用户名: 密码: 验证码:
龙门山断裂带断层泥中速—高速摩擦性质的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了认识龙门山断裂带在汶川地震中的同震滑动力学性质,我们对龙门山断裂带地表断层带露头上的断层泥及少量WFSD-1断层泥开展了中速-高速摩擦实验研究。主要关注的问题包括:龙门山断裂带高速摩擦性质及其不均匀性、震后断层强度恢复问题、高速滑动可能的主导弱化机制问题和宽速度域内摩擦滑动速度依赖性问题。
     基于对断层带结构和断层岩样品的精细分析,我们从矿坪子和八角庙断层带露头采集了四种断层泥样品。对这些样品及另外三种WFSD-1样品开展的高速摩擦实验揭示除了矿坪子露头黑色断层泥,其他几种断层泥的高速摩擦性状均表现为负指数衰减型滑动弱化。矿坪子露头黑色断层泥具有非常独特的力学性状:初始阶段快速的滑移弱化,接着出现微弱的滑移强化至第二个峰值,之后逐渐弱化至稳态。微结构观察和对比实验表明初始快速弱化和之后的微弱强化主要是黑色断层泥特殊的微结构演化造成的。基于经验公式和进一步的推导,我们选取了六个能够描述稳态摩擦系数、滑动弱化距离和比破裂能对速率和正应力依赖性的本构参数。我们对本论文和前人研究过的四个露头共计六种断层泥的高速摩擦性质进行了比较,从这上述六个本构参数的定量化比较来看,龙门山断裂带高速摩擦性质的不均匀性是存在的。不过,如果仅仅是考察摩擦强度,高速滑移下的稳态摩擦系数在整个断层带上的均匀性还是相当高的;如干燥条件下速率等于1.4m/s时几乎均小于0.2,在含水条件下还将更低。这些断层泥在高速滑移下显著的滑移弱化必定在汶川地震中极大地促进了破裂的传播,也能够解释震后钻探观测到的温度异常较小的现象。
     高速滑移下的slide-hold-slide实验揭示断层在经历高速滑移显著滑移弱化之后,能够在5~10s内快速恢复大部分的强度(摩擦系数增加约0.4),愈合率(摩擦系数增量与保持时间对数的比值)达0.154~0.188;之后是跟时间对数成正比的缓慢愈合,愈合率约0.015~0.016。温度计算表明初始快速的强度恢复和温度的快速降低有关。5~10s的强度恢复时间尺度小于一般大地震的上升时间,从而支持自愈合滑动脉冲式的地震破裂模式。同时,断层高速滑移之后快速的强度恢复对稳定断层的摩擦滑动、减少余震也可能起到了重要作用。
     对极薄(0.1~0.14mm)和常规厚度断层泥(1.0~1.4mm)开展的中速-高速摩擦对比实验揭示薄层断层泥的剪切滑移能够更快地弱化断层,而且断层显著滑动弱化的特征滑动速率也低得多;微结构观察表明这可能是凹凸体急剧加热弱化机制在薄层断层泥实验中更加显著造成的;极薄和较厚断层泥高速摩擦性状的差异可能暗示着野外断层上相对更薄的断层泥层能够更快地在同震滑移中弱化断层、也能更大程度地促进地震破裂的传播。利用辉长岩和黄铜作围岩开展的高速摩擦对比实验揭示黄铜作围岩的实验中仅观察到微弱的滑动弱化,温度计算表明这与黄铜的高热导抑制了断层带的急剧升温有关,这暗示了凹凸体急剧加热弱化和热压作用这两种跟摩擦生热相关的机制对断层弱化的重要性。利用黄铜作围岩对纳米氧化镁开展的高速摩擦实验表明,在升温受抑制的情况下,即使是纯纳米颗粒物质也不能有效地显著弱化断层;这一结果表明纳米颗粒的滚动润滑机制不是断层高速滑动弱化的主要机制。
     对断层泥从低速到高速开展的摩擦实验研究表明,中等速率域内显著的速度强化是有可能存在的。但是实验同时揭示数百μm/s以下的摩擦滑动在大剪切应变下(如,>1000)存在显著的应变硬化(滑移强化),这可能与断层泥在大应变下发生的物质和结构上的改变有关,今后对宽速度域内摩擦滑动速度依赖性进行研究时,需要充分考虑应变硬化带来的影响。
In order to understand frictional properties of the Longmenshan fault zone in thecoseismic sliding during the2008Wenchuan earthquake, we conducted intermediate-to high-velocity frictional experiments on fault gouges collected from theLongmenshan fault zone at surface outcrops and from the WFSD-1borehole (a smallamount). The mainly concerned issues in this thesis include the high-velocityfrictional properties and their heterogeneities of the Longmenshan fault zone, thepost-seismic strength recovery of the seismic fault, possible dominant slip-weakeningmechanisms during the high-velocity sliding of the seismic fault and thevelocity-dependence of fault friction over a wide velocity regime.
     Based on detailed analysis of the fault-zone structures and fault rocks, weselected four kinds of fault gouges from the fault zone at the Kuangpingzi outcrop andthe Bajiaomiao outcrop. High-velocity experiments conducted on these four gougesand other three WFSD-1gouges revealed typical slip-weakening behaviors of anexponential-decay type, except that a kind of black gouge from the PingxiKuangpingzi outcrop showed peculiar frictional behavior which was characterized bya sharp initial weakening, subsequent slight strengthening to the second peak friction,and slip weakening towards steady-state friction. Microstructure observations andresults of some comparison experiments suggested that the special microstructureevolutions were the causes for the rapid initial weakening and subsequentstrengthening of the black gouge. Based on several empirical formulas and furtherderivation, we selected six constitutive parameters that can quantitatively describe thedependences of steady-state friction coefficient, slip-weakening distance and specificfracture energy on the slip rate and normal stress. We compared the high-velocityfrictional properties of six kinds of gouges from four surface outcrops studied in thiswork and former published work. The results show that the heterogeneity do exist forthose six constitutive parameters. But the Longmenshan fault zone is quite uniform interms of steady-state friction coefficient at high slip rates, e.g. less than0.2almost for all gouges at a slip rate of1.4m/s under dry conditions and much smaller under wetconditions. The observed dramatic high-velocity weakening must have promoteddynamic rupture propagation during the Wenchuan earthquake, and also can explainthe very small temperature anomalies measured in the drilling borehole.
     Slide-hold-slide (SHS) tests conducted on fault gouges at high velocity revealedvery rapid strength recovery by more than0.4in friction coefficient in less than5~10sfrom the former high-velocity slip weakening, and the healing rate (increase in frictioncoefficient divided by the logarithm of hold time) was as high as0.154-0.188duringthis rapid recovery stage. Then the fault strength recovered slowly in proportion to thelogarithm of time with a healing rate of0.015-0.016. Temperature calculationindicated that initial rapid strength recovery was related to rapid temperature drop.The time scale of the initial rapid strength recovery is about5-10s, which is less thanthe common rise time of large earthquakes; thus the observed results supportself-healing slip pulses in earthquake rupture. Also, rapid strength recovery of thefault after high-velocity sliding may play an essential role in stabilizing the fault andreducing aftershocks.
