用户名: 密码: 验证码:
复杂飞行器鲁棒容错控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着科学技术快速发展与进步,飞行器变得越来越复杂,人们对复杂飞行器的安全性、可靠性及可维护性要求越来越高。为了大量的减少灾难性事故发生、减少社会经济损失以及保障人民的生命安全,飞行控制系统的主动容错控制技术为解决复杂飞行器飞行安全问题提供了一条选择之路。在过去的几十年里,复杂控制系统的故障诊断与容错控制技术得到了长足发展,尤其最近十几年,伴随着计算机网络技术、模式识别、机器学习和各种先进控制算法的快速发展,许多新方法和新技术被引入到该研究领域中,大大丰富了飞行控制系统主动容错控制技术的研究内容。
     目前美、俄、法、英、日等航空航天强国对各种复杂飞行器的研究投入了大量的人力和物力,并已取得了大量的研究成果,有些关键性技术已进入工程化验证阶段。我国作为一个世界性大国,应该加大力度发展以之相关的各项关键性技术,以便进行技术储备。本研究主要是在基于前人已有的研究基础上,针对固定翼飞行器和多旋翼飞行器,进一步研究主动鲁棒容错控制技术。本文研究内容主要分为如下五部分:
     第一:针对近空间飞行器姿态控制系统,基于神经网络技术和指令滤波反演方法,提出一种鲁棒容错控制方法,首先给出近空间飞行器姿态控制系统的数学模型,并在此基础上考虑建模误差引起的不确定和外部干扰,及操纵面故障下NSV姿态控制系统的状态方程。主要的设计涉及两个单元,一个是辅助系统的设计,一个是基于辅助系统的控制器的设计。辅助系统引入神经网络确保辅助系统的鲁棒性。并且通过Lyapunov定理严格证明闭环系统的稳定性。最后在近空间飞行器姿态控制系统上进行Matlab仿真验证,仿真结果显示所提的方法可以使得具有外部干扰的不确定飞控系统在操纵面损伤下具有理想的容错跟踪性能。
     第二:针对近空间飞行器姿态控制系统,并考虑飞行器的操纵面偏转的位置饱和和速率约束。基于动态控制分配方法,提出在发生操纵面卡死和损伤故障情况下的控制重新分配方法。其中伪控制器的设计采用动态逆控制,整体容错控制架构仍然采用第二章所提的框架。首先给出系统建模误差引起的不确定和外部干扰,及操纵面卡死和损伤故障下的NSV姿态控制系统角速率控制回路的数学模型。分别设计操纵面卡死故障诊断器和一个自适应滑模观测器,并将隐含的故障和干扰信息反馈给伪控制器和动态控制分配算法,以实现操纵面卡死和损伤故障下的容错控制。最后在近空间飞行器姿态控制系统上进行Matlab仿真验证,仿真结果显示所提的方法的有效性。
     第三:针对近空间飞行器姿态控制系统,考虑作动器控制回路动态,基于分散式容错控制框架,设计飞控系统的作动器的损伤和卡死故障检测和辨识单元,和基于观测器的辅助系统单元,该辅助系统用来将操纵面损伤故障和干扰隐含进去。设计一个可重构容错控制器的用来实现飞行控制系统的容错控制。首先给出系统在作动器卡死,损伤,和操纵面损伤故障下的NSV姿态控制系统。其次设计一种多观测器的作动器回路故障检测和辨识单元,利用一种决策机制判断当前所发生的确切作动器故障形式。接着基于自适应滑模观测器隐含操纵面损伤故障和干扰信息,所得到个故障和隐含信息实时反馈给可重构控制器以实现各种类型故障下的容错控制。并且通过Lyapunov定理严格证明闭环系统的稳定性。最后在近空间飞行器姿态控制系统上进行Matlab仿真验证,仿真结果显示所提的方法的有效性。
     第四:针对非仿射非线性飞行控制系统,提出一种非仿射非线性鲁棒容错控制方法。该方法利用第二章所提的容错控制框架,并在此基础上,首先基于观测器技术设计一种将参数信息和干扰信息隐含其中的辅助系统设计控制器,其次给出一种非仿射非线性可重构控制器设计方法,实现非仿射非线性系统的鲁棒自适应容错控制。理论分析和仿真结果均显示所提方法的有效性。
     第五:主要针对第二章所提的容错控制框架,利用第三章所提的自适应滑模观测器,设计基于自适应滑模观测器的指令滤波鲁棒反演容错控制。并进一步将该算法应用在3-DOF Hover平台上,验证该框架下所设计算法的实际应用价值。
At present, with the rapid development and progress of the society, the scale of the complexcontrol system becomes larger and larger; the demands for the safety, reliability and maintainability ofthese complex control systems are increasing. In order to reduce the number of catastrophic accidents,reduce the environment pollution, reduce the losses of social economic assets and protect the lives ofthe people, the technology about fault diagnosis and fault tolerant control of complex control systemsprovides an alternative road for solving the problems described above. In the past few decades, thetechnology about fault diagnosis and fault-tolerant control of the complex control system has madeconsiderable progress. Especially in the past ten years, along with the quick development of thecomputer network, pattern recognition, machine learning and all kinds of advanced control algorithms,many new methods and technologies are introduced into the fields of fault diagnosis and fault tolerantcontrol, which greatly enrich the research contents of fault diagnosis and fault-tolerant controltechnology.
