (F2) without increament with increasing fertilization rate. At the age of 2.5 year, the individual volume of high fertilization treatment F5 (450g) is the least, only slightly higher than the control, indicating that too high rates.of fertilizer application do not promote eucalyptus growth, or contrary inhibit growth potential.
引文
[1] Wilcox M.D.A catalogue of the Eucalypts.Groome Poyry Ltd,Auckland, 1997,6~87
    [2]王豁然.桉树遗传资源与引种驯化.见:第六届全国系统与进化植物学青年学术研讨会论文摘要集, 2000,43
    [3] Jacobs M R.,桉树栽培.罗马:联合国粮农组织, 1981,237~239,572~573
    [4]项东云,陈健波,叶露,等.广西桉树人工林发展现状、问题与对策.广西林业科学,2006,35(4):195~201.
    [5] Chippendale,G.n.and Wolf.L.The natural distribution of Eucalyptus in Australia.Special publication No.6.Australian National Parks and Wildlife Service 1981,192
    [6] Gill,A.m.,Belbin,I.and Chippendale,G.M.Phytogeography of Eucalyptus in Australia. Australian Flora and Fauna series No.3.Australian Government Publishing Service, Canberra.1985,55
    [7] Pryor,L.D.Biology of eucalypts.The Institute of Biology’s Studies in Biology No.61.Edward Arnold (Publishers)Ltd.London,1976,82
    [8] Ken edridge et al.Eucalypt domestication and breeding.Oxford,1993
    [9]祁述雄.中国桉树(第二版),北京:中国林业出版社,2002.22,99
    [10] FAO, 1999, State of the world’s forest. Food and Agriculture Organization of the United Nationas, Rome, 146
    [11]徐大平,2006.桉树速生丰产林-我国林纸一体化的必然选择.中华纸业,Vol.161,p14~25.
    [12]洪菊生,刘复华,黄东志等.巴西桉树人工林栽培技术考察报告.云南林业科技,1996,(增刊):57~76
    [13]李万年.巴西桉树栽培的考察.广东林业科技,1987,(5):25~28
    [14]王国祥,杨民胜.世界桉树人工林改良研究及发展动态
    [15] Vigneron P. Creation and improvement of hybrid varieties of Eucalyptus in the Congo. Bios et Forests des Tropiques, 1992, No.234, 29~42
    [16] Xu, D., Dell, B., Malajczuk, N., Gong, M.,. Effect of phosphorus application on productivity and nutrient accumulation of a Eucalyptus urophylla plantation. Journal of Tropical Forest Science2005,17(3):349~357.
    [17]莫晓勇主编.桉树人工林培育的理论与方法.北京:中国林业出版社,2005,17~31
    [18]洪菊生等.巴西工业人工林的经营与管理.热带林业信息,1997,3:18~30
    [19] Resende M D Vde, et al. Breeding strategies for selection of Eucalyptus hybrids[J].Boletim de Pesquisa Florestal, 1990, No.21, 49~60
    [20] Moncur M W. Techniques for pollinationg Eucalytpus, ACIAR Technical Reports Series, 1995, 34:19
    [21]祁述雄.中国引种桉树与发展现状.广西林业科学,2006,35(4):250~252
    [22]徐建民,陆钊华.桉树纸浆材树种持续育种与改良性状的筛选研究.广西林业科学,2006,35(4):227~233
    [23]梁一池编著.树木育种原理与方法.厦门:厦门大学出版社,1997,197~232,348~362
    [24]吴坤明,吴菊英,徐建民.华南地区桉属树种种源生长表现.广东林业科技,1995,11(1): 1~5
    [25]梁坤南,周文龙,仲崇禄,等.海南岛东部地区桉树树种/种源试验.林业科学研究,1994,7(4):399~407
    [26]梁坤南.桉属树种/种源试验.林业科学研究,2000,13(2):203~208
    [27]陆钊华,徐建民,温茂元,等.细叶桉和尾叶桉种源试验研究.林业科技,2003,31(2):7~9
    [28]徐建民,陆钊华,李光友,等.细叶桉种源家系综合选择的研究.林业科学研究,2003,16(1):1~7