     Comparison experiments conducted on very thin (0.1-0.14mm) andcommon-width gouge layers (1.0-1.4mm) at intermediate to high velocitydemonstrated that shearing thin gouge layers could weaken faults more rapidly, andthe characteristic weakening velocity was also much lower for the thin gouge layercase. Microstructure observations suggested this was probably due to much notableflash heating in thin gouge experiments. The difference of high-velocity frictionalbehaviors between the fairly thin and relatively thick gouge tests suggest thatrelatively thin gouge layers in a natural fault zone may weaken the fault more rapidlyduring the seismic slip and can probably promote the propagation of a seismic rupturemore effectively. Comparison experiments using gabbro and brass host blocksrevealed that only slight slip weakening was observed in the latter tests. Thetemperature calculation showed that this might result from the restrained temperaturerise due to high thermal conductivity of brass host blocks. This phenomenon alsohighlights the importance of the thermally-related mechanisms, flash heating and thermal pressurization, on fault weakening. High-velocity experiments conducted onMgO nano-particles using brass host blocks revealed that even the pure nano-particlescould not weaken the fault effectively when the temperature rise was restricted. Theseresults suggest that rolling lubrication of nano-particles may not be one of the mainhigh-velocity weakening mechanism.
     Low-to high-velocity friction experiments on fault gouges from theLongmenshan fault zone revealed possible strong velocity strengthening in theintermediate velocity regime. But we also observed notable strain hardening (slipstrengthening) at slip rates less than hundreds of μm/s under large shearstrain(e.g.>1000), which may be related to material or structural change of the testedgouges under large shear strain. We will fully consider this effect in the study ofvelocity-dependence of friction over wide velocity range in the future.
引文
Anthony, J.W., Bideaux, R., Bladh, K., Nichols, M.C.,2003. Handbook of mineralogy.Mineral Data Pub., Tiscon, Arizona, USA.
    Aochi, H., Matsu'ura, M.,2002. Slip-and Time-dependent Fault Constitutive Law andits Significance in Earthquake Generation Cycles. Pure and Applied Geophysics159,2029-2044.
    Archard, J.F.,1959. The temperature of rubbing surfaces. Wear2,438-455.
    Beeler, N.M., Tullis, T.E., Weeks, J.D.,1994. The roles of time and displacement inthe evolution effect in rock friction. Geophysical Research Letters21,1987-1990.
    Beeler, N.M., Tullis, T.E., Goldsby, D.L.,2008. Constitutive relationships andphysical basis of fault strength due to flash heating. Journal of GeophysicalResearch: Solid Earth113(B1).
    Ben-Zion, Y.,1996. Stress, slip, and earthquakes in models of complex single-faultsystems incorporating brittle and creep deformations. Journal of GeophysicalResearch: Solid Earth101,5677-5706.
    Ben-Zion, Y., Eneva, M., Liu, Y.,2003. Large earthquake cycles and intermittentcriticality on heterogeneous faults due to evolving stress and seismicity. Journalof Geophysical Research: Solid Earth108, B6(2003).
    Blanpied, M. L., Tullis, T. E., and Weeks, J. D.,1987. Frictional behavior of granite atlow and high sliding velocities, Geophysical Research Letters,14(5),554-557.
    Blanpied, M. L., Lockner, D. A., and Byerlee, J. D.,1991. Fault stability inferred fromgranite sliding experiments at hydrothermal conditions, Geophysical ResearchLetters,18(4),609-612.
    Blanpied, M. L., Lockner, D. A., and Byerlee, J. D.,1995. Frictional slip of granite athydrothermal conditions, Journal of Geophysical Research: Solid Earth,100(B7),13045-13.
    Blanpied, M. L., Tullis, T. E., and Weeks, J. D.,1998. Effects of slip, slip rate, andshear heating on the friction of granite, Journal of Geophysical Research: SolidEarth,103(B1),489-511.
    Blumm, J., Lindemann, A., Meyer, M., Strasser, C.,2010. Characterization of PTFEUsing Advanced Thermal Analysis Techniques. International Journal ofThermophysics31,1919-1927.
    Bos, B., and Spiers, C. J.,2001. Experimental investigation into the microstructuraland mechanical evolution of phyllosilicate-bearing fault rock under conditionsfavouring pressure solution, Journal of Structural Geology,23(8),1187-1202.
    Bos, B., and Spiers, C. J.,2002. Frictional-viscous flow of phyllosilicate-bearing faultrock: Microphysical model and implications for crustal strength profiles, Journalof Geophysical Research: Solid Earth,107(B2),2028.
    Boutareaud, S., Calugaru, D.-G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A.,Shimamoto, T.,2008. Clay-clast aggregates: A new textural evidence for seismicfault sliding? Geophysical Research Letters35, L05302.
    Boutareaud, S., Boullier, A.-M., Andréani, M., Calugaru, D.-G., Beck, P., Song, S.-R.,Shimamoto, T.,2010. Clay clast aggregates in gouges: New textural evidence forseismic faulting. Journal of Geophysical Research: Solid Earth115(B2).
    Bowden, P., Tabor, D.,1950. The friction and lubrication of solids, part I. ClarendonPress, Oxford.
    Bowden, F., Tabor, D.,1964. The friction and lubrication of solids, part II. ClarendonPress, Oxford.
    Brace, W.F., Byerlee, J.D.,1966. Stick-Slip as a Mechanism for Earthquakes. Science153,990-992.
    Brace, W., Kohlstedt, D.,1980. Limits on lithospheric stress imposed by laboratoryexperiments. Journal of Geophysical Research: Solid Earth85,6248-6252.
    Brantut, N., Schubnel, A., Rouzaud, J.N., Brunet, F., Shimamoto, T.,2008.High-velocity frictional properties of a clay-bearing fault gouge and implicationsfor earthquake mechanics. Journal of Geophysical Research: Solid Earth113(B10).
    Brantut, N., Schubnel, A., Corvisier, J., Sarout, J.,2010. Thermochemicalpressurization of faults during coseismic slip. Journal of Geophysical Research:Solid Earth115(B5).
    Brantut, N., Han, R., Shimamoto, T., Findling, N., Schubnel, A.,2011. Fast slip withinhibited temperature rise due to mineral dehydration: Evidence fromexperiments on gypsum. Geology39,59-62.
    Brodsky, E.E., Kanamori, H.,2001. Elastohydrodynamic lubrication of faults. Journalof Geophysical Research: Solid Earth106,16357-16374.
    Brodsky, E., Mori, J., Fulton, P.,2010. Drilling into faults quickly after earthquakes.Eos Trans., American Geophysical Union,237-244.
    Broz, M.E., Cook, R.F., Whitney, D.L.,2006. Microhardness, toughness, and modulusof Mohs scale minerals. American Mineralogist91,135-142.
    Brune, J.N., Henyey, T.L., Roy, R.F.,1969. Heat Flow, Stress, and Rate of Slip alongthe San Andreas Fault, California. Journal of Geophysical Research: Solid Earth74,3821-3827.
    Brune, J.N., Brown, S., Johnson, P.A.,1993. Rupture mechanism and interfaceseparation in foam rubber models of earthquakes: A possible solution to the heatflow paradox and the paradox of large overthrusts. Tectonophysics218,59-67.
    Burchfiel, B.C., Zhiliang, C., Yupinc, L., Royden, L.H.,1995. Tectonics of theLongmen Shan and adjacent regions, central China.. International GeologyReview37,661-735.
    Burchfiel, B., Royden, L., Van Der Hilst, R., Hager, B., Chen, Z., King, R., Li, C., Lu,J., Yao, H., Kirby, E.,2008. A geological and geophysical context for theWenchuan earthquake of12May2008,Sichuan, People's Republic of China:.GSA Today18(7),4-11.