     Currently, United States, Russia, France, United Kingdom, Japan and other aerospace powercountries have put a lot of manpower and material resources for developing the flight technology ofncomplex vehicles, they have achieved lots of research results, even some key technologies haveentered the engineering verification phase. China, as a world power country, should vigorouslydevelop the relational key technologies for technical reserves. Based on the existing research results,this study is further investigating the technology about active robust fault tolerant control forfixed-wing aircraft and multi-rotor vehicles. This research is divided into the following five sections:
     First: For near space vehicl attitude control system, based on neural network and commandfiltered backstepping techniques, a robust fault-tolerant control method is proposed, first, near spacevehicle attitude control system mathematical model is given, on this basis, the state equation of NSVattitude control system under the modeling errors caused by uncertainty, external disturbances andcontrol surfaces faults is considered. The fault tolerant control design involves two main units, one isauxiliary system design, the other is controller design using the auxiliary system. The neural networkis used to ensure robustness for auxiliary system. And the stability of the closed-loop system isrigorously proved by Lyapunov theorem. Finally, in the Matlab simulation of NSV attitude controlsystem, the simulation results show that the proposed method can make the tracking performance forflight control system with uncertain and external disturbances under control surface damage.
     Second: For the near space vehicle attitude control system, and to consider the flight control surface deflection position and velocity saturation constraints, based on the dynamic control allocationmethod, a control reallocation method is proposed under control surfaces stuck and damage faults.The pseudo-controller is designed using dynamic inversion method. The overall fault-tolerant controlarchitecture is still mentioned in the framework of the second chapter. First, we give the attitudemodel, which is caused by modeling errors; external disturbances; the control surfaces stuck anddamage faults. And an adaptive sliding mode observer is designed, which implicits faults anddisturbances information. In order to achieve fault tolerant control, the pseudo-dynamic controller andcontrol allocation can be accommodated using above information. Finally, Matlab simulation resultsshow the effectiveness of the proposed method for NSV attitude control system.
     Third: For near space vehicl attitude control system, considering the actuator control loopdynamics, based on decentralized fault-tolerant control framework, actuators damage and stuck faultdetection and identification unit is designed for the flight control system, and observer-based auxiliarysystem unit is also designed. The auxiliary system implicits control surface damage faults anddisturbances information. A reconfigurable fault-tolerant controller is used to achieve fault-tolerant.First, we give the NSV attitude control system under actuator stuck, lose of effectiveness, and controlsurface damages faults. Second, a multi-observer is designed for actuator fault detection andidentification using a decision-making mechanism to determine current actuator failure modes. Then,an adaptive sliding mode observer is designed for implicit control surface damages and interferenceinformation. The reconfigurable controller can achieve fault tolerant using the information of actuatorFDI unit and adaptive sliding mode observer. And the stability of the closed-loop system is rigorouslyproved by Lyapunov theorem. Finally, Matlab simulation results show the effectiveness of theproposed method for NSV attitude control system.
     Fourth: For non-affine nonlinear flight control systems, a nonaffine nonlinear robust FTCmethod is proposed. Here, the fault tolerance control framework of Chapter II is used, and on thisbasis, observer-based auxiliary system is designed to implicit fault parameteres and disturbancesinformation. Then reconfigurable controller is designed using the dynamic of observer-based auxiliarysystem, which can chieve nonaffine nonlinear systems robust adaptive fault-tolerant. Theoreticalanalysis and simulation results show the effectiveness of the proposed method.
     Fifth: Based on proposed fault tolerant control framework of second chapter and proposedadaptive sliding mode observer of the third chapter, a fault-tolerant command filtered backstepping isdesigned. And further application of the algorithm in the3-DOF Hover platform, verify theframework design algorithm practical application value.
引文
[1]崔尔杰.近空间飞行器研究发展现状及关键技术问题[J].力学进展,2009,39(6):658-673.
    [2]李勇,姚伟,郑威,等.近空间系统的类型与特点[J].卫星应用,2006,14(3):1-6.
    [3]谢础,贾玉红,黄俊,吴永康.航空航天技术概论(第2版).北京:北京航空航天大学出版社.2008.
    [4]甄红涛,齐晓慧,夏明旗,赵红瑞.四旋翼无人直升机飞行控制技术综述[J].飞行力学,2012,30(04),295-299
    [5]王彦广,李健全,李勇,等.近空间飞行器的特点及其应用前景[J].航天器工程,2007,16(1):50-57.
