用户名: 密码: 验证码:
基于槽式孔板与旋进漩涡流量计的湿气计量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋、沙漠及边远油气田的开发,由于开发成本、安装空间和优化管理的要求,迫切需要开发适应性强、低成本的在线湿气流量计替代昂贵笨重的计量分离器。把成熟的单相气体流量计用于湿气计量一直是国内外研究的热点。本文将槽式孔板和旋进漩涡流量计这两种成熟的气体流量计用于湿气计量技术的研究,主要研究成果如下:
     (1)通过对不同流型的湿气流经管道时诱发的管道振动特性的实验研究,提出了基于流体诱发振动的非接触式在线湿气流型识别新方法。通过安装于测试管道外壁的振动传感器测量不同流型下湿气流诱发的振动信号;采用小波包分析提取了表征流型变化的振动信号的能量特征向量;分别建立了基于径向基函数网络、概率神经网络、支持向量机的水平管湿气流型识别模型。这三种模型对实验样本都有较高的流型识别率。
     (2)对不同孔径比的槽式孔板的湿气流计量性能进行了研究,确定了“虚高”与L-M参数XLM、气体富劳德数、密度比和孔径比等无量纲参数显著相关,提出了两个槽式孔板湿气气相计量修正模型,计算精度优于其它修正模型,可用于湿气气相流量计量。
     (3)首次对旋进漩涡流量计的进动频率的湿气流计量性能进行了研究。当xLM>0.12时,由于进动频率失效,不能用于湿气气相流量计量;当XLM≤0.12时,进动频率呈现负偏差,并提出了基于进动频率的旋进漩涡流量计湿气气相计量模型,经该模型修正后的气相质量流量相对误差在95.4%的置信度下小于±5%,可用于XLM≤0.12的湿气气相流量计量。
     (4)首次对旋进漩涡流量计的差压的湿气流计量性能进行了研究,发现其与“文丘里”具有类似的“虚高”特性,并提出了基于差压的旋进漩涡流量计湿气气相计量模型。经该模型修正后的气相质量流量相对误差在96.4%的置信度下小于±5%,可用于湿气气相流量计量。
     (5)采用两个不同类型的流量传感器——槽式孔板的差压与旋进漩涡流量计的进动频率组合,进行了湿气两相计量技术的研究,并给出了两相流量迭代求解方法、步骤。实验结果表明:气相质量流量相对误差在89.2%的置信度下小于±6%,液相质量流量相对误差在100%的置信度下小于±20%,可用于XLM≤0.12的湿气两相流量计量。
     (6)采用旋进漩涡流量计的两个不同类型的输出信号——差压与进动频率组合,进行了湿气两相计量技术的研究,并给出了两相流量迭代求解方法、步骤。实验结果表明:气相质量流量相对误差在91.3%的置信度下小于±8%,液相质量流量相对误差在89.2%的置信度下小于±20%,可用于XLM≤0.12的湿气两相流量计量。这种方法只需要利用一个流量计就可实现湿气两相流量计量,从安装、使用、维护等方面都具有更高的性价比。
With the advancing of exploitation of oil and natural gas field into offshore, desert and remote areas, it extremely desirable to have a wet gas metering system that is capable of providing cost effective, compact in size, and on-line measurement of wet gas with sufficient accuracy to replace a bulky and costly test separator, in terms of cost savings, production optimization, field monitoring and reservoir management. The method employing mature gas flowmeters to meter wet gas had been and still is a highly focused subject for many researchers around the world. In this dissertation, two mature gas flowmeter, namely a sloted orifice and a swirlmeter, are employed to meter wet gas. The main contributions can be enumerated as follows:
     First, a novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through wavelet package transform. The three classifies, namely the RBF neural network, the probabilistic neural network, and support vector machine classifiers, are respectively constructed to identify wet gas regimes. The results show that the three classifiers can identify flow regimes effectively.