    Byerlee, J.,1978. Friction of rocks. Pure and Applied Geophysics116,615-626.
    Chang, J.C., Lockner, D.A., Reches, Z.,2012. Rapid acceleration leads to rapidweakening in earthquake-like laboratory experiments. Science338,101-105.
    Chen, J., Yang, X., Spiers, C.,2012. Coseismic thermal-mechanical-chemicalprocesses on the Wenchuan Earthquake fault: constraints from experiments andnumerical modeling, In EGU General Assembly Conference Abstracts, vol.14, p.5304.
    Chen, J., Yang, X., Ma, S., Spiers, C.J.,2013. Mass removal and clay mineraldehydration/rehydration in carbonate-rich surface exposures of the2008Wenchuan Earthquake fault: geochemical evidence and implications for faultzone evolution and coseismic slip. Journal of Geophysical Research: Solid Earth,118,1-23.
    Clauser, C., Huenges, E.,1995. Thermal conductivity of rocks and minerals. Rockphysics and phase relations: a handbook of physical constants3,105-126.
    Collettini, C., Niemeijer, A., Viti, C., Marone, C.,2009. Fault zone fabric and faultweakness. Nature462,907-910.
    Cowan, D.S.,1999. Do faults preserve a record of seismic slip? A field geologist'sopinion. Journal of Structural Geology21,995-1001.
    De Paola, N., Hirose, T., Mitchell, T., Di Toro, G., Viti, C., Shimamoto, T.,2011. Faultlubrication and earthquake propagation in thermally unstable rocks. Geology39,35-38.
    Del Gaudio, P., Di Toro, G., Han, R., Hirose, T., Nielsen, S., Shimamoto, T., Cavallo,A.,2009. Frictional melting of peridotite and seismic slip. Journal ofGeophysical Research: Solid Earth114(B6).
    Densmore, A.L., Ellis, M.A., Li, Y., Zhou, R., Hancock, G.S., Richardson, N.,2007.Active tectonics of the Beichuan and Pengguan faults at the eastern margin of theTibetan Plateau. Tectonics26, TC4005.
    Di Toro, G., Goldsby, D.L., Tullis, T.E.,2004. Friction falls towards zero in quartzrock as slip velocity approaches seismic rates. Nature427,436-439.
    Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T.,2006a. Naturaland experimental evidence of melt lubrication of faults during earthquakes.Science311,647-649.
    Di Toro, G., Hirose, T., Nielsen, S., Shimamoto, T.,2006b. Relating high-velocityrock-friction experiments to coseismic slip in the presence of melts. GeophysicalMonograph Series170,121-134.
    Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P., Spada,G., Alessandroni, R., Romeo, G., Di Stefano, G.,2010. From field geology toearthquake simulation: A new state-of-the-art tool to investigate rock frictionduring the seismic cycle (SHIVA). Rendiconti Lincei,21.1:95-114.
    Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F.,Cocco, M., Shimamoto, T.,2011. Fault lubrication during earthquakes. Nature471,494-498.
    Dieterich, J.H.,1972. Time-Dependent Friction in Rocks. Journal of GeophysicalResearch: Solid Earth77,3690-3697.
    Dieterich, J.H.,1978. Time-dependent friction and the mechanics of stick-slip. Pureand Applied Geophysics116,790-806.
    Dieterich, J.H.,1979. Modeling of rock friction:1. Experimental results andconstitutive equations. Journal of Geophysical Research: Solid Earth84,2161-2168.
    Dieterich, J.,1981. Constitutive properties of faults with simulated gouge, inmechanical behavior of crustal rocks, edited by NL Carter, M. Friedman, JMLogan, and DW Stearns. Geophysical Monograph Series24,103-120.
    Dieterich, J.,1986. A model for the nucleation of earthquake slip. GeophysicalMonograph Series37,37-47.
    Dieterich, J.,1992. Earthquake nucleation on faults with rate-and state-dependentstrength. Tectonophysics211,115-134.
    Dieterich, J.H., Kilgore, B.D.,1994. Direct observation of frictional contacts: Newinsights for state-dependent properties. Pure and Applied Geophysics143,283-302.
    Dieterich, J.H.,2007. Applications of rate-and state-dependent friction to models offault slip and earthquake occurrence, in: Editor-in-Chief: Gerald, S.(Ed.),Treatise on Geophysics. Elsevier, Amsterdam, pp.107-129.
    Faulkner, D.R., Mitchell, T.M., Behnsen, J., Hirose, T., Shimamoto, T.,2011. Stuck inthe mud? Earthquake nucleation and propagation through accretionary forearcs.Geophysical Research Letters38, L18303.
    Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T.,2010. Evidence of thermalpressurization in high-velocity friction experiments on smectite-rich gouges.Terra Nova22,347-353.
    Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M.,de Rossi, N.,2011. Low-to high-velocity frictional properties of the clay-richgouges from the slipping zone of the1963Vaiont slide, northern Italy. Journal ofGeophysical Research: Solid Earth116(B9).
    Fialko, Y., Khazan, Y.,2005. Fusion by earthquake fault friction: Stick or slip? Journalof Geophysical Research: Solid Earth110(B12).
    Fukuchi, T., Mizoguchi, K., Shimamoto, T.,2005. Ferrimagnetic resonance signalproduced by frictional heating: A new indicator of paleoseismicity. Journal ofGeophysical Research: Solid Earth110(B12).
    Fukuyama, E., Mizoguchi, K.,2010. Constitutive parameters for earthquake rupturedynamics based on high-velocity friction tests with variable sliprate.International Journal of Fracture163,15-26.
    Goetze, C., Evans, B.,1979. Stress and temperature in the bending lithosphere asconstrained by experimental rock mechanics. Geophysical Journal of the RoyalAstronomical Society59,463-478.
    Goldsby, D.L., Tullis, T.E.,2002. Low frictional strength of quartz rocks atsubseismic slip rates. Geophysical Research Letters29,1844.
    Goldsby, D.L., Tullis, T.E.,2011. Flash heating leads to low frictional strength ofcrustal rocks at earthquake slip rates. Science334,216-218.
    Green, H., Houston, H.,1995. The mechanics of deep earthquakes. Annual Review ofEarth and Planetary Sciences23,169-214.
    Gu, J., Rice, J., Ruina, A., Tse, S.,1984. Slip motion and stability of a single degree offreedom elastic system with rate and state dependent friction. Journal of theMechanics and Physics of Solids32,167-196.
    Han, R., Shimamoto, T., Hirose, T., Ree, J.-H., Ando, J.-i.,2007a. Ultralow friction ofcarbonate faults caused by thermal decomposition. Science316,878-881.
    Han, R., Shimamoto, T., Ando, J.-i., Ree, J.-H.,2007b. Seismic slip record incarbonate-bearing fault zones: An insight from high-velocity friction experimentson siderite gouge. Geology35,1131-1134.
    Han, R., Hirose, T., Shimamoto, T.,2010. Strong velocity weakening and powderlubrication of simulated carbonate faults at seismic slip rates. Journal ofGeophysical Research: Solid Earth115(B3).
    Han, R., Hirose, T., Shimamoto, T., Lee, Y., Ando, J.-i.,2011. Granular nanoparticleslubricate faults during seismic slip. Geology39,599-602.
    Han, R., Hirose, T.,2012. Clay–clast aggregates in fault gouge: An unequivocalindicator of seismic faulting at shallow depths? Journal of Structural Geology43,92-99.
    He, C., Yao, W., Wang, Z., and Zhou, Y.,2006. Strength and stability of frictionalsliding of gabbro gouge at elevated temperatures, Tectonophysics,427(1-4),217-229.