    [6]段锋.临近空间飞行器现状与发展[J].航空科学技术,2007,(06):22-25.
    [7] Fidan B, Mirmirani M, Ioannou P A. Flight dynamics and control of air-breathing hypersonicvehicles: review and new directions [C].12th AIAA International Space Planes andHypersonic Systems and Technologies, Norfolk, USA, AIAA2003-7081:1-24.
    [8] Hanson J M. Advanced guidance and control project for reusable launch vehicles [C]. AIAAGuidance, Navigation, and Control Conference and Exhibit, Denver: AIAA,2000:1-10.
    [9] Lambert C. Developing architectures for high altitude airships [C]. AIAA’s3rd AnnualAviation Technology, Integration, and Operations (ATIO) Tech, Denver, USA, AIAA2003-6781:1-6.
    [10]曹秀云.近空间飞行器成为各国近期研究的热点(上)[J].中国航天,2006,37(6):32-35.
    [11]曹秀云.近空间飞行器成为各国近期研究的热点(下)[J].中国航天,2006,37(7):30-32.
    [12] Schmidt D K. Dynamic modeling, control, and station-keeping guidance of a largehigh-altitude “near-space” airship [C]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit. Keystone, USA: AIAA2006-6781:1-14.
    [13] Colozza A, Dolce J L. High altitude long endurance airships for coastal surveillance [R].NASA-TM-2005-213427:1-15.
    [14] McClinton C R, Rausch V L, Stiz J, et al. Hyper-X program status [C].39th AIAA AerospaceSciences Meeting and Exhibit, Reno, USA, AIAA2001-0828:1-11.
    [15] Johnson M D, Calise A J, Johnson E N. Evaluation of an adaptive method for launch vehicleflight control [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin,USA, AIAA2003-5789:1-11.
    [16] Blocker W D, Reubush D E. X-43A stage separation system-a flight data evaluation [C].AIAA/CIRA13th International Space Planes and Hypersonics Systems and Technologies,Capua, Italy, AIAA2005-3335:1-8.
    [17] Eguchi K, Yokomaku Y.2000Overview of stratospheric platform airship R&D Program inJapan [C]. Systems Workshop SPSW2000, Tokyo, Japan,2000:15-23.
    [18] Shaughnessy J D, Pinckney S Z, McMinn J D. Hypersonic vehicle simulation model:winged-cone configuration [M]. Langley Research Center Hampton, Virginia,1990.
    [19] Harsha P T, Keel L C, Castrogiovanni A, et al. X-43A vehicle design and manufacture [C].AIAA/CIRA13th International Space Planes and Hypersonics Systems and Technologies,AIAA2005-3334:1-9.
    [20] Joyce P J, Pomroy J B, Grindle L. The hyper-X launch vehicle: challenges and designconsiderations for hypersonic flight testing [C]. AIAA/CIRA13th International Space Planesand Hypersonics Systems and Technologies, Reston, USA: AIAA2005-3333:1-19.
    [21]陈予恕,郭虎伦,钟顺.高超声速飞行器若干问题研究进展[J].飞航导弹,2009,(8):26-33.
    [22] Peebles C. Learning from experience: case studies of the Hyper-X project [C].47th AIAAAerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition,Orlando, USA, AIAA2009-1523:1-6.
    [23] Li H, Wu L, Si Y, Gao H, Hu X. Multi-objective fault tolerant output tracking control of aflexible air-breathing hypersonic vehicle [J]. Proc. IMechE Part I: Journal of Systems andControl Engineering.224(6):647-667,2010.
    [24] Jiang Y, Hu Q L, Ma G F. Adaptive backstepping fault tolerant control for flexible spacecraftwith unknown bounded disturbances and actuator failures [J]. ISA Transactions,49(1):57-69,2010.
    [25] Guo Y Y, Jiang B, Zhang Y M, Wang J F. Novel robust fault diagnosis method for flightcontrol systems [J]. Journal of Systems Engineering and Electronics,19(5):1017-1023,2008.
    [26] Liao F, Wang J L, Yang G H. Reliable robust flight tracking control: an LMI approach [J].IEEE Transactions on Control Systems Technology,10(1):76-89,2002.
    [27] Hu Q L, Xiao B, Friswell M I. Robust fault tolerant control for spacecraft attitude stabilisationsubject to input saturation [J]. IET Control Theory and Applications,5(2):271-282,2011.
    [28]陈雪芹,耿云海,王峰,张迎春.基于LMI的鲁棒容错控制及其在卫星姿态控制系统中的应用.控制理论与应用,2008,25(1):95-99.
    [29]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [30] Blanke M, Kinnaert M, Lunze J et al. Diagnosis andl fault tolerant control (2th ed.)[M]. BerlinHeidelberg, Springer-Veriag,2006.
    [31]闻新,张洪钺,周露等.控制系统的故障诊断和容错控制[M],北京:机械工业出版社,1998.