     Second, researches into the wet gas flow performance of the horizontally installed slotted orifice meter were performed. After studying of the relationship between the over-reading and Lockhart-Martinelli parameter X_(LM), gas Froude Number, the gas to liquid density ratio and beta ratio, two new metering correlations for low-pressure wet gas flow are proposed. The results show that the calculate accuracy of the correlations are higher than all of the previous ones, and therefore they can be used to meter the gas flow rate for wet gas flow.
     Third, the wet gas flow performance of a swirlmeter based on vortex precession frequency was uniquely investigated. When X_(LM)> 0.12, the flowmeter failed to meter the gas flow rate due to disappearance of vortex precession. WhenX_(LM)≤0.12, the entrained liquid in a gas stream tends to induce a negative bias in the gas flow rate reading of the swirlmeter, and therefore a metering correlation is proposed by using the surface-fitting technology. The results show the correlation improves the gas flow rate prediction errors of the wet gas flow to within±5%at a confidence level 95.4%, and therefore it can be used to meter the gas flow rate for wet gas flow at X_(LM)≤0.12.
     Fourth, the wet gas flow performance of a swirlmeter based on differential pressure was uniquely investigated. It shows that the differential pressure of swirlmeter has similar metering characteristics to that of Venturi tube, and and a metering correlation is proposed by using the surface-fitting technology. The results show the correlation improves the gas flow rate prediction errors of the wet gas flow to within±5%at a confidence level 96.4%, and therefore it can be used to meter the gas flow rate for wet gas flow.
     Fifth, a novel approach to meter individual flow rates for wet gas by using two dissimilar flow sensors, i.e. a sloted orifice and a swirlmeter, is proposed. The steps of iterative solution of obtaining individual flow rates are also given. The results show that the proposed approach predicts the gas mass flow rate within±6%at a confidence level 89.2%, and the gas mass flow rate within±20%at a confidence level 100%, and therefore It can be used to meter individual flow rates for wet gas flow at X_(LM)≤0.12.
     Sixth, a novel approach to meter individual flow rates for wet gas by using two dissimilar output signals of a swirlmeter, i.e. vortex precession frequency and differential pressure, is proposed. The steps of iterative solution of obtaining individual flow rates are also given. The results show that the proposed approach predicts the gas mass flow rate within±8%at a confidence level 91.3%, and the gas mass flow rate within±20%at a confidence level 89.2%, and therefore it can be used to meter individual flow rates for wet gas flow at X_LM≤0.12. In view of installation, maintenance and cost, the proposed approach is cost-effective due to using only a flow sensor.
引文
[1]API RP 86, Recommended Practice for Measurement of Multiphase. American Petroleum Institute,2005.
    [2]Handbook of Multiphase Flow Metering, Revision 2. The Norwegian Society for Oil and Gas Measurement,2005.
    [3]Brennen, Christopher. Fundamentals of Multiphase Flow. Cambridge University Press, 2005.
    [4]Crowe, Clayton. Multiphase Flow Handbook. CRC Press,2005.
    [5]G.Falcone, G.F.Hewitt. Multiphase Flow Metering:Current Trends and Future Developments. SPE Annual Technical Conference, SPE 71474, New Orleans, Louisiana, USA,2001.
    [6]P.Mehdizadeh, D.FarchyJ. Suarez. Multiphase Meter Production Well Testing Applied to Low GOR Mature Fields. SPE Productin and Operations Symposium, SPE 120578, Oklahoma, USA,2009.
    [7]R.Thorn, G.A.Johansen, E.A.Hammer. Recent Developments in Three-phase Flow Measurement. Measurement Science and Technology,1997,8(7):691-701.
    [8]R.Thorn, G.A.Johansen, E.A.Hammer. Three-Phase Flow Measurement in the Offshore Oil Industry.1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester,1999.
    [9]Guidance Notes for Petroleum Measurement under the Petroleum Regulations. American Gas Association, Washington, U.S.A,2002.
    [10]Guidance Notes for Petroleum Measurements under the Petroleum (Production) Regulations. UK Deopartment of Trade and Industry, Oil and Gas Division,2001.