    He, C., Wang, Z., and Yao, W.,2007. Frictional sliding of gabbro gouge underhydrothermal conditions, Tectonophysics,445(3-4),353-362.
    He, H., Wei, Z., Chen, C., Shi, F.,2011. On-site determination of slip vectors alongthe Longmenshan fault during the Mw7.9Wenchuan, China, earthquake of May12,2008. Journal of Asian Earth Sciences41,274-282.
    Heaton, T.H.,1990. Evidence for and implications of self-healing pulses of slip inearthquake rupture. Physics of The Earth and Planetary Interiors64,1-20.
    Hillers, G., Ben-Zion, Y., Mai, P.M.,2006. Seismicity on a fault controlled by rate-and state-dependent friction with spatial variations of the critical slip distance.Journal of Geophysical Research: Solid Earth111(B1), B01403.
    Hirono, T., Lin, W., Yeh, E.-C., Soh, W., Hashimoto, Y., Sone, H., Matsubayashi, O.,Aoike, K., Ito, H., Kinoshita, M., Murayama, M., Song, S.-R., Ma, K.-F., Hung,J.-H., Wang, C.-Y., Tsai, Y.-B.,2006. High magnetic susceptibility of fault gougewithin Taiwan Chelungpu fault: Nondestructive continuous measurements ofphysical and chemical properties in fault rocks recovered from Hole B, TCDP.Geophysical Research Letters33, L15303.
    Hirose, T., Shimamoto, T.,2003. Fractal dimension of molten surfaces as a possibleparameter to infer the slip-weakening distance of faults from naturalpseudotachylytes. Journal of Structural Geology25,1569-1574.
    Hirose, T., Shimamoto, T.,2005a. Growth of molten zone as a mechanism of slipweakening of simulated faults in gabbro during frictional melting. Journal ofGeophysical Research: Solid Earth110(B5).
    Hirose, T., Shimamoto, T.,2005b. Slip-Weakening Distance of Faults duringFrictional Melting as Inferred from Experimental and Natural Pseudotachylytes.Bulletin of the Seismological Society of America95,1666-1673.
    Hirose, T., Bystricky, M.,2007. Extreme dynamic weakening of faults duringdehydration by coseismic shear heating. Geophysical Research Letters34,L14311.
    Hirose, T., Kawagucci, S., Suzuki, K.,2011. Mechanoradical H2generation duringsimulated faulting: Implications for an earthquake-driven subsurface biosphere.Geophysical Research Letters38, L17303.
    Hou, L., Ma, S., Shimamoto, T., Chen, J., Yao, L., Yang, X., Okimura, Y.,2012.Internal structures and high-velocity frictional properties of a bedding-parallelcarbonate fault at Xiaojiaqiao outcrop activated by the2008Wenchuanearthquake. Earthquake Science25,197-217.
    Hubbert, M.K., Rubey, W.W.,1959. Role of fluid pressure in mechanics of overthrustfaulting: I. mechanics of fluid-filled porous solids and its application tooverthrust faulting. Geological Society of America Bulletin70,115-166.
    Ida, Y.,1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith'sspecific surface energy. Journal of Geophysical Research: Solid Earth77,3796-3805.
    Ide, S., Takeo, M.,1997. Determination of constitutive relations of fault slip based onseismic wave analysis. Journal of Geophysical Research: Solid Earth102,27379-27391.
    Ikehara, M., Hirono, T., Tadai, O., Sakaguchi, M., Kikuta, H., Fukuchi, T., Mishima,T., Nakamura, N., Aoike, K., Fujimoto, K.,2007. Low total and inorganic carboncontents within the Taiwan Chelungpu fault system. Geochemical Journal41,391-396.
    Jeffreys, H.,1942. On the mechanics of faulting. Geological Magazine79,291-295.
    Johnson, T.,1981. Time-dependent friction of granite: implications for precursory slipon faults. Journal of Geophysical Research: Solid Earth86,6017-6028.
    Kanamori, H.,1994. Mechanics of Earthquakes. Annual Review of Earth andPlanetary Sciences22,207-237.
    Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., Ma, K.-F.,2006. Heatsignature on the Chelungpu fault associated with the1999Chi-Chi, Taiwanearthquake. Geophysical Research Letters33, L14306.
    Karner, S.L., Marone, C., Evans, B.,1997. Laboratory study of fault healing andlithification in simulated fault gouge under hydrothermal conditions.Tectonophysics277,41-55.
    Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.-M., Ito, H.,2007. Grain sizedistributions of fault rocks: A comparison between experimentally and naturallydeformed granitoids. Journal of Structural Geology29,1282-1300.
    Kilgore, B. D., Blanpied, M. L., and Dieterich, J. H.,1993. Velocity dependentfriction of granite over a wide range of conditions, Geophysical Research Letters,20(10),903-906.
    Kim, J.-W., Ree, J.-H., Han, R., Shimamoto, T.,2010. Experimental evidence for thesimultaneous formation of pseudotachylyte and mylonite in the brittle regime.Geology38,1143-1146.
    Kitajima, H., Chester, J.S., Chester, F.M., Shimamoto, T.,2010. High-speed friction ofdisaggregated ultracataclasite in rotary shear: Characterization of frictionalheating, mechanical behavior, and microstructure evolution. Journal ofGeophysical Research: Solid Earth115(B8).
    Kohli, A.H., Goldsby, D.L., Hirth, G., Tullis, T.,2011. Flash weakening ofserpentinite at near-seismic slip rates. Journal of Geophysical Research: SolidEarth116, B03202.
    Lachenbruch, A.H.,1980. Frictional heating, fluid pressure, and the resistance to faultmotion to fault motion. Journal of Geophysical Research: Solid Earth85,6097-6112.
    Li, C.-Y., Wei, Z.-Y., Ye, J.-Q., Han, Y.-B., Zheng, W.-J.,2010. Amounts and styles ofcoseismic deformation along the northern segment of surface rupture, of the2008Wenchuan Mw7.9earthquake, China. Tectonophysics491,35-58.
    Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Song, S.-R., Kuo, L.-W., Sun,Z., Chevalier, M.-L., Liu, D.,2013. Characteristics of the Fault-Related Rocks,Fault Zones and the Principal Slip Zone in the Wenchuan Earthquake FaultScientific Drilling Project Hole-1(WFSD-1). Tectonophysics584,23-42.
    Lin, A., Ren, Z., Jia, D., Wu, X.,2009. Co-seismic thrusting rupture and slipdistribution produced by the2008Mw7.9Wenchuan earthquake, China.Tectonophysics471,203-215.
    Lin, A., Ren, Z., Kumahara,Y.,2010. Structural analysis of the coseismic shear zoneof the2008Mw7.9Wenchuan earthquake, China. Journal of Structural Geology32(6):781-791.
    Lin, A., Rao, G., Yan, B.,2012. Field evidence of rupture of the Qingchuan Faultduring the2008Mw7.9Wenchuan earthquake, northeastern segment of theLongmen Shan Thrust Belt, China. Tectonophysics522–523,243-252.
    Linker, M.F., Dieterich, J.H.,1992. Effects of Variable Normal Stress on RockFriction: Observations and Constitutive Equations. Journal of GeophysicalResearch: Solid Earth97,4923-4940.
