用户名: 密码: 验证码:
甘蓝型油菜含油量等重要品质性状的遗传分析与QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是世界广泛种植的油料作物,在我国种植面积和总产均居世界首位,也是我国重要的食用油来源。油菜籽含油量的高低,油脂中主要脂肪酸成分的含量直接关系到菜籽油的食用营养价值和工业用经济价值。目前油菜籽的含油量平均约41%左右,离理论含油量相差甚远;菜籽油中的主要脂肪酸组分中对人体营养有利的油酸和亚油酸含量较低。因此,提高油菜品种油脂含量,提高油脂中油酸和亚油酸的含量是目前油菜品质改良的目标。
     甘蓝型油菜是杂种优势利用成功的重要作物之一,探讨油菜含油量杂种优势及其产生的原因,对杂交油菜育种具有重要的实践意义。前人对油菜含油量进行了较多的研究,油酸和亚油酸的研究相对较少,但是不同研究者由于采用的材料和方法不同,其研究结果也有较大的差异。因此,研究含油量及油脂中主要的有益脂肪酸油酸和亚油酸的遗传体系,以及进行QTL定位分析,可进一步丰富油菜数量遗传理论,对油菜品质改良具有重要的理论与实践意义。
     本研究采用6个含油量有差异的甘蓝型油菜品系,按照Griffing方法Ⅰ配制30个正反交组合,种植于3个不同生态地点,考察种子含油量,分析配合力和杂种优势;选择其中2个亲本(加拿大引进品系CG38,人工合成甘蓝型油菜品系B25),构建组合CG38/B25的P1、P2、F1、B1、B2、F26个世代,利用主基因+多基因混合遗传模型对种子含油量、油酸和亚油酸含量进行遗传分析,探讨三者遗传模式,明确主基因效应、多基因效应及其遗传率;以BC1F1为作图群体,利用SSR、RAPD和SRAP等标记技术,构建甘蓝型油莱分子标记遗传图谱,并对含油量、油酸和亚油酸含量进行QTL定位。其主要研究结果如下:
     1、36个试验材料种植于3个不同生态地点(其中1个点由于虫害严重缺苗较多未统计),含油量配合力分析结果表明,两地点环境差异较大,含油量的一般配合力(GCA)、特殊配合力(SCA)、反交效应均极显著,三种效应均受到环境的显著影响。含油量广义遗传率较高而狭义遗传率相对较低,且狭义遗传率大于广义和狭义遗传率之差,表明基因的加性效应远比非加性效应对表型变异的贡献更大。含油量的加性效应方差远大于非加性效应和反交效应方差,GCA与环境互作方差较小,SCA和反交效应与环境互作方差较大,证明含油量的遗传以加性效应为主,同时亲本GCA在不同环境中的表现较稳定。
     2、对36个供试材料进行含油量的杂种优势分析表明,不同组合的中亲优势与超亲优势均具有明显差异,但总体来说,含油量杂种优势相对较低。不同组合在不同环境中的优势变化呈极显著正相关,说明含油量的杂种优势表现具有一定的稳定性。正反交组合含油量的t检验表明有8个组合达到极显著,细胞质效应对杂种含油量的作用不可忽视。
     3、配合力相关分析表明不同环境下亲本GCA和组合SCA均具有极显著和显著的正向相关关系,亲本GCA的表现相对更稳定。配合力与组合表型值的相关性表明亲本GCA之和、SCA与杂种表型值分别呈极显著及显著的正相关,其中GCA之和的相关程度更高,GCA与SCA相关不显著,不能从亲本GCA的高低来预测其SCA的高低。两地点亲本一般配合力之和与杂种F1含油量杂种优势相关关系均不显著,特殊配合力与杂种F1含油量杂种优势均存在极显著的正向相关关系,且决定系数较高,反映了特殊配合力与杂种优势均由基因的非加性作用引起。
     4、以加拿大引进品系CG38,人工合成甘蓝型油菜品系B25为供试亲本,两者亲缘关系较远、含油量及其它品质性状差异较大。CG38(P1)、B25(P2)和F1平均含油量分别为41.67%,30.02%和37.04%;油酸平均含量分别为57.51%、36.69%和42.26%,F1偏向低油酸亲本;亚油酸平均含量分别为18.83%,12.98%和13.00%,F1及分离世代均偏向低亚油酸亲本。分离世代B1、B2、F2的含油量、油酸与亚油酸,均表现连续性分布,具有单峰或双峰的正态分布特征,显示为多基因控制的数量性状。含油量最少受6对基因控制,油酸最少受2对基因控制,亚油酸最少受4对基因控制。
     5、采用主基因+多基因模型分析组合CG38/B25含油量、油酸和亚油酸的遗传特性表明,含油量以D-0模型为最适遗传模型,即受1对加性.显性主基因+加性-显性.上位性多基因遗传系统控制,主基因遗传率为25.81%-67.26%,多基因遗传率为27.12%-44.77%。油酸和亚油酸均以E-0模型为最适遗传模型,即受2对加性.显性.上位性主基因+加性-显性.上位性多基因遗传系统控制。油酸主基因遗传率为67.69%~86.84%;多基因遗传率为0.03%~9.89%;亚油酸主基因遗传率为37.22%~66.37%,多基因遗传率为5.96%~26.09%,表明油酸、亚油酸的遗传均以主基因为主,而亚油酸受环境影响相对较大。