    [29]徐建民,白嘉雨,甘四明.尾叶桉家系综合选择的研究.林业科学研究,1996,9(6): 561~567
    [30]梁坤南,白嘉雨.尾叶桉种源-家系生长与抗风性选择.林业科学研究,2003,16(6): 700~707
    [31]黄少伟,钟伟华,黄华喜,等.尾叶桉种源/家系遗传变异与早期选择研究.林业科学研究,1999,12(4):428~432
    [32]薛正华,吴之扬,陈霞,等.桉属树种与种源/家系比较试验.林业科学研究,1997,10(6): 591~598
    [33]陈文平,罗建中,谢耀坚.粗皮桉种源/家系的遗传变异.广东林业科技,2001,17(3):1~6
    [34]骆振绍,谢彩玲.赤桉种源试验.广东林业科技,1995,12(1):17~22
    [35]王豁然,阎洪,周文龙.巨桉种源试验及其在我国适生范围的研究.林业科学研究,1989,2(5):411~419
    [36]邱进清,兰贺胜,谢国阳等.巨桉种源/家系引种试验.江西农业大学学报(自然科学版),2002,24(4):517~521
    [37]林睦就,李榕.中亚热带赤桉耐寒性选择.桉树科技,1999,(1) :13~19
    [38]胡天宇.四川桉树引种及良种选育.四川林业科技,1998,19(2):7~13
    [39]江香梅,陈永伶,余卫等.江西省赤桉地理种源试验研究初报.江西林业科技,1995,(4):9~16
    [40]罗建中.我国耐寒桉树的种质资源及其遗传改良.桉树科技,2006,23(1):24~31
    [41]陶德生,高林.我国中亚热带东部桉树引种和树种选择.浙江林学院学报,1994,11(1): 7~20
    [42]兰贺胜,丘进清,黄德龙等.闽西北适栽桉树树种选择研究.林业勘察设计(福建),2005,(1):1~4
    [43]兰贺胜,谢国阳,林昌宝等.邓恩桉种源/家系试验初报.桉树科技,2003,(1):13~18
    [44]兰贺胜.福建省赤桉种源/家系的试验研究.广西林业科学,2006,35(2):57~60
    [45]丘进清.闽北柳桉种源/家系的试验研究.中南林业科技大学学报,2007,27(3):33~36
    [46]丘进清,兰贺胜,谢国阳等.巨桉种源/家系引种试验.江西农业大学学报(自然科学版),2002,24(4):517~521
    [47]张建明.广西桂林耐寒桉树引种试验研究,桉树科技,1996,(1):44~50
    [48]蔡建厚,钟远春等.贵州桉树引种简况及展望.桉树科技,1986,(2):11~15
    [49]杨荣和.贵州省桉树考察报告.贵州林业科技,1993,21(1):63~65
    [50]钟远春,杨荣和.贵州直杆桉的冻害及其种植前景探讨.1992,Z1:93~95
    [51]邓伯龙,陈波涛.贵州省桉树引种栽培现状、问题与对策.贵州林业科技,2006,34(3): 54~58
    [52]吴文艺.硼钾配施防止春大豆不结实症的研究.土壤肥料,1999,(4):25~27
    [53] Warington K. The effect of boric acid and borax on the borad bean and certain other plants. Ann Bol,1923,37:629~672
    [54] Dale G B, Krystyna M L. Boron in plant structure and function. Annu Rev plant Physiol. Plant Mol. Biol,1998,49:481~500
    [55] Frank D, Heidrum P, Volk R. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. J Plant Physiol,1998,153:615~622
    [56] Matoh T ,Ishigaki K,Ohno K et al .Isolation and characterization of a boron-polysaccharides complex from rudish roots. Plant Cell Physiol,1993,34:639~642
    [57]梁小红,张振刚,张润梅等.作物硼素营养研究与施肥技术.杂粮作物,2000,20(3): 39~43
    [58]张秀省,沈振国,沈康.硼对油菜花器官发育和结实性的影响.土壤学报,1994,31 (2) :146~151
    [59] Loomis W D,Durst R W. The chemistry and biology of boron. Bio Factors,1992,3:229~239
    [60] Power P P,Woods W O. The chemistry of boron and its speciation in plants. Plant Soil,1997,193:1~13
    [61]黄益宗,冯宗炜,王效科.微量元素硼对林木生长的影响.生态学杂志,2002,21 (5) : 26~29
    [62] Brown P H,Hu H. Does boron play only a structural role in the growing tissues of higher plants . Plantand Soil,1997,193 (2) :211~215
    [63] Mitchell R J. et al. Boron fertilization,ectomycorrhizal colonization ,and growth of Pinus echinata seedlings . Can. J .For. Res . ,1987 ,17:1153~1156
    [64]周洪波,沈伯葵.杉木缺硼症的组织学和生理生化特性研究.中南林学院学报,1997,17(1) :32~35
    [65] Shorrocks V M.. The occurrence and correction of boron deficiency. Plant Soil. 1997,193, 121~148.