    Liu-Zeng, J., Zhang, Z., Wen, L., Tapponnier, P., Sun, J., Xing, X., Hu, G., Xu, Q.,Zeng, L., Ding, L., Ji, C., Hudnut, K.W., van der Woerd, J.,2009. Co-seismicruptures of the12May2008, Ms8.0Wenchuan earthquake, Sichuan: East-westcrustal shortening on oblique, parallel thrusts along the eastern edge of Tibet.Earth and Planetary Science Letters286,355-370.
    Lockner, D.A., Morrow, C., Moore, D., Hickman, S.,2011. Low strength of deep SanAndreas fault gouge from SAFOD core. Nature472,82-85.
    Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J.,Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., Wu, H.-Y.,2006. Slipzone and energetics of a large earthquake from the Taiwan Chelungpu-faultDrilling Project. Nature444,473-476.
    Marone, C., Kilgore, B.,1993. Scaling of the critical slip distance for seismic faultingwith shear strain in fault zones. Nature362,618-621.
    Marone, C.,1998a. Laboratory-derived friction laws and their application to seismicfaulting. Annual Review of Earth and Planetary Sciences26,643-696.
    Marone, C.,1998b. The effect of loading rate on static friction and the rate of faulthealing during the earthquake cycle. Nature391,69-72.
    Mase, C.W., Smith, L.,1987. Effects of frictional heating on the thermal, hydrologic,and mechanical response of a fault. Journal of Geophysical Research: Solid Earth92,6249-6272.
    McKenzie, D., Brune, J.N.,1972. Melting on fault planes during large earthquakes.Geophysical Journal of the Royal Astronomical Society29,65-78.
    Melosh, H.,1979. Acoustic fluidization-A new geologic process. Journal ofGeophysical Research: Solid Earth84,7513-7520.
    Melosh, H.J.,1996. Dynamical weakening of faults by acoustic fluidization. Nature379,601-606.
    Mizoguchi, K., Shimamoto, T.,2004. Dramatic slip weakening of Nojima fault gougeat high-velocities and its implication for dynamic fault motion. In AGU FallMeeting Abstracts, Vol.1, p.0559.
    Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E.,2006. Moisture-relatedweakening and strengthening of a fault activated at seismic slip rates.Geophysical Research Letters33.
    Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E.,2007. Reconstruction ofseismic faulting by high-velocity friction experiments: An example of the1995Kobe earthquake. Geophysical Research Letters34, L01308.
    Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E.,2009a. High-velocityfrictional behavior and microstructure evolution of fault gouge obtained fromNojima fault, southwest Japan. Tectonophysics471,285-296.
    Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E.,2009b. Fault heals rapidlyafter dynamic weakening. Bulletin of the Seismological Society of America99,3470-3474.
    Moore, D.E., Lockner, D.A., Summers, R., Ma, S, Byerlee, J.D.,1996. Strength ofchrysotile-serpentinite gouge under hydrothermal conditions: Can it explain aweak San Andreas fault? Geology24,1041-1044.
    Moore, D. E., Lockner, D. A., Ma, S, Summers, R., and Byerlee, J. D.,1997.(1997),Strengths of serpentinite gouges at elevated temperatures, Journal of GeophysicalResearch: Solid Earth,102(B7),14787-14801.
    Moore, D.E., Rymer, M.J.,2007. Talc-bearing serpentinite and the creeping section ofthe San Andreas fault. Nature448,795-797.
    Moore, D., and Lockner, D.,2007. Friction of the smectite clay montmorillonite: Areview and interpretation of data, In Dixon, T.H., Moore, J.C(Eds.): theseismogenic zone of subduction thrust faults. Margins Theoretical andExperimental Earth Science Ser., vol.2, pp.317–345.
    Moore, D. E., and Lockner, D. A.,2008. Talc friction in the temperature range25°–400°C: Relevance for fault-zone weakening.Tectonophysics,449(1–4),120-132.
    Mori, J., Li, H., Wang, H., Kano, Y., Pei, J., Xu, Z., Brodsky, E.,2010. Temperaturemeasurements in the WFSD-1borehole following the2008Wenchuanearthquake (Mw7.9). In AGU Fall Meeting Abstracts, Vol.1, p.03.
    Morrow, C., Radney, B., Byerlee, J.,1992. Frictional strength and the effectivepressure law of montmorillonite and illite clays. International Geophysics.Academic Press, pp.69-88.
    Nielsen, S., Di Toro, G., Hirose, T., Shimamoto, T.,2008. Frictional melt and seismicslip. Journal of Geophysical Research: Solid Earth113(B1).
    Nielsen, S., Mosca, P., Giberti, G., Di Toro, G., Hirose, T., Shimamoto, T.,2010. Onthe transient behavior of frictional melt during seismic slip. Journal ofGeophysical Research: Solid Earth115(B10).
    Niemeijer, A. R., and Spiers, C. J.,2006. Velocity dependence of strength and healingbehaviour in simulated phyllosilicate-bearing fault gouge, Tectonophysics,427(1-4),231-253.
    Niemeijer, A., Di Toro, G., Nielsen, S., Di Felice, F.,2011. Frictional melting ofgabbro under extreme experimental conditions of normal stress, acceleration, andsliding velocity. Journal of Geophysical Research: Solid Earth116(B7), B07404.
    Noda, H.,2008. Frictional constitutive law at intermediate slip rates accounting forflash heating and thermally activated slip process. Journal of GeophysicalResearch: Solid Earth113, B09302.
    Noda, H., Lapusta, N.,2013. Stable creeping fault segments can become destructiveas a result of dynamic weakening. Nature advance online publication.
    O'Hara, K., Mizoguchi, K., Shimamoto, T., Hower, J.C.,2006. Experimental frictionalheating of coal gouge at seismic slip rates: Evidence for devolatilization andthermal pressurization of gouge fluids. Tectonophysics424,109-118.
    Ohnaka, M., Kuwahara, Y., Yamamoto, K.,1987. Constitutive relations betweendynamics physical parameters near a tip of the propagating slip zone duringstick-slip shear failure. Tectonophysics144,109-125.
    Ohnaka, M., Akatsu, M., Mochizuki, H., Odedra, A., Tagashira, F., Yamamoto, Y.,1997. A constitutive law for the shear failure of rock under lithosphericconditions. Tectonophysics277,1-27.
    Ohtomo, Y., Shimamoto, T.,1994. Significance of thermal fracturing in the generationof fault gouge during rapid fault motion: An experimental verification. J.Tectonic Res. Group of Japan39,135-144.
    Oohashi, K., Hirose, T., Shimamoto, T.,2011. Shear-induced graphitization ofcarbonaceous materials during seismic fault motion: Experiments and possibleimplications for fault mechanics. Journal of Structural Geology33,1122-1134.
    Oohashi, K., Hirose, T., Kobayashi, K., Shimamoto, T.,2012. The occurrence ofgraphite-bearing fault rocks in the Atotsugawa fault system, Japan: origins andimplications for fault creep. Journal of Structural Geology38,39-50.
    Oohashi, K., Hirose, T., Shimamoto, T.,2013. Graphite as a lubricating agent in faultzones: an insight from low-to high-velocity friction experiments on a mixedgraphite–quartz gouge. Journal of Geophysical Research: Solid Earth118,doi:10.1002/jgrb.50175.
    Oshiman, N., Shimamoto, T., Takemura, K.,2001. Thematic issue: Nojima fault zoneprobe. Island Arc10,195-196.
    Palmer, A., Rice, J.,1973. The growth of slip surfaces in the progressive failure ofover-consolidated clay. Proceedings of the Royal Society of London. Series A,Mathematical and Physical Sciences332,527-548.