    [11]P.Mehdizadeh. Multiphase Meters:Delivering Improved Production Measurements and Well Testing Today. Petroleum Engineering International,1998,71(5):63-70.
    [12]E.A.Lunde, J.Grendstad. Multiphase Metering in Multiphase Meters and Their Subsea Applications:Proc. One Day Seminar, London,1993.
    [13]I.Ismail. Review of Multiphase Flow Meters for Oil Industry, Advances in Multiphase Flows. The 4th ISMTM, Hangzhou, China,2004, Vol.1(1):596-601.
    [14]H.Toral. Field tests of the ESMER multiphase flowmeter.16th North Sea Flow Measurement Workshop,1998:1-15.
    [15]B.Ahmed, S.G.Barlow. Field Testing of Multiphase Meters. SPE Annual Technical Conference, SPE 56583, Houston, Texas, USA,1999.
    [16]李海青.多相流测试技术现状及趋势.第五届多相流测试技术学术会议,杭州,中国,1996:33-42.
    [17]孙延祚.国际流量计量学术动态及发展趋势.计量技术,2002(4):33-35.
    [18]曹学文,林宗虎,耿艳峰,寇杰.在线多相流量计测量技术研究.中国海上油气(工程),2002,14(3):37-40.
    [19]曹学文,寇杰,林宗虎.在线多相流量计测试技术及选型分析.计量技术,2003(3).
    [20]张劲,纪常杰.多相流量计的现场试验评价.国外油田工程,2001,17(4):34-37.
    [21]丛霄然,沈跃.海默多相流量计在油井计量中的应用.石油仪器,2007,21(1):59-61.
    [22]方代煊,朱云祖.国外多相流量计开发与应用现状.石油机械,1999,27(7):44-47.
    [23]梁法春,陈婧,王栋,扈新军.分流分相式多相流量计研究进展.石油矿场机械,2008,37(4):13-16.
    [24]张琳,李长俊.多相流量计的应用研究.计量技术,2006(9):30-32.
    [25]窦剑文.多相计量技术与产品的应用前景.石油矿场机械,2000,29(1):1-4.
    [26]林宗虎等.近期多相流基础理论研究综述.西安交通大学学报,2001,35(9):881-885.
    [27]ASME MFC-19G-2008. Wet Gas Flowmetering Guideline. The American society of Mechanical Engineers (ASME), New York,2008.
    [28]Richard Steven. Wet Gas Flow Metering with Gas Meter Technologies. Colorado Engineering Experiment Station Inc. USA,2006.
    [29]P.Mehdizadeh. Wet Gas Metering:Trends in Applications and Technical Developments. SPE Annual Technical Conference, SPE 77351, San Antonio, Texas, USA,2002.
    [30]Field Test of a Wet Gas Flowmeter. TEA REPORT 01-059,2001.
    [31]T.Hasshol. Development of an API Recommended Engineering Practice for Wet Gas Flow Meters for Subsea Allocation of Hydrocarbon. The 5th International Symposium on Fluid Flow Measurement, Arlington, VA,2002.
    [32]A.W.Jamison. Wet Gas Metering-the Unexpected Challenge, Status and Trends on Technology and Applications. The 19th International North Sea Measurement Workshop, Kristansand, Norway,2001.
    [33]耿艳峰,冯叔初,郑金吾等.凝析天然气计量技术.自动化仪表,2005,26(8):1-3.
    [34]潘凯,巩大莉,赵广大.天然气湿气测量技术的发展.油气田地面工程,2009,28(7): 29-31.
    [35]宋江卫,陈旭,陆新东.湿天然气计量方法及其分析.天然气技术,2008,2(3):46-49.
    [36]林宗虎.用标准锐边圆孔板测量气液二相流动的干度及流量.西安交通大学学报,1979,13(4):29-40.
    [37]林宗虎.用Herschel文丘里管测量汽水混合物的干度及流量.西安交通大学学报,1982,16(3):25-33.