    [32]姜斌,冒泽慧,杨浩,张友民.控制系统的故障诊断与故障调节[M],北京:国防工业出版社,2009.
    [33] Boskovic J D, Prasanth R K and Mehra R K. Reconfigurable fault tolerant flight control:Ahgorithms, implementation and metrics [C]. AIAA Guidance, Navigation and controlConference and Exihibit, Keystone, Colorado,21-24August,2006: l-24.
    [34] Pierce W H. Failure-tolerant computer design [M]. Academic Press, Inc, Newyork,1965.
    [35] Niederiinski A. A heuristic approach to the design of interacting multivariable systems [J].Automatica,1971,7:691-701.
    [36] Fisher J R. Aircraft control using nonlinear dynamic inversion in conjunction with adaptiverobust control [C]. Master of Science Thesis,Texas A and M University,2004.
    [37] Zhang Y M, Jiang J. Active fault-tolerant control system against partial actuator failures [J].IEE Proceedings: Control Theory and Applications,2002,149:95-104.
    [38] Chen W, Jiang J. Fault-tolerant control against stuck actuator faults [J]. IEE Proceedings:Control Theory and Applications,2005,152:138-146.
    [39] Ganguli S, Marcos A, Balas G J. Reconfigurable LPV control design for Boeing747-100/200longitudinal axis [C].In American Control Conference,2002:3612-3617.
    [40] Gopinathan M, Boskovic J D, Mehraetal R K. A multiple model Predictive scheme forfault-tolerant flight control design [C]. In Proceedings of the37th IEEE Conference onDecision and Colltrol,1998:1376-1381.
    [41] Zhang Y, Jiang J.Fault tolerant control system design with explicit consideration ofperformance degradation [J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39:838-848.
    [42] Burcham F W, Fullertron C G, Maine T A. Manual maniPulation of engine throttles foremergency flight control [R]. Technical Report NASA/TM-2004-212045, NASA,2004.
    [43] Burcham F W, Maine T A, Burken J. Using engine thrust for emergency flight control: MD-11and B-747results [R]. Technical Memorandum NASA/TM-1998-206552, NASA,1998.
    [44] Smaili M H, Breeman J, Lombaerts T J J, et al.A simulation benchmark for integrated faulttolerant flight control evaluation [C]. In AIAA Modeling and Simulation TechnologiesConference and Exibit,2006.
    [45]__.Uncontrolled descent and collision with terrain, USAIR flight427, Boeing737-300,N5l3AU, near Aliquippa, Pennsylvania September8,1994. Aircraft Accident ReportNTSB/AAR-99-01, National Transportation Safety Board,1994.
    [46]__.In-flight upset;240km NW Perth, WA Boeing Co777-200,9M-MRG. Aviation SafetyInvestigation Report-Final200503722, Australian Transport Safety Bureau,2005.
    [47] Boskovic J D, Mehra R K. A decentralized fault-tolerant control system for accommodation offailures in higher-order flight control actuators [J], IEEE Transactions on Control SystemsTechnology,2010,18(5):1103-1115.
    [48] Boskovic J D, Mehra R K. Stable adaptive multiple model-based control design foraccommodation of sensor failures [C]. Proceedings of the American Control ConferenceAnchorage, AK May,8-10,2002.
    [49] Boskovic J D, Mehra R K. A multiple model-based reconfigurable flight control system design[C]. In Proceedings of the37th IEEE Conference on Decision and Control,4503-4508,1998.
    [50]__. The transportation safety board of Canada issues safety recommendations to improverudder inspections on Airbus aircraft. Communiques TSB#AO4/2006AOSFOO47,Transportation Safety Board of Canada,2006.
    [51] Smaili M H, Mulder J A. Flight data reconstruction and simulation of the1992AmsterdamBijlmermeer airplane accident [C]. In AIAA Modeling and Simulation TechnologiesConference,2000.
    [52] Burcham F W, Maine T A, Kaneshinge J et al. Simulator evaluation of simplifiedpropulsion-only emergency flight control system on transport aircraft [R]. Technical ReportNASA/TM-1999-206578, NASA,1999.
    [53] Gero D. Aviation disasters: the world's major civil airliner crashes since1950. Sparkford:Patrick Stephens,2006.
    [54] Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault tolerant control systems [J].Annual Reviews in Control,2008,32(2):229-252.
    [55] Siljak D D. Reliable control using multiple control systems [J]. International Journal ofControl.1980,31(2):303-329.
    [56] Yang G H, Wang J L, Soh Y C. Reliable H∞controller design for linear systems. Automatica,2001,37(5):717-725.
    [57] Tao G, Joshi S M, Ma X L. Adaptive state feedback and tracking control of systems withactuator failures [J]. IEEE Transactions on Automatic Control,2001,46(1):78-95.
    [58] Wu H N. Reliable LQ fuzzy control for continuous-time nonlinear systems with actuator faults[J]. IEEE Transactions on Systems, Man, and Cybernetics-part B: cybernetics,2004,34(4):1743-1752.