     6、采用SSR、RAPD和SRAP标记,BCl为作图群体,筛选出具有多态性的SSR引物61对、RAPD引物31条、SRAP引物89对。利用软件MAPMAKER/EXP3.0对筛选出的181个多态性标记进行连锁分析,构建了一张包含20个连锁群的甘蓝型油菜遗传连锁图谱,包括67个SRAP标记、48个SSR标记,21个RAPD标记,共136个多态性标记位点。图谱全长1725.00cM,标记间平均图距15.97cM。
     7、采用软件QTL Icimapping v2.2的完备区间作图进行QTL分析,对于含油量,检测到2个位点。其中1个位于第10连锁群上的标记SSRRa2-E0和EM15ME14区间,可解释表型变异的4.43%,加性效应0.42%;另1个位于第15连锁群上的标记EM5ME11b和EM12ME14区间,可解释表型变异的18.68%,加性效应-0.60%。
     检测到2个与油酸含量相关的位点。其中1个位于第15连锁群上的标记EM12ME17和EM9ME10间,可解释表型变异得8.99%,加性效应1.5810;1个位于第20连锁群上的标记AG16和EM17ME15b区间,可解释表型变异的5.31%,加性效应.1.2196。检测到1个与亚油酸含量相关的QTL位点,位于第15连锁群上的标记EM5ME11b和EM12ME14区间,可解释表型变异的9.46%,加性效应0.68。
Rape is one of main oil crops widely grown in the word, and in our country,it is an important source to the vegetable oil, the largest planting area and the most products. Economic value of the oil is affected by the content of oil and composition of fatty acid in seed either for edible use or for industrial use.The current average of oil content is about 40%, far from the theoretical oil content, and the content of oleic acid and linoleic acid in seed are beneficial to human, but lower. Therefore, Improving the content of rapeseed oil, oleic acid and linoleic acid are the goal on quality improvement of rape at present.
     Utilizing heterosis is one of the most effective ways to increase yield and improve quality in crops. Rapeseed is one of the most successful crops in heterosis utilization worldwide. heterosis utilization worldwide. To explore the sources of heterosis for agronomic and quality traits in rapeseed, it will play an important role in hybrid breeding. There were more papers about oil content, the oleic acid and linoleic acid in rapeseed had less research and got different results. Research results on oil content in rapeseed from different authors were different, it might be that different materials and different methods they used in their researches. Study further on inheritance system of oil content, oleic acid and linoleic acid, and mapping QTLs linked to them, could enrich the quantitative genetic knowledge about rapedeed.It will play an important role in quality improvement in rapeseed.