    [38]罗毓珊,陈听宽,陈宣政等.湿蒸汽两相流量的测量研究.发电设备,1996:l1-15.
    [39]吴国伟,李相方.注蒸汽井气液两相流干度与流量在线测量技术研究.硕士学位论文,石油大学,北京,中国,2002.
    [40]林宗虎.管路内气液两相流特性及其工程应用.西安交通大学出版社,1992.
    [41]林宗虎.气液两相流和沸腾传热.西安交通大学出版社,2003.
    [42]陈听宽.两相流与传热研究.西安交通大学出版社,2004.
    [43]阎昌琪.气液两相流.哈尔滨工程大学出版社,2007.
    [44]R.A.Schuster. Effect of Entrained Liquids on a Gas Measurement. Pipe Line Industry Journal, February 1959.
    [45]J.W.Murdock. Two-phase Flow Measurements with Orifices. Journal of Basic Engineering,1962,84(4):419-433.
    [46]D.Chisholm. Flow of Incompressible Two-phase Mixtures through Sharp-edged Orifices. Mechanical Engineering Science,1967,9(1):72-78.
    [47]D.Chisholm. Research note:two-phase flow through sharp-edged orifices. Journal of Mechancial Engineering Science,1977,19(3):128-130.
    [48]R.James. Metering Steam-water Two-phase by Sharp-edged Orifices. Proceeding of the Institution of Mechanical Engineers,1965,180 (23):549-566
    [49]R.V.Smith, J.T. Leang. Evaluation of Correlations for Two-Phase Flowmeters Three Current-One New. Journal of Engineering for Power,1975(10):589-594,
    [50]Z.H.Lin. Two-Phase Flow Measurements with Sharp-Edged Orifices. International Journal of Multi-Phase Flow,1982,8(6):683-693.
    [51]N. Nederveen, G. Washington. Wet Gas Flow Measurement. SPE Annual Technical Conference, SPE 19077,1989.
    [52]G.Washington. Measuring the Flow of Wet Gas. North Sea Workshop, Haugesund, Norway,1991.
    [53]Britton, et al. Experimental Wet Gas Data for a Herschel Style Venturi.5th Fluid Flow Symposium Arington, VA, USA,2002.
    [54]A.W.Jamieson, P.F.Dickinson. High Accuracy Wet Gas Metering. North Sea Workshop,1993.
    [55]De Leeuw R. Liquid Correction of Venturi Meter Readings in Wet Gas Flow. North Sea Workshop, Paper 21,1997.
    [56]张涛,罗翼,方立德.文丘里管湿气测量综述.计量学报,2007,28(3):257-259.
    [57]L.D.Fang, T.Zhang. Performance of a horizontally mounted Venturi in low-pressure wet gas flow. Chinese Journal of Chemical Engineering,2008,16(2):320-324.
    [58]R.Steven. Wet Gas Metering with a Horizontally Mounted Venturi Meter. Flow measurement and Instrumentation,2002(12):361-372.
    [59]R.Steven. Liquid Property and Diameter Effects on Venturi Meters used with Wet Gas. International Symposium of Fluid Flow Measurement, Mexico,2006.
    [60]G.S.David, G.Brown. Wet Gas Venturi Metering. SPE Annual Technical Conference, SPE 77350, San Antonio, Texas, USA,2002.
    [61]M.Harris. Venturi-Tube Performance in Wet Gas Using Different Test Fluids. NEL Report, No.2005/206.
    [62]R.Steven. Wet Gas Metering. Ph.D. Thesis, Strathclyde University, Glasgow, UK, 2001.
    [63]D.Stewart, R.Steven. Wet Gas Metering with V-Cone Meters. North Sea Flow Measurement Workshop 2002, St. Andrews, Scotland, UK, Paper No.4.2.
    [64]R.Steven. Research Developments in Wet Gas Metering with V-Cone Meters. North Sea Flow Measurement Workshop,2003.
    [65]R.Steven. Wet Gas Metering with V-Cones.3rd International South East Asia Hydrocarbon Flow Measurement Workshop,9th-1 lth March 2004.