    [59] Wu H N. Zhang H Y. Reliable mixed L2/H∞fuzzy static output feedback control for nonlinearsystems with sensor faults [J]. Automatica,2005,41(11):1925-1932.
    [60]王敏,周东华,陈茂银.一类非线性系统的输出反馈容错控制[J].控制理论与应用,2006,23(6):861-866.
    [61]罗小元,武晓晶,关新平.非线性时滞系统的鲁棒完整性容错控制[J].弹箭与制导学报,2007,27(5):179-182.
    [62]王友清,周东华.非线性系统的鲁棒容错控制[J].系统工程与电子技术,2006,28(9):1378-1383.
    [63] Mao Z H, Jiang B, Shi P. Observer based fault-tolerant control for a class of nonlinearnetworked control systems [J]. Journal of the Franklin Institute,2010,347(6):940-956.
    [64] Yang H, Jiang B, Staroswiecki M. Supervisory fault tolerant control for a class of uncertainnonlinear systems [J]. Automatica,2009,45(10):2319-2324.
    [65]姜斌,杨浩.飞控系统主动容错控制技术综述[J].系统工程与电子技术,2007,29(12):2106-2110.
    [66]王仲生.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005.
    [67] Fan L L, Song Y D. On fault tolerant control of dynamic systems with actuator failures andexternal disturbances [J]. Acta Automatica Sinica,2010,36(11):1620-1625.
    [68] Vidyasagar M, Viswanadham N. Reliable stabilization using a multi-controller configuration[J]. Automatica,1985,21(5):599-602.
    [69] Wu H N. Zhang H Y. Reliable H∞fuzzy control for continuous-time nonlinear systems withactuator failures [J]. IEEE Transactions on Fuzzy Systems,2006,14(5):609-618.
    [70] Veillette R J, Medanic J V, Perkins W R. Design of reliable control systems [J]. IEEETransactions on Automatic Control,1992,37(2):290-304.
    [71]孙金生,李军,徐蕾,王执铨.动态大系统的分散容错控制[J].南京理工大学学报,1998,2(2):117-120.
    [72] Wu H N. Zhang H Y. Reliable H∞Fuzzy control for a class of discrete-time nonlinearsystems using multiple fuzzy Lyapunov functions [J]. IEEE Transactions on Circuits andSystems-II: Express Brief,2007,54(4):357-361,2007.
    [73]谢德晓,张登峰,黄鹤,王执铨.一类不确定网络控制系统的鲁棒容错控制[J].信息与控制,2010,39(4):472-478.
    [74] Ye S J, Zhang Y M, Wang X M, Jiang B. Fault tolerant control for a class of uncertain systemswith actuator faults [J]. Tsinghua Science&Technology,2010,15(2):174-183.
    [75] Huo Z H, Zheng Y, Xu C. A robust fault tolerant control strategy for networked controlsystems [J]. Journal of Network and Computer Applications,2011,34(2):708-714.
    [76] Tang X D, Tao G, Wang L F, Stankovic J A. Robust and adaptive actuator failurecompensation designs for a rocket fairing structural-acoustic model [J]. IEEE Transactions onAerospace and Electronic Systems,2004,40(4):1359-1366.
    [77] Zhang Y W, Zhou H, Qin S J. Decentralized fault diagnosis of large-scale processes usingmulti-block kernel principal component analysis [J]. Acta Automatica Sinica,2010,36(4):593-597.
    [78]陶洪峰,胡寿松.执行器饱和T-S模糊系统的鲁棒耗散容错控制[J].控制理论与应用,2010,27(2):205-210.
    [79] Siqueira A A G, Terra M H, Buosi C. Fault-tolerant robot manipulators based onoutput-feedback H∞controllers [J]. Robotics and Autonomous Systems,2007,55(10):785-794.
    [80]张绍杰,刘春生,胡寿松.一类非线性系统的执行器组合故障自适应容错控制[J].系统工程与电子技术,2010,32(3):634-637.
    [81]张绍杰,刘春生,胡寿松.一类MISO最小相位系统的执行器故障自适应容错控制[J].控制与决策,2010,25(7):1084-1087.
    [82] Liu W. An on-line expert system-based fault tolerant control system [J]. Expert Systems withApplications,1996,11(1):59-64.
    [83] Xu L F, Li J Q, Ouyang M G, Hua J F et al., Active fault tolerance control system of fuel cellhybrid city bus [J]. International Journal of Hydrogen Energy,2010,35(22):12510-12520.
    [84] Zhao W, Song Y H, Min Y. Wavelet analysis based scheme for fault detection and classificationin underground power cable systems [J]. Electric Power Systems Research,2000,53(1):23-30.
    [85] Widodo A, Yang B S. Wavelet support vector machine for induction machine fault diagnosisbased on transient current signal [J], Expert Systems with Applications,2008,35(1-2),307-316.
