用户名: 密码: 验证码:
转速衰减式粘度仪及相关技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业对流体粘度检测有着广泛的需求,不同的应用需求催生了不同类型的粘度检测仪器,这些不同类型的粘度检测仪器在不同的应用场合发挥了积极的作用,但对于快速连续多次、快速不同剪切率、快速低剪切率要求下的粘度检测需求,现有粘度检测仪器还是难以同时满足。因此,丰富和发展流体粘度检测理论与技术,开发满足上述要求的新型粘度检测仪器,对满足现代工业对流体粘度检测的快速检测要求具有重要意义。
     本文提出一种新型的转速衰减式粘度仪,通过检测旋转圆筒的衰减转速及衰减时间来计算流体粘度,能够进行快速连续多次、快速不同剪切率、快速低剪切率的粘度检测。
     建立了转速衰减式粘度仪的数学模型并提出了基于该方法的粘度仪基本结构,在MATLAB软件中对数学模型进行了仿真,通过仿真得到了转速衰减式粘度仪测头转子的基本运动规律,为转速衰减式粘度仪的设计和加工提供了理论基础。
     分析了转速衰减式粘度仪的主要误差源,通过仿真揭示了主要误差源对粘度检测结果的影响规律,建立了转速衰减式粘度仪的误差模型,进而提出转速衰减式粘度仪误差控制方法。
     分析了转速衰减式粘度仪对驱动、支撑、检测技术的要求,提出了一种以气浮轴承作为转子支撑的级联电动机作为转速衰减式粘度仪的驱动系统实现方案,实测结果表明:该驱动系统不仅能够实现最低5rpm的转速,满足粘度检测中低剪切率的需求,还满足了转速衰减式粘度仪测头转子要在低摩擦、低振动、低冲击的工况下工作,并可以在大范围内平滑调速的驱动要求;设计了转速衰减式粘度仪的测试组,并针对粘度检测过程中对温度的要求设计了恒温保障系统。在驱动、支撑、检测技术的基础上,设计并制造了一种转速衰减式粘度仪的样机。
     通过实验揭示了测试组末端效应、测试组不同轴对粘度检测结果的影响规律,根据该规律修正了转速衰减式粘度仪的原理模型,提出了转速衰减式粘度仪的检测限定条件。使用粘度标准液对转速衰减式粘度仪样机进行了标定,粘度检测实验结果表明:转速衰减式粘度仪能够对流体粘度进行检测,检测误差在5%以内,能够满足一般工业应用的粘度检测需求;在测头转子的同一次转速衰减过程中,可以进行多次快速的粘度测试而不用重新启动仪器,而随着测头转子转速的衰减,在不同转速衰减区间还可以进行不同剪切率下流体粘度的快速检测,满足了快速连续多次、快速不同剪切率的粘度检测要求。
The liquid viscosity detection is in wide-spread needs for the modern industry. Different types of viscosity instrument, resulting from different application requirements, play important roles in the relative test occasions. However it is very difficult for the current viscometers to satisfy simultaneously the viscosity test requirements including rapid several detections, rapid several detections under different shear rate and low shear rate. Therefore, it is of great significance for the modern industry to enrich the theory and technology of viscosity measurement and to develop new type of viscometer that satisfies the above industrial requirements.
     A velocity attenuation based viscometer is proposed in this thesis. The fluid viscosity can be calculated by detecting the velocity and time of attenuation. In the operation of viscosity detection, the requirements mentioned above could be satisfied simultaneously.
     In this thesis, the mathematical model of the viscometer is established and the structure of viscometer based on the method is presented. The mathematical model of the velocity attenuation based viscometer is simulated in the MATLAB environment. The basic motion laws of the velocity attenuation based viscometer are obtained by the simulation. They provide a theoretical basis for design and manufacture of the viscometer.
     On the analysis for the main error sources of the viscometer, the mathematical models of the errors action mechanism are established. These mathematical models are simulated in the MATLAB environment, which reveals the laws of influence on the result of the viscosity detection by the error sources. Finally, methods of the error control are proposed.