    [66]R.Steven. An Update on V-Cone Meter Wet Gas Flow Metering Research. Flomeko2005, Peebles, Scotland,2005.
    [67]R.Steven. A Discussion on Wet Gas Flow Parameter Definitions. Energy Institue & CEESI Wet Gas Flow Metering Seminar, Aberdeen, UK,2006.
    [68]R.Steven. Horizontally installed cone differential pressure meter wet gas flow performance. Flow Measurement and Instrumentation,2009,20(4):152-167.
    [69]Wet Gas Flow Measurement with Conditioning Orifice Meter Flow Test Data Book and Flow Handbook. Emerson Process Management,2006, Paper 00821-0200-4810.
    [70]V.C.Ting, E.H.Jones. Wet Gas Metering Performance. Proceedings of the 15th Int. Conference, OMAE,1996.
    [71]D.G.Stewart. Suitability of Dry Gas Metering Technology for Wet Gas Metering. North Sea Flow Measurement Workshop, Tonsberg, Norway,2003.
    [72]The Evaluation of Dry Gas Meters in Wet Gas Conditions. NEL Report 2002/100, 2002.
    [73]R.Steven. Horizontally Installed Differential Pressure Meter Wet Gas Flow Performance Review. North Sea Flow Measurement Workshop, St Andrews, Scotland, UK,2006.
    [74]Toral et al. Estimating the Liquid Hold-Up in Wet Gas Flow by Analysis of Pressure Fluctuations across a V-Cone. North Sea Flow Measurement Workshop, Tonsberg, Norway,2005.
    [75]I.B.Hussien, I.Owen. Calibration of Flow Meters in Superheated and Wet Steam. Flow Measurement and Instrumentation,1991,2(4):209-215.
    [76]李永光,林宗虎.气液两相涡街的数值计算.力学与实践,1997,19(3):14-18.
    [77]谢正武,卢家才,苏新军等.气液两相流中顺列管束涡街特性的研究.化学工程,2000,28(6):25-27.
    [78]孙志强,张宏建等.涡街流量计测量气液混相流的不确定度.化工自动化及仪表,2008,35(3):46-50.
    [79]贾云飞.涡街流量传感器不同流体条件下测量特性的研究.天津大学博士论文,天津,2007.
    [80]D.Beecroft. Is a Wet Gas (Multiphase) Mass Flow Ultrasonic Meter Just a Pipe Dream? North Sea Flow Measurement Workshop, Scotland, UK,1998.
    [81]K.J.Zanker, G.J.Stobie. Ultra-Sonic Wet Gas Measurement-Dawn Gas Metering a "Real World" System. North Sea Flow Measurement Workshop, Scotland, UK,1998.
    [82]K.J. Zanker, G.J. Stobie. Metering in the Real World, Part Ⅱ. Practical Developments in Gas Flow Metering Workshop, NEL, Scotland, UK,2000.
    [83]M.B.Wilson. The Development and Testing of an Ultrasonic Flow Meter for Wet Gas Applications. Seminar on the Measurement of Wet Gas, Scotland, UK,1996.
    [84]K.J.Zanker, G.J.Brown. The Performance of a Multi-Phase Ultrasonic Meter with Wet Gas. North Sea Flow Measurement Workshop, Scotland, UK,2000.
    [85]K.J.Zanker. An Ultrasonic Meter for Stratified Wet Gas Service, North Sea Flow Measurement Workshop, Kristiansand, Norway,2001.
    [86]M.B.Wilson. The Development and Testing of an Ultrasonic Flow Meter for Wet Gas Applications. Seminar on the Measurement of Wet Gas, Glasgow, UK,1996.
    [87]K.J. Zanker. The Performance of Ultrasonic Meters with Wet Gas. NEL organised Wet Gas Seminar, Houston,2004.
    [88]V.C.Ting, X.Shirley. Evaluation of a Clamp-On Ultrasonic Gas Transit Time Flowmeters for Natural Gas Production. North Sea Flow Measurement Workshop 2002, St. Andrews, Scotland, UK.