    [86] Yin S R, Chen G J, Xie Y L. Wavelet neural network based fault diagnosis in nonlinear analogcircuits [J]. Journal of Systems Engineering and Electronics,2006,17(3):521-526.
    [87] Safty S E, Zonkoly A E. Applying wavelet entropy principle in fault classification [J].International Journal of Electrical Power and Energy Systems,2009,31(10):604-607.
    [88] Wang H, Chai T Y, Ding J L, Brown M. Data driven fault diagnosis and fault tolerant control:some advances and possible new directions [J]. Acta Automatica Sinica,2009,35(6):739-747.
    [89] Zhang X D, Parisini T, Polycarpou M M. Adaptive fault-tolerant control of nonlinear uncertainsystems: an information-based diagnostic approach [J]. IEEE Transactions on AutomaticControl,2004,49(8):1259-1274.
    [90]顾伟,黄志毅,刘小雄,章卫国.一种容错飞行控制的神经网络方法研究[J].计算机测量与控制,2010,18(6):1307-1311.
    [91] Yu D L, Chang T K, Yu D W. Adaptive neural model based fault tolerant control formulti-variable processes [J]. Engineering Applications of Artificial Intelligence,2005,18(4):393-411.
    [92] Abdelhameed M M, Darabi H S. Neural network based design of fault-tolerant controllers forautomated sequential manufacturing systems [J]. Mechatronics,2009,19(5):705-714.
    [93] Xiao Y Q, He Y G. A novel approach for analog fault diagnosis based on neural networks andimproved kernel PCA [J]. Neurocomputing,2011,74(7):1102-1115.
    [94]陈拥军,袁慎芳,吴键,张英杰.无线传感器网络故障诊断与容错控制研究进展[J].传感器与微系统,2010,29(1):1-5.
    [95]袁芳,朱大奇,叶银忠.无人水下机器人在线故障辨识及滑模容错控制[J].系统仿真学报,2011,23(2):351-357.
    [96] Deshpande A P, Patwardhan S C, Narasimhan S S. Intelligent state estimation for fault tolerantnonlinear predictive control [J]. Journal of Process Control,2009,19(2):187-204.
    [97] Guo Y Y, Jiang B. Multiple model based adaptive reconfiguration control for actuator fault [J].Acta Automatica Sinica,2009,35(11):1452-1458.
    [98] Zhang Y M, Jiang J. Issues on integration of fault diagnosis and reconfigurable control inactive fault tolerant control systems [C]. Fault Detection, Supervision and Safety of TechnicalProcesses2006, Pages1437-1448.
    [99] Chilin D, Liu J F, David M, Christofides P D, Davis J F. Detection, isolation and handling ofactuator faults in distributed model predictive control systems [J]. Journal of Process Control,2010,20(9):1059-1075.
    [100] Peng C, Yue D, Tian E G, Gu Z. Observer based fault detection for networked control systemswith network quality of services [J]. Applied Mathematical Modeling,2010,34(6):1653-1661.
    [101] Niemann H. A setup for Active Fault Diagnosis [J]. IEEE Transactions on Automatic Control,2006,51(9):1572-1578.
    [102] Bodson M, Groszkiewicz J E. Multivariable adaptive algorithms for reconfigurable flightcontrol [J]. IEEE Transactions on Control Systems Technology,1997,5(2):217-229.
    [103]王伟,梁雪,陈璐璐,任章.一种新型鲁棒容错控制器在飞控系统中的应用[J].系统仿真学报,2011,23(1):104-107.
    [104] Cui P, Weng Z X, Patton R J. Novel active fault tolerant control scheme and its application to adouble inverted pendulum system [J]. Journal of Systems Engineering and Electronics,2008,19(1):134-140.
    [105] Yang H, Staroswiecki M, Jiang B, Liu J Y. Fault tolerant cooperative control for a class ofnonlinear multi-agent systems [J]. Systems and Control Letters,2011,60(4):271-277.
    [106] Lin Z, Lin Y, Zhang W. H∞stabilization of non-linear stochastic active fault-tolerant controlsystems: fuzzy-interpolation approach [J]. IET Control Theory&Applications,2010,4(10):2003-2017.
    [107] Zhou K M, Ren Z. A new controller architecture for high performance, robust, andfault-tolerant control [J]. IEEE Transactions on Automatic Control,2001,46(10):1613–1618.
    [108] Yang H, Jiang B, Cocquempot V. Supervisory fault-tolerant regulation for nonlinear systems[J]. Nonlinear Analysis: Real World Applications,2011,12(2):789-798.
    [109]马广富,姜野,胡庆雷.卫星姿态时延反步容错控制[J].航空学报,2010,31(5):1066-1072.
    [110]陈雪芹,耿云海,王峰,张迎春.卫星姿态容错控制系统的鲁棒自适应逆最优控制[J].中国空间科学技术,2008,2:35-41.