     The requirements on the technique of driving, supporting and detecting for the velocity attenuation based viscometer are analyzed. A cascade motor, the rotor of which is supported by the designed air bearing, is presented as the driving system. Results of driving test show that the driving system can not only achieve the minimum speed of5rpm, which satisfies the requirement of viscosity detection under low shear rate, but also meets other driving requirements of the velocity attenuation based viscometer, such as low friction, low vibration and low impact. The smooth velocity governing in a wide range is also achieved. The detection groups of the velocity attenuation based viscometer are designed, and the constant temperature protection system is designed by considering the requirement on the temperature in viscosity detection process. Based on these technologies, a prototype of the velocity attenuation based viscometer is designed and manufactured.
     The effects on measurement results, caused by the end effect and misalignment of the detection groups, are appealed by experiments. Based on those laws, the mathematical model of detection principle is modified, and the limited conditions of viscosity detection are proposed. The velocity attenuation based viscometer is calibrated with the standard viscosity liquids and viscosity test experiments are carried out. The results show that the fluid viscosity can be measured by the velocity attenuation based viscometer, and the detection error is under5%, which meets the requirements of common viscosity measurement. Additionally, in once of the velocity attenuation of sensor rotor, several measurements can be conducted with no need to restart the viscometer. In the process of attenuation of the sensor rotor velocity, the rapid detection of fluid viscosity with different shear rates could be achieved in variable range of velocity attenuation. All of those have satisfied the requirements of several rapid viscosity detections under different and low shear rate.
引文
[1]陈惠钊.粘度测量[M].北京:中国计量出版社,2002.
    [2] Ehsan Jenab, Feral Temelli. Viscosity measurement and modeling of canola oiland its blend with canola stearin in equilibrium with high pressure carbondioxide[J]. Jounal of Supercritical Fluids,2011,58:7-14.
    [3] Y. Y. Lin, C. W. Lin, L. J. Yang, A. B. Wang. Micro-viscometer based onelectrowetting on dielectric[J]. Electrochimica Acta,2007,52:2876-2883.
    [4]何峰,平财明,郑媛媛,乔勇.(Na2O-Al2O3)/B2O3对高硼硅酸盐玻璃粘度和热学性能的影响[J].硅酸盐通报,2013,32(6):1022-1025.
    [5] P·拉姆,V·库马尔.粘度与温度相关时对铁磁流体作有热交换轴对称旋转流动的影响[J].应用数学和力学,2012,33(11):1340-1351.
    [6] Conor Slater, Thomas Maeder, Peter Ryser. Portable LTCC gas viscometer fordetermining Wobbe number[J]. Procedia Engineering,2010,(5):307-310.
    [7] Hanah Kim, Young I. Cho, Dong-HwanLee. Analytical performance evaluationof the scanning capillary tube viscometer for measurement of whole bloodviscosity[J]. Clinical Biochemistry,2013,46:139-142.
    [8]吴志勇.基于光致电子转移(PET)机理设计环境敏感粘度荧光探针[D].大连:大连理工大学,2013:1-3.
    [9] G. Steiner, J. Gautsch, R. Breidler, F. Plank. A novel fluid dynamic inlineviscometer suitable for harsh process conditions[J]. Procedia Engineering,2010,(5):1470-1473.
    [10] W. W. Yau, R. Cong, D. Gillespie. A high-throughput three capillary noisecancelling viscometer for chromatographic systems[J]. Anal Bioanal Chem,2011,(399):1563-1570.
    [11] Philipp Rust, Ivo Leibacher, Jurg Dual. Temperature Controlled Viscosity and Density Measurements on a Microchip with High Resolution and Low Cost[J].Procedia Engineering,2011,25:587-590.
    [12]刘希民,刘保双,黄明键,张恩平,任宏伟.直管式粘度计的研制[J].化工自动化及仪表,2012,39(5):576-579.