    [89]Britton and Kinney. Coriolis Mass Flow Meter Performance with Water, Air, Dry-Gas,& Wet Gas. Gas Research Institute Report, GRI-04/0172.
    [90]E.D.Robert. Correction of Coriolis flow meter measurement due to multiphase flows, US Patent 6327914,2008.
    [91]M.Henry, M.Tombs, F.B.Zhou. Two-phase flow metering of heavy oil using a Coriolis meter:a case study, Flow Measurement and Instrumentation,2006,17(6): 399-413.
    [92]M.Seeger. Coriolis flow measurement in two phase flow. IEEE Computing & Control Engineering,2005(6):10-16.
    [93]J.Hemp, J.Kutin.Theory of errors in Coriolis flowmeter reading due to compressibility of the fluid being metered. Flow Measurement and Instrumentation,2006,17(6): 359-369.
    [94]马龙博,张宏建,周洪亮,贺庆.基于Coriolis流量计和SVM的油水两相流质量流量测量的研究.高校化学工程学报,2007,21(2):200-205.
    [95]张修刚,张钦明,王栋,林宗虎.应用Coriolis流量计和SVM的油水两相流质量流量测量的研究.工程热物理学报,2004,25(6):983-985.
    [96]Dualstream II:Development of a new intelligent wet gas meter. Solartron ISA, ISA102,2001.
    [97]Finke, Ronnenkamp, Krogue. Performance Characteristics of an Extended Throat Flow Nozzle for the Measurement of High Void Fraction Multi-Phase Flows.4th Int. Flow Symposium Fluid Flow Measurement, Denver, USA,1999.
    [98]Y.F.Geng, J.W.Zheng, T.M.Shi, G.Shi. Wet gas meter development based on slotted orifice and NN techniques. Chinese Journal of Chemical Engineering,2007,15(2): 281-285.
    [99]J.Agar, D.Farchy. Wet Gas Metering Using Dissimilar Flow Sensors:Theory and Field Trial Results. SPE Annual Technical Conference, SPE 77349, San Antonio, Texas, USA,2002.
    [100]Kurth, de Boer, van Werven, and Drenthen. Two-Phase Wet Gas Flow Measurement. SE Asia Hydrocarbon Flow Measurement Workshop, Kuala Lumpur,2006.
    [101]Van Werven, Kurth, de Boer, and Drenthen. Wet Gas Flow Measurement with Ultrasonic and Differential Pressure Metering Technology. International Symposium on Fluid Flow Measurement, Queretaro, Mexico,2006.
    [102]R.de Leeuw. Liquid Correction of Venturi Meter Readings in Wet Gas Flow. North Sea Flow Measurement Workshop, Norway,1997.
    [103]Nyfors, Ebbe, Bo, and Lund. Compact Flow Meter. U.S. Patent No.6915707,2005.
    [104]K.H.Frantzen. Well Testing Using Multiphase Meters. North Sea Flow Measurement Workshop, Tonsberg, Norway,2005.
    [105]Pinguet and Barreto. Multiphase Flow Metering Field Experiences in Brazil:An Artificial Lift Focus. SE Asia Hydrocarbon Flow Measurement Workshop, Singapore,2004.
    [106]Pinguet and Turna. Performance of a Dual-Energy Gamma/Ray Venturi Multiphase Flowmeter in High GVF Environment during Field Trial in Middle East. SE Asia Hydrocarbon Flow Measurement Workshop, Singapore,2004.
    [107]Y.Y.Su, Y.Z. Pan, J.G.Chen. Haimo Wet Gas Meter trial in Qinghai Field. Haimo Technologies,2008.
    [108]L.J.Xu, J.Xu, F.Dong, T.Zhang. On Fluctuation of the Dynamic Differential Pressure Signal of Venturi Meter for Wet Gas Metering. Flow Measurement and Instrumentation,2003,14(4):211-217.
    [109]申国强,林宗虎.应用动态法进行气液两相流的双参数测量.计量学报,1993,14(2):140-145.