    [111] Tao G, Tang X D, Chen S H, Fei J T, Joshi S M. Adaptive failure compensation of two-stateaircraft morphing actuators [J]. IEEE Transactions on Control Systems Technology,2006,14(1):157-164.
    [112] Tang X D, Tao G, Joshi S M. Adaptive actuator failure compensation for nonlinear MIMOsystems with an aircraft control application [J]. Automatica,2007,43(11):1869-1883.
    [113] Paoli A, Sartini M., Lafortune S.. Active fault tolerant control of discrete event systems usingonline diagnostics [J]. Automatica,2011,47(4),639-649.
    [114] Ponsart J C, Theilliol D, Aubrun C. Virtual sensors design for active fault tolerant controlsystem applied to a winding machine [J]. Control Engineering Practice,2010,18(9):1037-1044.
    [115] Zhang Y W. Actuator fault tolerant control for discrete systems with strong uncertainties.Computers&Chemical Engineering,2009,33(11):1870-1878.
    [116] Zhang Y. W, Qin S J. Adaptive actuator fault compensation for linear systems with matchingand unmatching uncertainties [J]. Journal of Process Control,2009,19(6):985-990.
    [117] Mao Z H, Jiang B, Shi P. Fault-tolerant control for a class of nonlinear sampled-data systemsvia a Euler approximate observer [J]. Automatica,2010,46(11):1852-1859.
    [118] Richter J H, Heemels W P M H, Wouw N V D, Lunze J. Reconfigurable control of piecewiseaffine systems with actuator and sensor faults: stability and tracking [J]. Automatica,2011,47(4):678-691.
    [119] Chien T H, Tsai J S H, Guo S M, Li J S. Low-order self-tuner for fault-tolerant control of aclass of unknown nonlinear stochastic sampled-data systems [J]. Applied MathematicalModeling,2009,33(2):706-723.
    [120] Rodrigues M, Theilliol D, Sauter D. Active actuator fault tolerant control design for polytopicLPV systems [C]. Fault Detection, Supervision and Safety of Technical Processes,2006, Pages462-467.
    [121] Alwi H, Edwards C. Fault tolerant control using sliding modes with on-line control allocation[J]. Automatica,2008,44(7):1859-1866.
    [122] Qu Z H, Ihlefeld C M, Jin Y F, Saengdeejing A. Robust fault tolerant self-recovering control ofnonlinear uncertain systems [J]. Automatica,2003,39(10):1763-1771.
    [123] Wang Y Q, Zhou D H, Liu L H. Robust and active fault tolerant control for a class of nonlinearuncertain systems [J]. International Journal of Automation and Computing,2006,3(3):309-313.
    [124] Tao F, Zhao Q. Synthesis of active fault-tolerant control based on Markovian jump systemmodels [J]. IET Control Theory and Applications,2007,1(4):1160-1168.
    [125] Wu H N, Bai M Z. Active fault tolerant fuzzy control design of nonlinear model tracking withapplication to chaotic systems [J]. IET Control Theory and Applications,2009,3(6):642-653.
    [126] Zhang Y M, Jiang J. Integrated active fault tolerant control using IMM approach [J]. IEEETransactions on Aerospace and Electronic Systems,2001,37(4):1221-1235.
    [127] Zhang Y M, Jiang J. Active fault tolerant control system against partial actuator failures [J].IEE Proceedings Control Theory and Applications,2002,149(1):95-104.
    [128] Cai W C, Liao X H, Song Y D. Indirect robust adaptive fault tolerant control for attitudetracking of spacecraft [J]. AIAA Journal of Guidance, Control, and Dynamics,2008,31(5):1456-1463.
    [129] Yang H, Cocquempot V, Jiang B. Robust fault tolerant tracking control with application tohybrid nonlinear systems [J]. IET control Theory and applications,2009,3(2):211-224.
    [130] Mai P, Hillermeier C. Fault tolerant tracking control for nonlinear systems based on derivativeestimation [C]. American Control Conference,6486-6493,2010.
    [131] Ye D, Yang G H. Adaptive fault-tolerant tracking control against actuator faults withapplication to flight control [J]. IEEE Transactions on Control Systems Technology,2006,14(6):1088-1096.
    [132] Liu G J, Wang D J, Li Y C. Active fault tolerant control with actuation reconfiguration [J].IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):1110-1117.
    [133] Hollis B, Thompson R, Murphy K, et al. X-33aerodynamic and aeroheating computations forwind tunnel and flight conditions [C]. AIAA Atmospheric Flight Mechanics Conference, paper99-4165, August9-11, Portland, OR,1999.
    [134] Hollis B, Thompson R, Murphy K, et al. X-33computational aeroheating/aerodynamicpredictions and comparisons with experimental data [R]. NASA/TP-2003-212160,2003.
    [135] Chi F F, Steve A B, Wan L. On-line supervised adaptive training using radial basis functionnetworks [J]. Neural Networks,1996,9(9):1597-1617.