    [13] D. F. Rabensteiner, O. Schmut, H. Bauer und C. Faschinger. Ein modifiziertes KPG-Ubbelohde Viskosimeter zur Bestimmung der Viskosit t kleinerVolumina von Kammerwasser und Tr nenflüssigkeit[J]. Spektrum Augenheilkd,
    [14] D. H. Lee, J. M. Jung, S. Y. Kim, K. T. Kim, Y. I. Cho. Comparison tests forplasma viscosity measurements[J]. International Communications in Heat andMass Transfer,2012,39:1474-1477.
    [15] M. A. Magerramov, A. I. Abdulagatov, N. D. Azizov, I. M. Abdulagatov. Effectof temperature, concentration, and pressure on the viscosity of pomegranateand pear juice concentrates[J]. Journal of Food Engineering,2007,80:476-489.
    [16] Chi-San Wu, Larry Senak, Jose Bonilla, James Cullen. Comparison of RelativeViscosity Measurement of Polyvinylpyrrolidone in Water by Glass CapillaryViscometer and Differential Dual-Capillary Viscometer[J]. Journal of AppliedPolymer Science,2002,86:1312-1315.
    [17] Silber ZH, Tan YP, Wen PF. A Microtube Viscosity with a Themostat[J].Experiments in Fluids(S0723-4864),2004,36(4):586-592.
    [18] S. Kim, Y. I. Cho, A. H. Jeon, B. Hogenauer, K. R. Kensey. A new Method forBlood Viscosity Measurement[J]. J. Non-Newtonian Fluid Mech,2000,(94):47-56.
    [19] Sehyun Shin, Do-Young Keum. Measurement of Blood Viscosity UsingMass-detecting Sensor[J]. Biosensors&Bioelectronics,2002,(17):383-388.
    [20] Zuoyan Han, Xiaoju Tang, Bo Zheng. A PDMS Viscometer for MicroliterNewtonian Fluid[J]. Journal of Micromechanics and Microengineering,2007(17):1828-1834.
    [21] Rafael M. Digilov and M. Reiner. Weight-controlled capillary viscometer[J].American Journal Physics,2005,73(11):1020-1022.
    [22] D. Petrak, H. Rauh. Micro-flow metering and viscosity measurement of lowviscosity Newtonian fluids using a fibreoptical spatial filter technique[J]. FlowMeasurement and Instrumentation,2009,20:49-56.
    [23] K.C. Kwon, Y. Park, T. Floyd-Smith. Rheological Characterization ofNon-Newtonian Fluids with a Novel Viscometer[J]. Chemical EngineeringCommunications,2008(195):687-705.
    [24] Jian-Neng Wang, Jaw-Luen Tang. An Optical Fiber Viscometer Based onLong-Period Fiber Grating Technology and Capillary Tube Mechanism[J].Sensors,2010,10:11174-11188.
    [25] Sehyun Shin, Do-Young Keum, Yun Hee Ku. Blood Viscosity MeasurementsUsing a Pressure-Scanning apillary Viscometer[J]. KSME International Journal,2002,16(12):1719-1724.
    [26] K.C. Kwon, S. Pallerla. Viscosity of Glycerol and Iits Aqueous SolutionsMeasured by a Tank-tube Viscometer[J]. Chem. Eng. Comm,2000,183:71-97.
    [27]王军义,云俊鲜.加压型毛细管粘度计的测量方法及注意事项[J].化学分析计量,2007,16(2):11-16.
    [28] G. N. Marinakis, J. C. Barbenel, S. G. Tsangaris. A new capillary viscometerfor small samples of whole blood[J]. Proceedings of the Institution ofMechanical Engineers, Part H: Journal of Engineering in Medicine,2002,216:385.
    [29]杨刊,张英敏,任建新.基于弯曲振动粘度测量的能耗研究[J].测控技术,2011,30(l2):4-11.
    [30]孙培元,赵美蓉,马金玉.两种典型扭振式粘度测头的灵敏度对比分析[J].传感技术学报,2013,26(1):53-57.
    [31] Alexander I. Fedorchenko, Ivo Stachiv, Wei-Chih Wang. Method of theviscosity measurement by means of the vibrating micro-/nano-mechanicalresonators[J]. Flow Measurement and Instrumentation,2013,32:84-89.