    Perrin, G., Rice, J.R., Zheng, G.,1995. Self-healing slip pulse on a frictional surface.Journal of the Mechanics and Physics of Solids43,1461-1495.
    Rabinowicz, E.,1951. The nature of the static and kinetic coefficients of friction.Journal of applied physics22,1373-1379.
    Ran, Y., Chen, L., Chen, J., Wang, H., Chen, G., Yin, J., Shi, X., Li, C., Xu, X.,2010.Paleoseismic evidence and repeat time of large earthquakes at three sites alongthe Longmenshan fault zone. Tectonophysics491,141-153.
    Reches, Z.e., Lockner, D.A.,2010. Fault weakening and earthquake instability bypowder lubrication. Nature467,452-455.
    Reinen, L. A., Weeks, J., and Tullis, T.,1994., The frictional behavior of serpentinite:Implications for aseismic creep on shallow crustal faults, Geophysical ResearchLetters,18(10),1921-1924.
    Reinen, L., Weeks, J., Tullis, T.,1994. The frictional behavior of lizardite andantigorite serpentinites: Experiments, constitutive models, and implications fornatural faults, Pure and Applied Geophysics,143(1),317-358.
    Rempel, A.W., Rice, J.R.,2006. Thermal pressurization and onset of melting in faultzones. Journal of Geophysical Research: Solid Earth111(B9), B09314.
    Rice, J.R., Ruina, A.L.,1983. Stability of Steady Frictional Slipping. Journal ofApplied Mechanics50,343-349.
    Rice, J.,1992. Fault stress states, pore pressure distributions, and the weakness of theSan Andreas fault. International Geophysics Series51,475-503.
    Rice, J.R.,2006. Heating and weakening of faults during earthquake slip. Journal ofGeophysical Research: Solid Earth111(B5).
    Roig Silva, C., Goldsby, D., Di Toro, G., Tullis, T.,2004. The role of silica content indynamic fault weakening due to gel lubrication. In AGU Fall Meeting Abstracts,Vol.1, p.06.
    Ruina, A.,1983. Slip instability and state variable friction laws. Journal ofGeophysical Research: Solid Earth88,10359-10370.
    Saffer, D. M., Frye, K. M., Marone, C., Mair K.,2001. Laboratory results indicatingcomplex and potentially unstable frictional behavior of smectite clay,Geophysical Research Letters,28(12),2297-2300.
    Saffer, D. M., Marone, C.,2003. Comparison of smectite-and illite-rich gougefrictional properties: application to the updip limit of the seismogenic zone alongsubduction megathrusts, Earth and Planetary Science Letters,215(1-2),219-235.
    Sammis, C., King, G., Biegel, R.,1987. The kinematics of gouge deformation. Pureand Applied Geophysics125,777-812.
    Sammis, C., Biegel, R.,1989. Fractals, fault-gouge, and friction. Pure and AppliedGeophysics131,255-271.
    Sammis, C., Lockner, D., Reches, Z.e.,2011. The Role of Adsorbed Water on theFriction of a Layer of Submicron Particles. Pure and Applied Geophysics168,2325-2334.
    Sawai, M., Shimamoto, T., Togo, T.,2012a. Reduction in BET surface area of Nojimafault gouge with seismic slip and its implication for the fracture energy ofearthquakes. Journal of Structural Geology38,117-138.
    Sawai, M., Shimamoto, T., Mitchell, T., Kitajima, H. and Hirose, T.,2012b.Intermediate velocity strengthening of SAFOD gouge from the creeping portionof San Andreas fault zone, KANAME International Conference on a NewPerspective of Great Earthquakes along Subduction Zones, Kochi, Japan, Feb.28-March1,2012.
    Scholz, C.H., Engelder, J.T.,1976. The role of asperity indentation and ploughing inrock friction--I: Asperity creep and stick-slip. International Journal of RockMechanics and Mining Sciences&Geomechanics Abstracts13,149-154.
    Scholz, C.,1990. The mechanics of earthquakes and faulting. Cambridge Univ. Press,New York.
    Scholz, C.H.,1988. The critical slip distance for seismic faulting. Nature336,761-763.
    Scholz, C.,1998. Earthquakes and friction laws. Nature391,37-42.
    Scholz, C.H.,2000. Evidence for a strong San Andreas fault. Geology28,163-166.
    Shen, Z.-K., Sun, J., Zhang, P., Wan, Y., Wang, M., Burgmann, R., Zeng, Y., Gan, W.,Liao, H., Wang, Q.,2009. Slip maxima at fault junctions and rupturing ofbarriers during the2008Wenchuan earthquake. Nature Geosci2,718-724.
    Shimamoto, T.,1986. Transition Between Frictional Slip and Ductile Flow for HaliteShear Zones at Room Temperature, Science,231(4739),711-714.
    Shimamoto, T., Logan, J. M,1986. Velocitydependent behavior of simulated haliteshear zones: an analog for silicates. See Das et al,37,49-63.
    Shimamoto, T., Tsutsumi, A.,1994. A new rotary-shear high-speed frictional testingmachine: its basic design and scope of research (in Japenese with Englishabstract). J. Tectonic Res. Group of Japan39,65-78.
    Shimamoto, T., Togo, T.,2012. Earthquakes in the Lab. Science338,54-55.
    Sibson, R.,1973. Interactions between temperature and pore-fluid pressure duringearthquake faulting and a mechanism for partial or total stress relief. Nature243,66-68.
    Sibson, R.H.,1975. Generation of Pseudotachylyte by Ancient Seismic Faulting.Geophysical Journal of the Royal Astronomical Society43,775-794.
    Sibson, R.H.,1977. Fault rocks and fault mechanisms. Journal of the GeologicalSociety133,191-213.
    Sibson, R.H.,1990. Rupture nucleation on unfavorably oriented faults. Bulletin of theSeismological Society of America80,1580-1604.
    Sibson, R., Toy, V.,2006. The habitat of fault-generated pseudotachylyte: presence vs.absence of friction-melt. Geophysical Monograph Series170,153-166.
    Sirono, S., Satomi, K., Watanabe, S.,2006. Numerical simulations of frictionalmelting: Small dependence of shear stress drop on viscosity parameters. Journalof Geophysical Research: Solid Earth111(B6).
    Smith, S.A.F., Di Toro, G., Kim, S., Ree, J.-H., Nielsen, S., Billi, A., Spiess, R.,2012.Coseismic recrystallization during shallow earthquake slip. Geology41(1),63-66.
    Sone, H., Shimamoto, T.,2009. Frictional resistance of faults during accelerating anddecelerating earthquake slip. Nature Geosci2,705-708.
    Spray, J.G.,1987. Artificial generation of pseudotachylyte using friction weldingapparatus: simulation of melting on a fault plane. Journal of Structural Geology9,49-60.
    Spray, J.G.,1995. Pseudotachylyte controversy: Fact or friction? Geology23,1119-1122.
    Stesky, R.,1978. Mechanisms of high temperature frictional sliding in Westerlygranite, Canadian Journal of Earth Sciences,15(3),361-375.
    Storti, F., Billi, A., Salvini, F.,2003. Particle size distributions in natural carbonatefault rocks: insights for non-self-similar cataclasis. Earth and Planetary ScienceLetters206,173-186.
    Tanikawa, W., Shimamoto, T.,2009. Frictional and transport properties of theChelungpu fault from shallow borehole data and their correlation with seismicbehavior during the1999Chi-Chi earthquake. Journal of Geophysical Research:Solid Earth114(B1).