     In this study,6 pure line varieties from different origins were used to produce 30 hybrids by hand pollination within Griffing model I mating design. These hybrids, together with their parents, were tested for oil content in two different locations. Combining ability and heterosis on oil content were analyzed. A six basic generations (PI, P2, F1, B1, B2 and F2) derived from crosses of CG38×B25 in rapeseed (Brassica napus L.) were used to analyze the inheritance of oil content in seed, oleic acid and linoleic acid in oil, applying the mixed model of major gene plus polygene. And the BC1F1 population was used to construct a genetic map in rapeseed(Brassica napus L.), based on RAPD, SSR and SRAP markers. QTLs linked to oil content, oleic acid and linoleic acid were identified in this population.The main results are as follows:
     1. The results of combining ability analysis on oil content showed there were the extremely significant difference in two locations, the general combining ability(GCA), specific combining ability(SCA), anti-cross-effects of oil content were extremely significant, and all three effects were significantly affected by the environment. The broad-sense heritability of oil content were relatively higher than narrow-sense heritability, and narrow-sense heritability were higher than the difference between broad-sense heritability and narrow-sense heritability, indicating that the contribution of additive effects to phenotype was much higher than non-additive effects. The variance of additive effects on oil content was much higher than of non-additive effects and anti-cross effect. The less variance of interaction with GCA and the environment, the larger of interaction with SCA, anti-cross and the environment, indicated that additive effect was principal for heredity of oil content, GCA in different environments was more stable.
     2. The results from heterosis analysis of oil content showed that the mid-parent heterosis and the over-parent heterosis between the tested materials were significant different, but the heterosis was relatively lower. There was extremely significant positive correlation with different hybrid in two environments, indicating the heterosis of oil content had a certain stability. T-test on oil content between reciprocal cross showed there were the extremely significant difference from 8 combinations, and the cytoplasmic effect on oil content could not be ignored.
     3. Correlation analysis of combining ability showed that there were significant positive correlation on GCA and SCA between two environments. The performance of parental GCA was relatively more stable. Correlation analysis showed that there were significant positive correlation between the sum of parent GCAs, SCA and F1, and the correlation of the sum was higher. The correlation between GCA and SCA was not significant. The correlation between the sum of parent GCAs and heterosis on oil content was not significant. But there was extremely significant positive correlation between SCA and heterosis, indicating that SCA and heterosis were induced to non-additive effect of gene.
     4. The relationship of CG38, a rapeseed line(B. Napus) introduced from Canada, and B25,a artificially resynthesized rapeseed line(B. napus), was much distantly, the difference of oil content and other quality traits were comparatively large. The average oil content of CG38(P1) and B25(P2) was 41.67%,30.02%, and the average content of oleic acid was 57.51%、36.69%, and the average content of linoleic acid was 18.83%,12.98%. The value of oleic acid and linoleic acid was closer between F1 and the lower parent(B25), that of linoleic acid in three segregating generations was closer to the lower parent(B25). In B1, B2 and F2 population, the three quality characteristics were normal distribution, indicating that they are quantitative genetic traits controlled by multiple genes.The oil content was controlled by at least six genes, oleic acid was controlled by at two genes, and linoleic acid was controlled by at least four genes.
     5. The heredity of oil content, oleic acid and linoleic acid of the cross CG38/B25 was analyzed with major gene plus polygene model, indicating that oil content was controlled by one additive-dominance major gene plus additive-dominance-epistasis polygene(D-O). The heritabilities of major gene were 25.81%~67.26%, and that of polygene was 27.12%~44.77%. Oleic acid and linoleic acid were controlled by two additive-dominance-epistasis major gene plus additive-dominance-epistasis polygene(E-O). For oleic acid, the heritabilities of major gene were 67.69%~86.84%, and that of polygene was 0.03%~9.89%. For linoleic acid, the heritabilities of major gene were 37.22%~66.37%, and that of polygene was 5.96%~26.09%.
     6. Using BC1F1 as mapping population, a genetic map in rapeseed (Brassica napes L.) was construct by SSR, RAPD and SRAP marker. It was marked 136 molecular polymorphic site, including 67 markers SRAP,48 SSR and 21 RAPD markers. The genetic map contained 20 linkage groups(LG1-LG20). And the genetic distance was totally 1725.00cM. The average distance between two markers was 15.97cM.
     7. Two QTLs related to seed oil content were identified with the interval mapping of the software QTL Icimapping v2.2. One QTL was located in the region of SSRRa2-E0-EM15ME14 on linkage group LG10, which could explain 4.43% of the oil content variation in the population and additive effect was 0.42%. The other was located in the region of EM5MEllb-EM12ME14 on LG15, and explained 18.68% phenotypic variation and additive effect was -0.60%.