    [32] F. Behroozi, B. Lambert, B. Buhrow. Noninvasive measurement of viscosityfrom damping of capillary waves[J]. ISA Transactions,2003,42:3-8.
    [33] D. I. Bradley, M. Clovecko,S.N. Fisher,D. Garg, etc. Thermometry in NormalLiquid3He Using a Quartz Tuning Fork Viscometer[J]. J of Low Temp Phys,2013,171:750-756.
    [34] Xianyang Meng, Guosheng Qiu, Jiangtao Wu, Ilmutdin M. Abdulagatov.Viscosity measurements for2,3,3,3-tetrafuoroprop-1-ene (R1234yf) andtrans-1,3,3,3-tetrafuoropropene (R1234ze(E))[J]. J. Chem. Thermodynamics,2013,63:24-30.
    [35]王永洪,范世福.新型液体黏度自动测量仪的研制[J].仪器仪表学报,1997,5(2):214-217.
    [36]翟灵慧,苏明旭,蔡小舒,吉肖.超声多次回波反射法测量硅油粘度实验研究[J].计量技术,2013,33(2):12-15.
    [37] Behic Mert, Hartono Sumali, Osvaldo H. Campanella. A New Method toMeasure Viscosity and Intrinsic Sound Velocity of Liquids Using ImpedanceTube Principles at Sonic Frequencies[J]. Review of Scientific Instruments,2004,75(8):2613-2619.
    [38] V. S. K. Prasad, K. Balasubramaniam, E. Kannan, K. L. Geisinger. Viscositymeasurements of melts at high temperatures using ultrasonic guided waves[J].Journal of Materials Processing Technology,2008,207:315-320.
    [39] Margaret S. Greenwood, Justus D. Adamson, Leonard J. Bond. Measurementof the viscosity-density product using multiple refections of ultrasonic shearhorizontal waves[J]. Ultrasonics,2006,44: e1031-e1036.
    [40] M. S. Greenwood, J. A. Bamberger. Measurement of Viscosity and Shear WaveVelocity of a Liquid or Slurry for On-line Process Control[J]. Ultrasonics,2002,(39):623-630.
    [41] Thomas Voglhuber-Brunnmaier, Martin Heinisch, Erwin Reichel, BernhardWeiss, Bernhard Jakoby. Complete semi-numeric model of a double membraneliquid sensor for density and viscosity measurements[J]. Procedia Engineering,2012,47:598-602.
    [42] Erwin K. Reiche, Christian Riesch, Franz Keplinger,Christine E.A. Kirschhock,Bernhard Jakoby. Analysis and experimental verifcation of a metallicsuspended plate resonator for viscosity sensing[J]. Sensors and Actuators A,2010,162:418-424.
    [43] M. Youssry, N. Belmiloud, B. Caillard, C. Ayela, C. Pellet, I. Dufour. Astraightforward determination of fluid viscosity and density usingmicrocantilevers: analytical and experimental studies[J]. Procedia Engineering,2010,5:1035-1038.
    [44] Onur Cakmak, Caglar Elbuken, Erhan Ermek, Aref Mostafazadeh, IbrahimBaris, B. Erdem Alaca, Ibrahim Halil Kavakli, Hakan Urey. Microcantileverbased disposable viscosity sensor for serum and blood plasma measurements[J].Methods,2013
    [45] A. Abdallah, M. Heinisch, B. Jakoby. Measurement error estimation andquality factor improvement of an electrodynamic-coustic resonator sensor forviscosity measurement[J]. Sensors and Actuators,2013,199:318-324.
    [46] M. Heinisch, E.K. Reichel, T. Voglhuber-Brunnmaier, B. Jakoby. A DoubleMembrane Sensor for Liquid Viscosity Facilitating Measurements in a LargeFrequency Range[J]. Procedia Engineering.2010,5:1458-1461.
    [47] Khaled M. Bataineh, Moh’d A. Al-Nimr, Wafa Batayneh. Microscale FallingCylinderViscometer With Slip Boundary[J]. Journal of Fluids Engineering,2010,132(8):0845021-0845025.