    [66] Camacho-Cristóbal J, Rexach J, González-Fontes A. Boron in plants: deficiency and toxicity. J. Integr. Plant Biol. 2008,50,1247~1255.
    [67] Dell B, Thu P Q. Sustainable management of plantation eucalypts and acacias in Asia. In: Diloksumpun S, Puangchit L. (Eds.), Tropical Forestry Change in a Changing World, vol. 7. Commercial Plantation Forestry. Kasetsart University Faculty of Forestry, Bangkok, Thailand, 2009, 49~63.
    [68] Hopmans P, Clerehan S. Growth and uptake of N , P , K and B by Pinus radiata D. Don in response to application of borax . Plant and Soil,1991,131:115~127
    [69] Dell, B., Huang, L., Physiological response of plants to low boron. Plant Soil 1997, 193, 103~120.
    [70] Dell B, Malajczuk N. Boron deficiency in eucalypt plantations in China. Can. J. For. Res. 1994, 24, 2409~2416.
    [71] Lehto T, Ruuhola T, Dell B. Boron in forest trees and forest ecosystems. Forest Ecology and Management. 2010, 260, 2053~2069
    [72] Sutinen S, Vuorinen M, Rikala R. Developmental disorders in buds and needles of mature Norway spruce, Picea abies (L.) Karst, in relation to needle boron concentrations. Trees 2006., 20, 559~570.
    [73] Hopmans P, Flinn D W. Boron deficiency in Pinus radiata D. Don and the effect of applied boron on height growth and nutrient uptake. Plant and Soil ,1984 ,79 :295~298.
    [74]沈伯葵,周洪波,廖应正等.杉木缺硼症的诊断和发生规律研究.南京林业大学学报,1994,18(4) :39~45
    [75] Dell B, Huang L, Bell R W. Boron in plant reproduction. In: Goldbach H E, Rerkasem B, Wimmer M, et al. (Eds.), Boron in Plant and Animal Nutrition. Kluwer Academic/Plenum Publishers, New York, USA, 2002,103~118.
    [76] Dell B, Hardy G, Burgess T, Health and nutrition of plantation eucalypts in Asia. South. Forests. 2008,70, 131~138.
    [77] Leite S M M, Marino C L, Bonine C A V. Responseof Eucalyptus grandis and E. grandis×E urophylla clones to boron suppression. ScientiaForestalis. 2010, 38, 19~25.
    [78]黄金义,蒙美琼,文凤芝等.桉树梢枯原因及防治的研究.广西植保,2000,13 (2):12~14
    [79] Sakya A.T, Dell B, Huang L. Boron requirements for Eucalyptus globulus seedlings. Plant Soil 2002, 246, 87~95.
    [80] Whiter J B, Krause H H. Short-term boron deficiency in a black spruce ( Picea maria- na [Mill. ] B. S. P. ) plantation. Fore. Ecol. and Manage. ,2001 ,152 (1-3): 323~330
    [81] Mottonen M. et al . Growth dynamics and mycorrhizas of Norway spruce ( Picea abies) seedlings in relation to boron supply[J ] . Trees ,2001,15 (6) :319~326
    [82] Dell B, Xu D, Rogers C, Huang L, et al. Micronutrient disorders in eucalypt plantations: causes, symptoms, identification, impact and management. In: Wei R P, Xu D. (Eds.), Eucalyptus Plantations– Research, Management and Development. World Scientific Publishing Co., Singapore, 2003, pp. 241~252.
    [83] Dell B, Xu D. Bacterial wilt and boron deficiency stress: a new disorder in eucalypt plantations in south China. Chin. For. Sci. Technol. 2006, 5, 45~50.
    [84] Dell B, Malajczuk N, Xu D, et al. Nutrient Disorders in Plantation Eucalypts, 2nd ed., ACIAR Monograph No. 74. ACIAR, Canberra, Australia, 2001, 188 pp.