     Two QTLs related to oleic acid were identified. One QTL was located in the region of EM12ME17-EM9ME10 on linkage group LG15, which could explain 8.99% of the oleic acid content variation in the population and additive effect was 1.58%. The other was located in the region of AG16-EM17ME15b on LG20, and explained 5.30% phenotypic variation and additive effect was -1.22%. One QTL related to linoleic acid were identified. It was located in the region of EM5MEllb-EM12ME14 on linkage group LG15, which could explain 9.46% of the linoleic acid content variation in the population and additive effect was 0.68%.
引文
[1]殷艳,廖星,余波,等.我国油菜生产区域布局演变和成因分析[J].中国油料作物学报,2010,32(1):147-151
    [2]王汉中.我国油菜产需形势分析及产业发展对策[J].中国油料作物学报,2007,29(1):101-105
    [3]王汉中.发展油菜生物柴油的潜力、问题与对策[J].中国油料作物学报,2005,27:74-76
    [4]张天真.作物育种学总论[M].北京:中国农业出版社,2003
    [5]傅廷栋主编.杂交油菜的育种与利用(第二版).武汉:湖北科学技术出版社,2000
    [6]Shen J X, Fu T D, Yang G S.et al. Genetic analysis of rape-seed self-incompatibility lines reveals significant heterosis of different patterns for yield and oil content traits [J]. Plant Breeding,2005,124,111-116.
    [7]沈金雄,傅廷栋,杨光圣,等.甘蓝型油菜杂种优势及产量性状的遗传改良[J].中国油料作物学报,2005,27(1):5-9
    [8]Brandle J.E. and P.B.E McVetty. Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines[J]. Crop Sciences,1989, 29:1191-1195
    [9]傅廷栋,杨小牛,杨光圣.甘蓝型油菜波里马雄性不育系的选育与研究.华中农业大学学报,1989,(3):201-207
    [10]李殿荣.甘蓝型油菜雄性不育系、保持系、恢复系选育成功并已大面积推广中国农业科学,1986,(5):94
    [11]刘后利.油菜遗传育种学[M].北京:中国农业大学出版社,2000
    [12]高之仁.数量遗传学.成都:四川大学出版社,1986
    [13]马朝芝,刘后利.甘蓝型优质新品系的配合力分析.华中农业大学学报,1994,13:553-559
    [14]张建中,梁冠权.杂交水稻主要性状配合力的综合判断.湛江农业学报,1988,(2):1-9
    [15]沈金雄.甘蓝型油菜杂种优势及其遗传分析.华中农业大学博士学位论文,2003
    [16]翟虎渠,曹树青,唐运来,等.籼型杂交水稻光合性状的配合力及遗传率分析.作物学报,2002,,28:154-160
    [17]张向群.玉米自交系两种配合力在杂种一代的表现.作物学报,1987,13(2):135-142
    [18]何光华,袁柞廉,郑家奎,等.水稻籽粒蛋白质、游离氨基酸含量的配合力与杂种优势分析.作物学报,1996,22:192-196
    [19]张建一,杨世尧,赖群生.几个甘蓝型油菜品种的配合力分析.中国农业科学,1983,(2):26-32
    [20]黄泽素,杨晓容,王通强,等.甘蓝型杂交油菜亲本配合力和遗传率分析.种子,2004,(12):78-85
    [21]刘绚霞,董振生,刘创社.甘蓝型优质杂交油菜主要农艺性状配合力与遗传率研究.中国油料作物学报,2001,(3):60-65
    [22]Sheikh I. A., Govil, S. K., Srivastava, A, N, et al. Gene action for oil content in Indian mustard. Agric, Sci,1983, (63):404-406
    [23]顾菊生,王庆伦,朱宜章.几个甘蓝型油菜品种(系)的主要经济性状配合力分析.浙江农业科学,1985,(6):37-42
    [24]沈金雄,傅廷栋,杨光圣.双低甘蓝型油菜自交不亲和系杂种优势的研究.中国农业科学,2002,35(9):1060-1065
    [25]翟虎渠,曹树青,唐运来,等.籼型杂交水稻光合性状的配合力及遗传率分析.作物学报,2002,28:154-160
    [26]陈静,陶贵祥.贵州芥菜型油菜含油率配合力效应分析.西南农业学报,2000,13(1):55-58
    [27]张子龙,李加纳,唐章林,等.甘蓝型黄籽油菜主要品质性状间的相关性分析[J].中国农学通报,2008,24(7):158-160
    [28]唐泽静,杨光伟.油菜主要品质性状的相关与回归分析[J].西南农业大学学报,1986,(4):101-104
    [29]周永明,刘后利.甘蓝型油菜种子中几种主要脂肪酸含量的遗传[J].作物学 报,1987,13(1):1-9