    [48] V t Pru sa, Shriram Srinivasan, K.R. Rajagopal. Role of pressure dependentviscosity in measurements with falling cylinder viscometer[J]. InternationalJournal of Non-Linear Mechanics,2012,47:743-750.
    [49] C. Even, F. Bouquet, J. Remond, B. Deloche. Measuring Viscosity with aLevitating Magnet: Application to Complex Fluids[J]. Eur. J. Phys.,2009,(30):13-22.
    [50] C. J. Schaschke. S. Abid, I. Fletcher, M. J. Heslop. Evaluation of a FallingSinker-type Viscometer at High Pressure Using Edible Oil[J]. Journal of FoodEngineering,2008,(87):51-58.
    [51] J. M. Paton, C. J. Schaschke. Viscosity measurement of biodiesel at highpressure with a falling sinker viscometer[J]. Chemical Engineering Researchand Design,2009,87:371520-1526.
    [52] C. J. Schaschke, S. Allio, E. Holmberg. Viscosity Measurement of VegetableOil at High Pressure[J]. Food and Bioproducts Processing,2006,84(C3):173-178.
    [53] J. M. Paton, C. J. Schaschke. Viscosity measurement of biodiesel at highpressure with a falling sinker viscometer[J]. Chemical Engineering Researchand Design,2009,87:1520-1526.
    [54]赵北君,朱世富,李正辉,银淑君.光电落球粘度计的研制[J].四川大学学报(自然科学版),1994,31(2):280-282.
    [55] Shuichi Iwata, Tomoaki Kato, Ruben L. Menchavez, Masayoshi Fuji, HidekiMori,Yumiko Yoshitake, Yusuke Yamada, Yasuhiro Saiki. Viscositymeasurement of gelcasting slurry during in-situ gelation by a micro X-ray CTscan system[J]. Ceramics International,2013,39:5309-5316.
    [56] Félix M. Gaci o, Xavier Paredes, María J.P. Comu as, Josefa Fernández.Pressure dependence on the viscosities of1-butyl-2,3-dimethylimidazolium bis(trifuoromethylsulfonyl)imide and twotris(pentafuoroethyl)trifuorophosphate based ionic liquids: Newmeasurements and modeling[J]. J. Chem. Thermodynamics,2013,62:162-169.
    [57] C. J. Schaschke, S. Abid, I. Fletcher, M.J. Heslop. Evaluation of a fallingsinker-type viscometer at high pressure using edible oil[J]. Journal of FoodEngineering,2008,87:51-58.
    [58] C. Even, F. Bouquet, J. Remond and B. Deloche. Measuring Viscosity with aLevitating Magnet: Application to Complex Fluids[J]. European Journal ofPhysics,2009,30:13-22.
    [59] Brice Calvignac, Elisabeth Rodie, Jean-Jacques Letourneau, Pauline Vitoux,Cyril Aymonier, Jacques Fages. Development of an improved falling ballviscometer for high-pressure measurements with supercritical CO2[J].European The Journal of Supercritical Fluids,2010,55:96-106.
    [60] Sangcho Lee, Minseong Kim, Munkyeong Hwang, Kyubo Kim, ChunghwanJeon, Juhun Song. Thermal stability and viscosity behaviors of hot moltencarbonate mixtures[J]. Experimental Thermal and Fluid Science,2013,49:94-104.
    [61] Y. Leong Yeow, Yee-Kwong Leong, Ash Khan. Slow Steady Viscous Flow ofNewtonian Fluids in Parallel-Disk Viscometer With Wall Slip[J]. Journal ofApplied Mechanics,2008,75(7):0410011-0410017.
    [62]孙丹.基于旋转法的多功能液体粘度自动捡测装置的研究[D].广西:广西大学,2012.
    [63] J. Embs, H. W. Muller, C. Wagner, K. Knorr and M. Lucke. Measuring theRotational Viscosity of Ferrofluids without Shear Flow[J]. RapidCommunications of the American Physical Society,2000,61(3):2196-2199.
    [64] J. E. Wallevik. Minimizing end-effects in the coaxial cylinders viscometer:Viscoplastic fow inside the ConTec BML Viscometer[J]. J. Non-NewtonianFluid Mech,2008,155:116-123.