    [85] Lehto T, Ruuhola T, Dell B. Boron in forest trees and forest ecosystems. Forest Ecology and Management. 2010, 260, 2053~2069
    [86]杨曾奖,徐大平,陈俊勤等.微量元素对尾叶桉幼林生长的影响.华南农业大学学报,2005,26(2):91~94
    [87]黄益宗,黎向东,杨炳强,等.应用“4162A”最优混合设计研究尾叶桉肥效与营养诊断.林业科学,1999,35 (6) :10~18
    [88]刘铮,朱其清,唐丽华.我国缺硼土壤的类型和分布.土壤学报,1980,17(3):228~240
    [89] Stone E L. Boron deficiency and excess in forest trees. A review. For. Ecol. Manage. 1990,37:49~75.
    [90] Bell, R.W., Dell, B., Micronutrients for Sustainable Food, Feed, Fibre and Bioen- ergy Production. International Fertilizer Industry Association, Paris, France, 2008,175 pp.
    [91] Bell R W. Temporary boron deficiency– a difficult case for diagnosis and prognosis by plant analysis. Comm. Soil Sci. Plant Anal. 2000,31, 1847~1861.
    [92] Cooling E.N. Frost resistance in Eucalyptus grandis following the application of fertilizer borate. Rhod. Zamb. Mal. J. Agric. Res. 1967, 5, 97~100.
    [93]何亚琳,付舜珍.贵州土壤钼硼锌含量分布及微肥应用.贵州农业科学,1992,(5): 37~40,47
    [94]周政贤.贵州省引种桉树及今后发展前途.林业科学,1957,(3):289~308
    [95]何志星,梅仕能,李瑞昌等.黔南州直杆桉引种栽培情况调查报告.贵州林业科技,1997,25(2):20~26,44
    [96]王孜昌,王宏艳.贵州省气候特点与植被分布规律简介.贵州林业科技,2002,30(4):46~50
    [97]八省(区市)桉树调查组.桉树北缘地区分布调查报告.桉树科技,1980,(1):6~16
    [98]沈中翰,梁郁端,祁述雄.考察贵州省发展桉树简况的报告.桉树科技,1992,(1):96~99
    [99]徐建民,李光友,陆钊华等.南方桉树人工林雨雪冰冻灾害调查分析.林业科学,2008,44(7):103~110
    [100] Mckmney DW ,Davis J,TurnbuU J W ,et a1.The Irnpect of Australian Tree Species Research in China.Canberra:ACIAR Economic Assessment Series,1991,12
    [101]王明庥.林木育种学概论.中国林业出版社,1989:45~50,262~268
    [102]全国杉木种源试验协作组.杉木造林区种源选择.林业科学研究,1988,1(1):1~13
    [103]王豁然.桉树生物学概论.科学出版社,2010:17~93
    [104]刘友全,李志辉,马英等.速生耐寒邓恩桉在桉树分布北缘区的适应性.中南林业科技大学学报,2007,27(2):66~69
    [105]张建明,陈庚元.邓恩桉种源和家系试验研究,桉树科技,1999,(2):37~42
    [106]李天会,邓伯龙,谢耀坚,等.邓恩桉种子园营建技术初报.林业资源管理,2007,(2):82~85
    [107]黄少伟,谢维辉主编.实用SAS编程与林业试验数据分析.广州:华南理工大学出版社.2001.178~181
    [108]朱军编著.线性模型分析原理.科学出版社.1999,190~199
    [109]王松桂,史建红,尹素菊等.线性模型引论.北京:科学出版社,2004
    [110]周家维,张宁南,王孜昌等.桉属不同遗传水平材料在贵州南部冻害调查与区划研究.种子,2008,27(12):87~91
    [111] SAS Institute Co. SAS/STAT User’s Guide for Personal Computers. Release 6.03 edition.Cary, NC, USA,1988.
    [112]吴坤明,吴菊英,甘四明等.桉树种间杂种的比较和选择研究.林业科学研究. 2002, 15(1): 1~6.
    [113] Martin B. The benefits of hybridization. How do you breed for it?. In: Breeding Tropical Trees, Proceedings IUFRO Conference [C]. Oxford Forestry University, Pattaya, Thailand, 1988. 79~92.