    [30]Shiga,t.,and K.Takayanagi,et al.1974,Breeding for improvement of fatty aicid composition in rapeseed,Brassica napus L.Ⅲ.Genotype dependent correlation between fatty acids in rapeseed oil.japan.J.Breed.24:291-297
    [31]戚存扣,浦惠明,傅寿仲.甘蓝型油菜群体主要脂肪酸含量间的相关与回归分析[J].江苏农业学报,1993,9(4):11-15
    [32]高建芹,浦惠明,戚存扣,等.高含油量油菜种子和果皮油份积累及主要脂肪酸的动态变化[J].中国油料作物学报,2009,31(2):173-179
    [33]梅德圣,张垚,李云昌,等.油菜油分、蛋白质和硫苷含量相关性分析及QTL定位[J].植物学报,2009,44(5):536-545
    [34]李加纳,邱厥.甘蓝型油菜芥酸及其它脂肪酸数量性状的遗传分析[J].中国油料,1987,(4):7-11
    [35]王丰,邱厥.甘蓝型油菜蛋白质含量的遗传及与其他几个性状相关的研究[J].中国农业科学,1990,23(6):42-47
    [36]张友贵,王兆木,等.从气候条件对油菜产量及品质的影响看新疆油菜的合理布局[J].新疆农业科学,1982,(6):11-13
    [37]沈惠聪,江宇,等.油菜籽含油量与气象因子的相关及预报模式[J].浙江农业大学学报,1989,7(3):253-259
    [38]沈惠聪,江宇,等.甘蓝型油菜种子主要脂肪酸气象生态效应及数学模型的研究[J].浙江农业大学学报,1990,16(1):69-76
    [39]刘典显.淮北油菜苗期气象条件与产量关系的统计学分析[J].中国油料,1982,(4):27-31
    [40]张子龙,李加纳,唐章林,等.环境条件对油菜品质的调控研究[J].中国农学通报,2006,22(2):124-129
    [41]付三雄,伍晓明,李成磊,等.不同地理位置对甘蓝型油菜含油量的效应研究[J].江苏农业学报,2009,25(2):247-252
    [42]赵合句,李培武,李光明,等.施肥水平对优质油菜种子生化品质影响的研究[J].作物学报,1991,17(4):256-259
    [43]涂金星,张冬晓,张毅,等.我国油菜育种目标及品种审定问题的商榷[J].中 国油料作物学报.2007,29(3):350-352
    [44]傅寿仲,张洁夫,戚存扣,等.甘蓝型油菜高含油量种质选育研究[J],中国油料作物学报.2008,30(3):279-283
    [45]陈莹.油菜芥酸含量的遗传育种研究概况[J].种子,1995,75(2):40-43
    [46]Stoutjesdijk P A, Hurlestone C, Singh S, et al. High-oleic acid Australian Brassica napus and B. Juncea varieties produced by cosuppression of endogenous delta 12-desaturases [J]. Biochem Soc Trans,2000,28(6):938-940
    [47]官春云,王国槐,陈社员.转基因抗虫油菜品系选育和性状研究[J].湖南农业大学学报,2000,26(5):335-336
    [48]Tanhuanpana P, Vilkki J. Marker-assisted selection foroleic acid content in turnip rape [J]. Plant Breed,1999,118 (6):568-570
    [49]王汉中.特高含油量油菜培育成功[N].人民日报:海外版,2006,11
    [50]盖钧镒,王建康,章元明.植物数量性状遗传体系[M].北京:科学出版社,2003
    [51]甘功勋,林树春.油菜含油量研究及高油分育种[J].种子,1997,(1):31-33
    [52]王通强.油菜籽含油量的遗传及杂种优势[J].贵州农业科学,1992,(6):37-40
    [53]张海珍.油菜籽品质性状的胚、细胞质和母体遗传效应分析.浙江大学博士学位论文,2004
    [54]韩继祥.甘蓝型油菜含油量的遗传研究[J].中国油料,1990,(2):1-6
    [55]张书芬.甘蓝型油菜重要农艺性状和品质性状的杂种优势及品质分析.华中农业大学博士论文,2005
    [56]张洁夫,戚存扣,浦惠明,等.甘蓝型油菜含油量的遗传与QTL定位[J].作物学报,2007,33(9):1495-1501
    [57]付三雄,戚存扣.甘蓝型油菜含油量的主基因+多基因遗传分析[J].江苏农业学报,2009,25(4):731-73
    [58]Grami B, Baker RJ, Stefansson B R.Genetics of protein and oil content in summer rape:Heritability, number of effeetive factor, and correlations.Can J Plant Sci..1977,57:937-943
    [59]高永同.黄籽油菜的遗传和育种研究进展[J].中国油料,1984,(4):82-87
    [60]闫世江.不同来源甘蓝型黄籽油菜品质性状的遗传分析.西南农业大学硕士毕业论文,2001
    [61]Delourme R,FalentinC, Huteau V, et al. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet.2006,113:1331-1345