    Tembe, S., Lockner, D. A., and Wong, T. F.,2010. Effect of clay content andmineralogy on frictional sliding behavior of simulated gouges: Binary andternary mixtures of quartz, illite and montmorillonite. Journal of GeophysicalResearch: Solid Earth,115(B3).
    Tinti, E., Spudich, P., Cocco, M.,2005. Earthquake fracture energy inferred fromkinematic rupture models on extended faults. Journal of Geophysical Research:Solid Earth110(B12).
    Tisato, N., Giulio, D.T., Nicola, D.R., Marino, Q., Thibault, C.,2012. Experimentalinvestigation of flash weakening in limestone. Journal of Structural Geology,38,183-199.
    Togo, T., Shimamoto, T.,2012. Energy partition for grain crushing in quartz gougeduring subseismic to seismic fault motion: An experimental study. Journal ofStructural Geology38,139-155.
    Togo, T., Shimamoto, T., Ma, S., Wen, X., He, H.,2011a. Internal structure ofLongmenshan fault zone at Hongkou outcrop, Sichuan, China, that caused the2008Wenchuan earthquake. Earthquake Science24,249-265.
    Togo, T., Shimamoto, T., Ma, S., Hirose, T.,2011b. High-velocity frictional behaviorof Longmenshan fault gouge from Hongkou outcrop and its implications fordynamic weakening of fault during the2008Wenchuan earthquake. EarthquakeScience24,267-281.
    Tse, S., Rice, J.,1986. Crustal earthquake instability in relation to the depth variationof frictional slip properties. Journal of Geophysical Research: Solid Earth91,9452-9472.
    Tsutsumi, A., Shimamoto, T.,1997. High-velocity frictional properties of gabbro.Geophysical Research Letters24,699-702.
    Tsutsumi, A., Mizoguchi, K.,2007. Effect of melt squeezing rate on shear stress alonga simulated fault in gabbro during frictional melting. Geophysical ResearchLetters34, L21306.
    Tullis, T.E.,2007. Friction of Rock at Earthquake Slip Rates, in: Gerald, S.(Ed.),Treatise on Geophysics. Elsevier, Amsterdam, pp.131-152.
    Tullis, T.E., Weeks, J.D.,1986. Constitutive behavior and stability of frictional slidingof granite. Pure and Applied Geophysics124,383-414.
    Turcotte, D.L.,1986. Fractals and fragmentation. Journal of Geophysical Research:Solid Earth91,1921-1926.
    Turcotte, D.,1989. Fractals in geology and geophysics. Pure and Applied Geophysics131,171-196.
    Ujiie, K., Tsutsumi, A., Fialko, Y., Yamaguchi, H.,2009. Experimental investigationof frictional melting of argillite at high slip rates: Implications for seismic slip insubduction-accretion complexes. Journal of Geophysical Research: Solid Earth114.
    Ujiie, K., Tsutsumi, A.,2010. High-velocity frictional properties of clay-rich faultgouge in a megasplay fault zone, Nankai subduction zone. Geophysical ResearchLetters37, L24310.
    Verberne, B.A., He, C., Spiers, C.J.,2010. Frictional Properties of Sedimentary Rocksand Natural Fault Gouge from the Longmen Shan Fault Zone, Sichuan, China.Bulletin of the Seismological Society of America100,2767-2790.
    Viti, C., Hirose, T.,2010. Thermal decomposition of serpentine during coseismicfaulting: Nanostructures and mineral reactions. Journal of Structural Geology32,1476-1484.
    Vosteen, H.-D., Schellschmidt, R.,2003. Influence of temperature on thermalconductivity, thermal capacity and thermal diffusivity for different types of rock.Physics and Chemistry of the Earth, Parts A/B/C28,499-509.
    Wang, H., Li, H., Si, J., Pei, J., Huang, Y., Shimamoto, T., Yao, L. and Wang, Y.,Internal structures of Wenchuan earthquake fault zone, revealed by WFSD-1cores and surface outcrops, American Geophysical Union, Fall Annual Meeting,San Francisco, Calif., T41D-2624, Dec.3-7,2012.
    Waples, D.W., Waples, J.S.,2004. A review and evaluation of specific heat capacitiesof rocks, minerals, and subsurface fluids. Part1: Minerals and nonporous rocks.Natural Resources Research13,97-122.
    Website1: http://www.te-ka.de/en/pdf/TK04-FragmentsAndPowder.pdf.
    Website2: http://webphysics.davidson.edu/faculty/dmb/PY430/Friction/teflon.html.
    Website3: http://en.wikipedia.org/wiki/Density_of_air.
    Website4: http://www.engineeringtoolbox.com/air-properties-d_156.html.
    Website5: http://www.nexusglazing.com/aisi_316_properties.php.
    Weeks, J. D.(1993), Constitutive Laws for High-Velocity Frictional Sliding and TheirInfluence on Stress Drop During Unstable Slip, Journal of Geophysical Research:Solid Earth,98(B10),17637-17648.
    Wenk, H.R.,1978. Are pseudotachylites products of fracture or fusion? Geology6,507-511.
    Wibberley, C.A.J., Shimamoto, T.,2003. Internal structure and permeability of majorstrike-slip fault zones: the Median Tectonic Line in Mie Prefecture, SouthwestJapan. Journal of Structural Geology25,59-78.
    Wibberley, C.A.J., Shimamoto, T.,2005. Earthquake slip weakening and asperitiesexplained by thermal pressurization. Nature436,689-692.
    Wornyoh, E.Y.A., Jasti, V.K., Higgs, C.F., Iii,2007. A Review of Dry ParticulateLubrication: Powder and Granular Materials. Journal of Tribology129,438-449.
    Wu, F.T., Blatter, L., Roberson, H.,1975. Clay gouges in the San Andreas FaultSystem and their possible implications. Pure and Applied Geophysics113,87-95.
    Xu, C., Liu, Y., Wen, Y., Wang, R.,2010. Coseismic Slip Distribution of the2008Mw7.9Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data.Bulletin of the Seismological Society of America,100,2736-2749.
    Xu, X., Wen, X., Yu, G., Chen, G., Klinger, Y., Hubbard, J., Shaw, J.,2009. Coseismicreverse-and oblique-slip surface faulting generated by the2008Mw7.9Wenchuan earthquake, China. Geology37,515-518.
    Xu, Z., Ji, S., Li, H., Hou, L., Fu, X., Cai, Z.,2008. Uplift of the Longmen Shan rangeand the Wenchuan earthquake. Episodes,31,291-301.
    Yamashita, T.,1976. On the dynamical process of fault motion in the presence offriction and inhomogeneous initial stress. I. Rupture propagation. Journal ofPhysics of the Earth24,417-444.
    Yang, T., Chen, J., Wang, H., Jin, H.,2012a. Magnetic properties of fault rocks fromthe Yingxiu–Beichuan fault: Constraints on temperature rise within the shallowslip zone during the2008Wenchuan earthquake and their implications. Journalof Asian Earth Sciences50,52-60.
    Yang, T., Chen, J., Wang, H., Jin, H.,2012b. Rock magnetic properties of fault rocksfrom the rupture of the2008Wenchuan earthquake, China and their implications:Preliminary results from the Zhaojiagou outcrop, Beichuan County (Sichuan).Tectonophysics530–531,331-341.
    Yang, X., Chen, J., Ma, S.,2010. Permeability and grain size distribution ofWenchuan earthquake fault rocks, American Geophysical Union, Fall AnnualMeeting, San Francisco, pp. T51B-2042.