    [65] S. E. de Lucena and W. Kaiser. Stepping-Motor-Driven Constant-Shear-RateRotating Viscometer[J]. IEEE Transactions on Instrumentation andMeasurement,2008,57(7):1338-1343.
    [66]王海名,马云龙.外旋式电测粘度计的设计与计算[J].新技术新仪器,2010,30(6):14-16.
    [67]施庆珊,王计伟,欧阳友生,陈仪本.非牛顿流体粘度测定方法研究进展[J].发酵科技通讯,2011,40(2):42-45.
    [68]肖军民,陈国香.一种新型旋转式数字粘度仪的研究和开发[J].计量与测试技术,2003,5:35-39.
    [69] S. Yaltkaya,S. Ozelsoy. A Simple, New Type of Rotational Viscometer[J].Instrumentation Science and Technology,2009,37:655-659.
    [70] Anwar Sadat, Iqbal A. Khan. A novel technique for the measurement of liquidviscosity[J]. Journal of Food Engineering,2007,80:1194-1198.
    [71] Daphne Weihs, Tal Hadad, Roi Gurka, Alex Liberzon. Flexible blade forin-line measurement of low-range viscosity[J]. Chemical Engineering Science,2013,91:130-133.
    [72] Y. Y. Lin, C. W. Lin, L. J. Yang, A. B. Wang. Micro-viscometer Based onElectrowetting on Dielectric[J]. Electrochimica Acta,2007,(52):2876-2883.
    [73] B. B. Liu, B. Y. Liu, X. S. Fang, L. Q. Zhang, F. Ye, G. L. Chen. Viscosity ofZr55Cu30Al10Ni5bulk metallic glass measured by laser viscometer[J].Journal of Alloys and Compounds,2010,504S: S208-S210.
    [74] H. P. Fernandes, A. Fontes, A. A. de Thomaz, L.C. Barbosa, M.L.Barjas-Castro,C.L. Cesar.Studying Red Blood Cell Agglutination by Measuring MembraneViscosity with Optical Tweezers[J]. Optical Trapping and OpticalMicromanipulation,2007,6644(9):41.
    [75]郭绍兵.基于电磁感应的液体粘度测量方法研究[D].天津:天津大学,2010.
    [76]童刚,唐为义,袁有臣,王艳霞.一种新的液体粘度在线测量方法[J].化工自动化及仪表,2007,34(5):1-53.
    [77] Alexander I. Fedorchenko, Ivo Stachiv, Wei-Chih Wan. Method of theviscosity measurement by means of the vibrating micro-/nano-mechanicalresonators[J]. Flow Measurement and Instrumentation,2013,32:84-89.
    [78] Ghader Rezazadeh, Mina Ghanbari, Iraj Mirzaee, Aliasghar Keyvani. On themodeling of a piezoelectrically actuated microsensor for simultaneousmeasurement of fuids viscosity and density[J]. Measurement,2010,43:1516-1524.
    [79] M. F. Khan, S. Schmid, P. E. Larsen, Z. J. Davis, W. Yan, E. H. Stenby, A.Boisen. Online measurement of mass density and viscosity of pL fluid sampleswith suspended microchannel resonator[J]. Sensors and Actuators B,2013,185:456-461.
    [80] Philipp Rust, Ivo Leibacher, Jurg Dual. Temperature Controlled Viscosity andDensity Measurements on a Microchip with High Resolution and Low Cost[J].Procedia Engineering,2011,25:587-590.
    [81] A. Agoston, F. Keplinger, B. Jakoby. Evaluation of a vibrating micromachinedcantilever sensor for measuring the viscosity of complex organic liquids[J].Sensors and Actuators A,2005,123-124:82-86.
    [82] D. Sparks, R. Smith, V. Cruz, N. Tran, A. Chimbayo, D. Riley, N. Najaf.Dynamic and kinematic viscosity measurements with a resonating microtube[J].Sensors and Actuators A,2009,149:38-41.
    [83]金哲,吴金哲,金在权,朴相范,黄元三.探讨液体粘度检测的一种新机理[J].延边大学学报(自然科学版),2000,26(4):271-274.