    [62]Zhao J Y, Heiko C B, Zhang D Q. Oil content in a European×Chinese rapeseed population:QTL with additive and epistatic effects and theire genotype-environment interactions. Crop Sci.2005,45:51-59
    [63]Mahmood T, Rabman M H, Stringam G R, et al. Identification of quantitative trait loci(QTL)foroiland protein contents and their relationships with other seed quality traits in Brassiea juncea.theor Appl Genet.2006,113:1210-1220
    [64]Harvey B L, Downey R K. The inheritance of erucic acid content in rapeseed (Brassica napus L.). Can J Plant Sci,1964,44:104-111
    [65]刘雪平.人工合成甘蓝型油菜种皮色泽、芥酸含量和花色的遗传研究.华中农业大学博士论文,2005
    [66]刘定富,刘后利.甘蓝型油菜16种芥酸基因型脂肪酸组成的比较[J].华中农业大学学报,1989,8(4):291-296
    [67]刘后利.油菜遗传与育种[M].上海:上海科学技术出版社,1985
    [68]张书芬,王建平,任乐建,等.高配合力双低油菜细胞质雄性不育基因的遗传及细胞质效应[J].中国油料作物学报,1999,2(1):1-6
    [69]张洁夫,戚存扣,浦惠明,等.甘蓝型油菜主要脂肪酸的主基因+多基因遗传分析[J].中国油料作物学报,2007,29(4):359-364
    [70]Alemayehu N, HC Beeker and C Heiko.Variation and inheritance eof erucic acid content inBrassica carinata germplasm collections from Ethiopia[J].Plant Breeding,2001,20:331-335
    [71]吴江生.甘蓝型油菜芥酸含量的遗传研究[J].湖北农业科学,1989,(7):16-17
    [72]刘定富,刘后利.甘蓝型油菜芥酸基因的等位性和同一性分析[J].湖北农学院学报,1992,12(2):1-6
    [73]戚存扣,益钧镒,章元明.甘蓝型油菜芥酸含量的组主基因+多基因遗传[J]. 遗传学报,2001,28(2):182-187
    [74]张洁夫,戚存扣,浦惠明,等.甘蓝型油菜芥酸含量的遗传与QTL定位[J].江苏农业学报,2008,24(1):22-28
    [75]宋志荣,官春云.油菜叶片和种子硫苷总量形成动态研究[J].作物研究,2008,(2):86-91
    [76]Berme R R N, Mellon F A, Boring N P, et al. Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (Salad rocket) [J]. Phytochemistry,2002,61:25-30
    [77]宋志荣,官春云.甘蓝型油菜硫苷性状的RAPD连锁标记研究[J].湖南农业大学学报,2010,36(3):254-257
    [78]张勤争,吴海福,郎献华,等.油菜籽硫代葡萄糖苷含量影响因子的研究[J].浙江农业学报,1990,2(1):30-34
    [79]张耀文,李殿荣.油菜硫营养及其与品质的关系[J].土壤肥料,2002,(5):3-7
    [80]Kondra I P, Stefasom B R. Inherifance of the major glucosinolates of rapeseed (Brassica napus). Canad J Plant Sci,1970,50:643-647
    [81]Zhou Y-M, Liu H-L. The heredity of the total glucosinolate content in rapeseed (B. napus). Oil Crops of China,1987,9 (1):15-18
    [82]Morice J. Selection of a variety of rapeseed without erucic acid and without glucosinolates. Proc 4th Intern Rapeseed Cong, Paris,1974.31-37
    [83]Zhang S-F, Song W-G,Ren R-J,&. Studies on hereditary capacity of quantitative characters and gene effects of CMS double low Brassica napus. OilCrops of China,1996,18 (3):1-3
    [84]王瑞,徐新福,李加纳,等.甘蓝型油菜硫苷组分的胚、细胞质和母体遗传效应分析.作物学报,2007,33(12):2001-2006
    [85]ZHANG H Z, SHI C H, WU J G, et al. Analysis of genetic and genotype×environment interaction effects from embryo, cytoplasm and matemal plant for oleic acid content of Brassica napus L.[J]. Plant Science,2004, 167(1):43-48
    [86]Pleines S and W Friedt. Breeding for improved C18-fatty acid composition in rapeseed (Brissica napus L.).Fatty Science and Technology,1988,90:167-171