    Yao, L., Ma, S., Shimamoto, T., Li, H.,2012. Intermediate to high-velocity frictionalproperties of Longmenshan fault gouge from WFSD-1cores and outcrops,American Geophysical Union, Fall Annual Meeting, San Francisco, Calif.,T44B-08, Dec.3-7,2012.
    Yao, L., Ma, S., Shimamoto, T., Togo, T.,2013. Structures and high-velocity frictionalproperties of the Pingxi fault zone in the Longmenshan fault system, Sichuan,China, activated during the2008Wenchuan earthquake. Tectonophysics599,135-156.
    Yin, D., Chen, W., Hao, Z., Li, X.,1977. Geological Map of Sichuan province, China,1/200,000, Sheet I-48-XXXIII. Geol. Survey of Sichuan province, China.
    Yuan, F., Prakash, V.,2008. Use of a modified torsional Kolsky bar to study frictionalslip resistance in rock-analog materials at coseismic slip rates. InternationalJournal of Solids and Structures45,4247-4263.
    Zhang, G., Qu, C., Shan, X., Song, X., Zhang, G., Wang, C., Hu, J.-C., Wang, R.,2011. Slip distribution of the2008Wenchuan Ms7.9earthquake by jointinversion from GPS and InSAR measurements: a resolution test study.Geophysical Journal International186,207-220.
    Zhang, L., He, C.,2013. Frictional properties of natural gouges from Longmenshanfault zone ruptured during the Wenchuan Mw7.9earthquake. Tectonophysics594,149-164.
    Zhang, P.-Z., Wen, X.-z., Shen, Z.-K., Chen, J.-h.,2010. Oblique, High-Angle,Listric-Reverse Faulting and Associated Development of Strain: The WenchuanEarthquake of May12,2008, Sichuan, China. Annual Review of Earth andPlanetary Sciences38,353-382.
    Zoback, M.D., Zoback, M.L., Mount, V.S., Suppe, J., Eaton, J.P., Healy, J.H.,Oppenheimer, D., Reasenberg, P., Jones, L., Raleigh, C.B., Wong, I.G., Scotti, O.,Wentworth, C.,1987. New Evidence on the State of Stress of the San AndreasFault System. Science238,1105-1111.
    Zoback, M., Hickman, S.,2005. Preliminary observations of stress and fluid pressurein and near the San Andreas Fault at depth in the SAFOD boreholes. In AGU FallMeeting Abstracts, Vol.1, p.0438.
    Zoback, M.D., Hickman, S., Ellsworth, W.,2007. The Role of Fault Zone Drilling, in:Gerald, S.(Ed.), Treatise on Geophysics. Elsevier, Amsterdam, pp.649-674.
    陈国光,计凤桔,周荣军,徐杰,周本刚,黎小刚,叶友青,2007.龙门山断裂带晚第四纪活动性分段的初步研究.地震地质29(3),657-673.
    陈建业,杨晓松,党嘉祥,何昌荣,周永胜,马胜利,2011.汶川地震断层带结构及渗透率.地球物理学报54(7),1805-1816.
    陈社发,邓起东,1994a.龙门山中段推覆构造带及相关构造的演化历史和变形机制(一).地震地质16,404-412.
    陈社发,邓起东,1994b.龙门山中段推覆构造带及相关构造的演化历史和变形机制(二).地震地质16,413-421.
    党嘉祥,周永胜,韩亮,何昌荣,陈建业,党新增,杨晓松,2012.虹口八角庙-深溪沟炭质泥岩同震断层泥的X射线衍射分析结果.地震地质34,17-27.
    邓起东,2008.关于四川汶川8.0级地震的思考.地震地质30,811-827.
    邓起东,陈社发,赵小麟,1994.龙门山及其邻区的构造和地震活动及动力学.地震地质16,389-403.
    韩亮,周永胜,陈建业,马胜利,杨晓松,何昌荣,党嘉祥,2010.汶川地震基岩同震断层泥结构特征.第四纪研究,30(4),745-758.
    何昌荣,1999.两种摩擦本构关系的对比研究.地震地质21,137-146.
    何宏林,孙昭民,王世元,王纪强,董绍鹏,2008.汶川Ms8.0地震地表破裂带.地震地质30,359-362.
    李传友,宋方敏,冉勇康,2004.龙门山断裂带北段晚第四纪活动性讨论.地震地质26,248-258.
    李传友,叶建青,谢富仁,郑文俊,韩用兵,刘玉法,王伟涛,魏占玉,赵冬,马保起,2008.汶川Ms8.0地震地表破裂带北川以北段的基本特征.地震地质30,683-696.
    李传友,魏占玉,2009.汶川Ms8.0地震地表破裂带北端位置的修订.地震地质31,1-8.
    李勇,周荣军,2006.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志.第四纪研究26,40-51.
    刘静,张智慧,文力,孙杰,邢秀臣,胡古月,许强, Tapponnier, P.,曾令森,丁林,2008.汶川8级大地震同震破裂的特殊性及构造意义――多条平行断裂同时活动的反序型逆冲地震事件.地质学报82,1707-1722.
    马胜利,嶋本利彦,1995.蒙脱石的脱水作用对断层摩擦本构行为的影响,地震地质,17(4),289-304.
    马胜利, Lockner D., Moore D., Summers R., Byerlee J.(1997),水热作用条件下蛇纹石断层泥的摩擦强度和速度依赖性及其地震地质意义,地震地质19(2),76-83.
    缪阿丽,马胜利,周永胜,2010.硬石膏断层带摩擦稳定性转换与微破裂特征的实验研究,地球物理学报,53(11),2671-2680.
    缪阿丽,马胜利,侯林锋,姚路,2012.岩盐断层带摩擦滑动的速度依赖性转换及其地震学意义,地球物理学报,55(10),3307-3317.
    裴军令,李海兵,孙知明,王焕,司家亮,2010.汶川地震断裂带断层滑移作用――来自高磁化率断层岩的信息.第四纪研究30(4),759-767.
    冉勇康,陈立春,陈桂华,尹金辉,陈杰,宫会玲,史翔,李陈侠,2008.汶川Ms8.0地震发震断裂大地震原地重复现象初析.地震地质30,630-643.
    王焕,李海兵,裴军令,李天福,黄尧,赵志丹,2010.汶川地震断裂带结构、岩性特征及其与地震活动的关系.第四纪研究30(4),768-778.
    王卫民,赵连锋,李娟,姚振兴,2008.四川汶川8.0级地震震源过程.地球物理学报51,1403-1410.
    徐锡伟,闻学泽,叶建青,马保起,陈杰,周荣军,何宏林,田勤俭,何玉林,王志才,孙昭民,冯希杰,于贵华,陈立春,陈桂华,于慎鄂,冉勇康,李细光,李陈侠,安艳芬,2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质30,597-629.
    许志琴,侯立伟,王宗秀,1992.中国松潘一甘孜造山带的造山过程.地质出版社,北京. pp.1-60.
    许志琴,李海兵,吴忠良,2008.汶川地震和科学钻探.地质学报82,1613-1622.
    尹东郊,陈维生,郝子文,李小壮,1977.四川省1:20万地质图, I-48-XXXIII.四川省地质局.
    张培震,徐锡伟,闻学泽,冉勇康,2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报51,1066-1073.
    周永胜,何昌荣,2009.汶川地震区的流变结构与发震高角度逆断层滑动的力学条件.地球物理学报52,474-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700