    [84] Cai Jian-an, James AS. Principle and Application of a New Viscometer[J].Journal of Anhui University of Technology(S1000-2170),2001,18(4):277-282.
    [85]文明,祝连庆,董明利.一种基于速度衰减的锥板粘度测量方法[J].北京机械工业学院学报,2005,20(1):28-30.
    [86]贾达,邹益民.基于虚拟仪器技术的自由旋转粘度计[J].计算机工程与设计,2009,30(3):779-781.
    [87]贾达,马芙蓉,汪霞.自由旋转粘度计的研究与设计[J].仪表技术与传感器,2008,4:88-90.
    [88] V. C. Kelessidis, R. Maglione. On the end-effect correction for Couette typeoil-feld direct-indicating viscometers for Newtonian and non-Newtonianfuids[J]. Journal of Petroleum Science and Engineering,2010,71:37-46.
    [89] Hakki Gücüyener, Mustafa Versan Kok, TANER BATMAZ. End EffectEvaluation in Rheological Measurement of Drilling Fluids Using CoutteCoaxial Cylinder Viscometer[J]. Energy Sources,2002,24:441-449.
    [90]肖文涛,张国忠,刘坤,刘京.王健同轴圆筒旋转粘度计测量误差的分析与修正[J].现代科学仪器,2012,4:114-118.
    [91]王坤,贾震,范毓润.基于Couette流变仪的0.1~0.5MPa压力下液体粘度测量方法[J].机电工程,2011,28(4):407-410.
    [92] Stojkovic, D., Breuer, M., Durst, F. Effect of high rotation rates on thelaminar flow around a circular cylinder[J]. Physics of Fluids,2002,14(9):3160-3178.
    [93] Bui, Trong T. Analysis of low-speed stall aerodynamics of a swept wing withlaminar-flow glove[C].31st AIAA Applied Aerodynamics Conference,2013.
    [94] Schwartz, Jana L. Peck, Mason A. Hall, Christopher D. Historical review ofair-bearing spacecraft simulators[J]. Journal of Guidance, Control, andDynamics,2003,26(4):513-522.
    [95] L. Mel, A. Dave, K. Byron, O. Dan. Accelerometer assessment of air bearingspindles[C]. Proceedings of the28th Annual Meeting of the American Societyfor Precision Engineering, ASPE,2013:445-447.
    [96] Guo Siyuan, Zhou Libing,Yang Tong. An analytical method for determiningcircuit parameter of a solid rotor induction motor[C]. ICEMS2012-Proceedings:15th International Conference on Electrical Machines andSystems,2012.
    [97] Markovic Miroslav, Perriard Yves.An analytical solution for the torque andpower of a solid-rotor induction motor[C].2011IEEE International ElectricMachines and Drives Conference, IEMDC,2011:1053-1057.
    [98] Shanthi L. Jessi Sahaya, Arumugam R., Taly Y. K. A novel rotor positionestimation approach for an8/6solid rotor switched reluctance motor[J]. NeuralComputing and Applications,2012,21(3):461-468.
    [99]张海兵.新型双自由度球形气浮陀螺仪关键技术的研究[D].哈尔滨:哈尔滨工业大学,2006:36-40.
    [100] Cappa, S., Reynaerts, D., Al-Bender, F. Reducing the radial error motion of anaerostatic journal bearing to a nanometre level: Theoreticalmodeling[J]. Tribology Letters,2014,53(1):27-41.
    [101] Li, T. J., Ding, H., Cheng, K.. Dynamics design and analysis of direct-driveaerostatic slideways in a multi-physics simulation environment[J].InternationalJournal of Mechanical Engineering Education,2013,41(4):315-328.
    [102] Li Min, Zhang Yubing, Li Dong-Sheng.Influence of atmospheric pressuresupplied on permittivity of air-film of aerostatic bearing[C]. Proceedings ofSPIE-The International Society for Optical Engineering, Eighth InternationalSymposium on Precision Engineering Measurements and Instrumentation2013,8759.
    [103]王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社,1997:154-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700