    [87]索文龙,戚存扣.甘蓝型油菜油酸含量的主基因+多基因遗传分析[J].江苏农业学报2007,23(5):396-400
    [88]Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape(Brassica napus L.)[J]. Theor Appl Genet,2000,101:897-901
    [89]Schierholt A, Rucker B, Becker H C. Inheritance of high oleic acid mutations in winter oilseed rape (Brassica napus L.)[J]. Crop Sci.2001,41,:1444-1449
    [90]Yermanos DM and PE Knowles.Fatty acid composition of the oil in crossed seed of flax. Crop Science,1962,2(2):109-111
    [91]Pleines S and W Friedt. Breeding for improved C18-fatty acid composition in rapeseed(Brissica napus L.).Fatty Science and Technology,1988,90:167-171
    [92]甘莉,王新.油菜种子贮藏蛋白的遗传多样性分析[J].华中农业大学学报,1999,18(6):528-532
    [93]Brandle JE and PBE McVetty. Effects of inbreeding and estimates of additive genetic variance within seven summer oil seed rape cultivars.Genome,1988, 32:115-119
    [94]胡中立.甘蓝型油菜几个品质性状的遗传分析[J].中国油料,1987(1):19-22
    [95]Grami B and Stefansson BR. Paternal and maternal effeets on Protein and oil content in summer rape. Can.J.Plant Sci 1977,57(3):945-949
    [96]王丰,邱厥.甘蓝型油菜蛋白质含量的遗传及与其他几个性状相关的研究[J].中国农业科学,1990,23(6):42-47
    [97]Slocum M K..Alalyzing the genomic structure of Brassica species using RFLP analysis. In:Helentjaris T,Burr B.(eds).Development and application of molecular markers to problems in plant genetics.Cold Spring Harbor Lab.Prsee NY.1989
    [98]Landry B S, Hubert N,Etoh T, et al. A genetic map for Brassica napus based on restriction fragment length polymorphism detected with expressed DNA sequences.Genome,1991,34(4):543-552
    [99]Pradhan AK,Gupta V, Mukhopadhyay A,et al. A high-density linkage map in Brassica juncea (Indianmustard) using AFLP and RFLP markers. Theor Appl. Genet.,2003,106:607-614
    [100]Lombard V, Delourme R A. Consensus linkage map for rzpeseed(Brassica napus L.):construction and integration of three individual maps from DH population[J]:Theoretical and Applied Genetics,2001,103(4):491-507
    [101]Jin M Y, LI J N, FU F Y,et al.QTL Analysis of the oil content and the hull content in Brassica napus L.[J].Agricultural Sciences in China,2007,6(4):414-421
    [102]Li Y Y, Shen J X, Wang T H, et al.QTL analysis of yield-re-lated traits and their association with functional markers in Brassica napus L. [J]. Australian Journal of Agricultural Research,2007,58(8):759-766
    [103]Qiu D, Morgan C, Shi J, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content [J].Theoretical and Applied Genetics,2006,114:67-80
    [104]]Lowe A J, Moule C, Trick M, et al. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species [J].Theoretical and Applied Genetics,2004,108:1103-1112