    [136] Peng J, Dubay R. Identification and adaptive neural network control of a DC motor systemwith dead-zone characteristics [J]. ISA Transactions,2011,50:588-598.
    [137] Boskovic J D, Chen L, Mehra R K. Adaptive control design for nonaffine models arising inflight control [J]. AIAA Journal of Guidance, Control, and Dynamics,2004,27(2):209-217.
    [138] Spooner J, Maggiore M, Ordonez R. Stable adaptive control and estimation for nonlinearsystems [M]. New York, Wiley,2002.
    [139] Farrell J, Polycarpou M, Sharma M, Dong W. Command filtered backstepping [J]. IEEETransactions on Automatic Control,2009,54(6):1391-1395.
    [140] Farrell J, Polycarpou M, Sharma M. Backstepping-based flight control with adaptive functionapproximation[J]. Journal of Guidance, Control and Dynamics,2005,28(6):1089-1102.
    [141] Qian M, Jiang B, Xu D. Fault tolerant tracking control scheme for UAV using dynamic surfacecontrol technique [J]. Circuits, Systems, and Signal Processing,2012,31,1713-1729.
    [142]马建军,李文强,李鹏,郑志强.飞行器控制分配技术研究现状与展望[J].飞行力学,2009,27(3):1-10.
    [143] Simmons, A T, Hodel, A S. Control allocation for the X-33using existing and novel quadraticprogramming techniques [C]. Proceedings of the American Control Conference, Vol.2,American Automatic Control Council, Evanston, IL, June2004,1701-1706.
    [144] Bodson M. Evaluation of optimization methods for control allocation [J]. Journal of Guidance,Control, and Dynamics,2002,25(4):703-711.
    [145] Enns D. Control allocation approaches [C], AIAA Paper1998-4109, Aug.1998.
    [146] Kishore A W C, Sen S. Ray, G., Disturbance rejection and control allocation of over-actuatedsystems [C]. IEEE International Conference on Industrial Technology, Inst. of Electrical andElectronics Engineers, New York, Dec.2006,1054-1059
    [147] Xu D. Jiang B, Qian M, Zhao J. Neural networks-based internal model optimal control fornonaffine nonlinear systems with input constraints [J]. ICIC Express Letters Part B:Applications,2012,3(6),1341-1347.
    [148] Kishore W C A, Sen S, Ray G et al. Dynamic control allocation for tracking time-varyingcontrol demand [J]. AIAA Journal of Guidance, Control, and Dynamics,2008,31(4),1150-1151.
    [149] Harkegard O. Dynamic control allocation using constrained quadratic programming [J].Journal of Guidance, Control, and Dynamics,2004,27(6):1028-1034.
    [150] Luo Y, Andrea S, Stephen Y, Michael W O, David B D. Model-predictive dynamic controlallocation scheme for reentry vehicles [J]. Journal of Guidance, Control, and Dynamics,2007,30(1):100-113.
    [151] Boyd S, Feron E, Ghaoui L E, Balakrishnan V. Linear matrix inequalities in system and controltheory, society for industrial and applied mathematics [M]. Philadelphia,1994.
    [152] Chen J, Patton R J. Robust model-based fault diagnosis for dynamic systems [M]. KluwerAcademic Publishers,1999.
    [153] Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and fault-tolerant control2ndEdition [M]. Springer-Verlag, Berlin,2006.
    [154] Karpenko M, Sepehri N. Hardware-in-the-loop simulator for research on fault tolerant controlof electrohydraulic actuators in a flight control application [J]. Mechatronics,2009,19:1067-1077.
    [155] Isidori A, Nonlinear control systems,3rd ed.[M]. Springer-Verlag, New York,1995.
    [156] Nijmeijer H. Schaft A, Nonlinear dynamical control systems [M]. Springer-Verlag, New York,1990.
    [157] Naira H, Eugene L, Cao C. Dynamic inversion for multivariable non-affine-in-control systemsvia time-scale separation [J]. International Journal of Control,2008,81(12).1960-1967.
    [158] Xu D, Jiang B, Qian M, Zhao J. Terminal sliding mode control using adaptive fuzzy-neuralobserver [J], Mathematical Problems in Engineering, Volume2013, Article ID958958,8pages.
    [159]宋永端,宋琦.一类非仿射系统的PI-like容错控制[M].自动化学报,2012,38(6),1033-1041
    [160] Anderson M R, Robbins A C, Formation flight as a cooperative game [C]. AIAA Guid. Navigat.Control Conf, Reston, VA,1998, Paper AIAA1998-4124, pp.244-251.
    [161] Pittman9234Series DC motor Manual.
    [162] Pedro C, Rogelio L and Alejandro E D. Modeling and control of mini-flying machines [M].Springer,2005.
    [163] Zhang Y, Kondak K, Lu T, Du J, Bernard M, Wang G. Development of the model andhierarchy controller of the quad-copter [J]. Aerospace Engineering,2008,222:1~12.
    [164] Quanser,3-DOF Control Manual,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700