    [114].Osorio LF, White TL, Huber DA. Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden [J]. Silvae Genetica, 2001, 50 (1): 30~37.
    [115]甘四明,李梅,吴坤明等.尾叶桉×细叶桉杂种无性系扦插生根和生长性状的研究.林业科学研究. 2006, 19 (2): 135~140.
    [116] Osorio LF,White TL,Huber DA。Age–age and trait–trait correlations for Eucalyptus grandis Hill ex Maiden and their implications for optimal selection age and design of clonal trials. Theor Appl Genet,2003,106:735~743
    [117]陆钊华,徐建民,卢国桓等.韦塔桉种源性状综合评价及育种值的估算.林业科学研究.2004,17 (2): 220~225.
    [118]吕成群,黄宝灵.高硼处理增强巨尾桉苗木对零上低温的适应.云南植物研究, 2003,25(6): 693~699
    [119]王震宇,张福锁,王贺等.缺硼与低温对黄瓜幼苗一些生理反应的影响.植物生理学报,1998,24(1): 59~64
    [120] XU D P , DELL B. Nutrient management of eucalypt plantation in South China . WEI R P , XU D P. Eucalyptus Plantation[C] . Singapore : World Scientific Publishing Co Pte Ltd , 2003. 269~289.
    [121]曹继钊,韦颖文,黄开勇等.“广林9号”无性系桉树速丰林丰配方施肥试验.西南林学院学报,2006,26(5):53~56
    [122]何蓉,蒋云东,曾芳群等.蓝桉幼林不同生长期的叶片营养元素含量分析.云南林业科技,1997,81(4):39~44
    [123]周文龙.桉树施肥效益的初步分析∥澳大利亚树种在中国的栽培利用论文集.北京:中国林业出版社,1988 :25~31
    [124]林淑蓉,李淑仪,廖观荣等.施肥对桉树生长及植株营养效应的研究.热带亚热带土壤科学,1998 ,7 (3) :184~187
    [125]吴建平,吴天乐,姚敏.幼林桉树施肥效应研究.湖南农业科学,2006 (2) :92~94
    [126]陈少雄,王观明,项东云.尾叶桉施肥效果研究.林业科学研究,1996 ,19 (6) :573~578
    [127]仲崇禄,弓明钦,陈羽等.赤桉、细叶桉和巨桉幼林施磷量的确定.林业科学研究,2000 ,13 (4) :377~384
    [128]梁坤南,周文龙,李贻铨.尾叶桉无性系施肥6年的生长效应.广东林业科技,2003,19(1):1~5
    [129]华元刚,茶正早,林钊沐等.海南岛桉树人工林营养与施肥.热带林业,2005,33(1) :35~38
    [130] M. G. Ryan, J. L. Stape, D. Binkley, S. Fonseca et al., Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation, Forest Ecology and Management 2010,259:1695–1703.
    [131] S. Boyden, D. Binkley, J. L. Stape. Competition among Eucalyptus trees depends on genetic variation and resource supply. Ecology, 2008,89(10), 2008, pp. 2850–2859
    [132] M. G. Ryan, J. L. Stape, D. Binkley, S. Fonseca et al., The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production, Forest Ecology and Management 2010,259:1684–1694.
    [133] J. L. Stape, D. Binkley, W. S. Jacob, E. N. Takahashi, A twin-plot approach to determine nutrient limitation and potential productivity in Eucalyptus plantations at landscape scales in Brazil. Forest Ecology and Management 2006, 223: 358–362.
    [134] I. Scanlan, C. McElhinny and P. Turner, A Methodology for Modelling Canopy Structure: An Exploratory Analysis in the Tall Wet Eucalypt Forests of Southern Tasmania Forests 2010, 1, 4-24;
    [135] Specht R.L. and S. Specht, Canopy structure in Eucalyptus-dominated communities in Australia along climate gradient. ACTA. OECOL. OECOL. Plant. 1989,10: 191-213.
    [136] Myers B.J., S. Theiveyanathan and W.J. Bond, Growth and water use of Eucalyptus grandis and Pinus radiata plantation irrigated with effluent. Tree physiology. 1996.16: 211-219.
    [137] D. Whitehead, C. L. Beadle, Physiological regulation of productivity and water use in Eucalyptus: a review, Forest Ecology and Management.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700