    [105]蔡长春,傅廷栋,陈宝元,等.甘蓝型油菜遗传图谱的构建及开花期的QTL分析[J].中国油料作物学报,2007,29(1):1-8
    [106]Sun Z D,Wang Z N,Tu J X,et al.An ultradense genetic recombination map forBrassica napus,consisting of 13551 SRAP markers [J].Theoretical and Applied Genetics,2007
    [107]钟兆飞,朱亚娜,蒋立希.分子标记在油菜遗传作图中的应用[J].浙江农业科学,2008,(3):313-318
    [108]Ecke W, Uzunova M, Weibleder K. Mapping the genome of repaseed(Brassica napus) Ⅱ:localization of gnes controlling emcic acid synthesis and seed oil content. TheorAppl Genet,1995,91:972-977
    [109]Rajcan I.,Kott L.S., Kasha K.J.,and Beversdorf W.D.,1999, Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed(Brassica napus L.), Euphytica,1999,105:173-181
    [110]Cheung W Y, Landry B S, Raney P Molecular mapping of seed quality traits in Brassica juncea(L.) Czern And Cross]. Acta Hort,1998a,459:139-147
    [111]Cheung W Y, Gugel R K, Landry B. Identification of RFLP markers linked to the white rust resistance gene (Acr) in Mustard. Genome,1998b,41:626-628
    [112]刘列钊,林呐,谌利,等.甘蓝型油菜5个重要性状QTL分析[J].农业生物技术学报,2006,14(5):747-751
    [113]邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.华中农业大学学位博士论文,2007
    [114]张洁夫,戚存扣,浦惠明,等.甘蓝型油菜主要脂肪酸组成的QTL定位[J].作物学报,2008,34(1):54-60
    [115]付福友.甘蓝型油菜遗传图谱的构建和品质相关性状QTL分析.西南大学博士学位论文,2007
    [116]荣廷昭主编.田间试验与统计分析.成都:四川大学出版社,2001
    [117]沈高中,赖仲铭.玉米自交系主要性状的配合力与环境互作的研究[J].作物学报,1987,13(1):69-76
    [118]张泽民,任和平.玉米穗粒性状配合力与环境互作的研究[J].河南农业大学学报,1990,(1):24-28
    [119]戚存扣,浦惠明,张洁夫,等.甘蓝型油菜品种间籽粒产量及产量性状杂种优势分析[J].江苏农业科学,2003,19(3):145-150
    [120]李树林,钱玉秀,尹继春,等.甘蓝型油菜雄性不育两系法杂种优势利用研究[J].上海农业科技,1984,(5):8-11
    [121]Grant I. and W.D. Beversdorf Heterosis and combining ability estimates in spring rape(Brassica napus).Can.J. Genet. Cytol.,1985,27:472-478
    [122]Thompson K F. Cytoplasmic male sterility in oilseed rape. Heredity, 1972,29:253-257
    [123]Sernyk J L and BR. Stefansson. Heterosis in summer rape(Brassica napes L.), Can. J. Plant Sci.,1983,63:407-413
    [124]刘定富,刘后利.甘蓝型油菜脂肪酸成份的基因作用形式和效应[J].作物学报,1990,16(3):193-199
    [125]冯宗云主编.遗传学.成都:四川科学技术出版社,1996
    [126]明道绪主编.田间试验与统计分析.北京:科学出版社,2005
    [127]张洁夫.甘蓝型油菜无花瓣和脂肪酸的遗传与分子标记.南京农业大学博士 学位论文,2007
    [128]王峰.甘蓝型油菜遗传图谱构建及农艺、品质性状的QTL定位.湖南农业大学博士学位论文,2009
    [129]ZHANG Shu-Fen, MA Chao-Zhi, ZHU Jia-Cheng, et al. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene[J]. Acta Genetica Sinica,2006,33 (2):171-180
    [130]Parkin I A P, Sharpe A G, Keith D J, et al. Idetificntion of the A and C genomes of amphidiploid Brassica napus(oilseedrape)[J].Genome.1995,38(36):1122-1231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700