    [110]仲朔平,佟允宪,王文然.利用孔板差压噪声测量汽水两相流.清华大学学报(自然版),1997,37(5):15-18.
    [111]王文然等.利用孔板噪音测量两相流量和干度.中国核科学报告CNIN00619,1999:1-6.
    [112]仲朔平等.单孔板测量汽水两相流双参数.中国核科学报,CNIN00671,1998:1-9.
    [113]劳力云,张宏建,吴应湘等.水平管道气液两相流中空隙率对动态压降信号的影响.化工学报,2000,51(4):547-551.
    [114]P.Andreussi, P.Ciandri, V.Faluomi. Development of a wet gas flow meter. BHR Group Multiphase Technology,2001:313-325.
    [115]周云龙,孙斌,陈飞.气液两相流型智能识别理论及方法.科学出版社,北京,2007.
    [116]劳力云,郑之初等.关于气液两相流流型及其判别的若干问题.力学进展,2002,32(3):235-249.
    [117]O. Baker. Simultaneous Flow of Oil and Gas. Oil Gas J.,1954,26(7):185-195.
    [118]J.M.Mandhane. Flow Pattern Map for Gas-liquid in Horizontal pipe. Int. J. Multiphase Flow,1974(1):537-553.
    [119]J.Weisman. Effects of Fluid Properties and Pipes Diameter on Two-phase flow patterns in horizontal lines.1979(5):437-462.
    [120]陈飞.基于数字图像处理的气液两相流流型智能识别方法.硕士学位论文,东北电力大学,2008.
    [121]T.B.Dinh, T.S.Choi. Application of image processing techniques in air/water two phase flow. Mechanics Research Communications,1999,26(4):463-468.
    [122]R.Luo, Q.Song. A three-dimensional photographic measurement of phase distribution in dilute bubble flow. Experiments in Fluids,2002(32):116-120.
    [123]施丽莲,蔡晋辉,周泽魁.基于图像处理的气液两相流流型识别.浙江大学学报(工学版),2005,39(8):1128-1131.
    [124]周云龙,陈飞,刘川.基于图像处理和Elman神经网络的气液两相流流型识别.中国电机工程学报,2007,27(29):108-112.
    [125]Y.L.Zhou, F.Chen, B.Sun. Identification Method of Gas-Liquid Two-phase Flow Regime Based Image Multi-feature Fusion and Support Vector Machine. Chinese Journal of Chemical Engineering,2008,16(6),832-840.
    [126]W.H.Liu, L.J.Guo, T.J.Wu, X.M.Zhang. An experimental study on the flow characteristics of oil-water two-phase flow in horizontal straight pipes. Chinese Journal of Chemical Engineering,2003,11 (5):491-496.
    [127]彭黎辉,张宝芬,姚丹亚.基于模糊神经元网络的两相流流型辨识方法.模式识别与人工智能,1997,10(4):332-337.
    [128]白博峰,郭烈锦,王忠勇等.油气水多相流压力和压差信号特征分析与流型在线识别.工程热物理学报,2002,3(3):357-360.
    [129]贾志海,牛刚,王经.基于动态聚类算法的两相流流型识别方法研究.热能动力工程,2004,19(2):182-185.
    [130]陈洪,王保良,杨江等.基于小波分析的气液两相流流型模糊辨识.高校化学工程学报,1999,13(4):303-308.
    [131]丁浩.新型信息处理技术在气液两相流流型辨识中的应用研究.博士学位论文,杭州:浙江大学,2005.
    [132]张丽琼,王炳和.基于小波变换的脉象信号特征提取方法.数据采集与处理,2004,1 9(3):323-328.
    [133]B.Sun, H.J.Zhang, L.Chen, Y.X.Zhao. Flow regime identification of gas-liquid two-phase flow based on HHT. Chinese Journal of Chemical Engineering,2006,14 (1):24-30.
    [134]N.K.Tutu. Pressure fluctuations and flow pattern recognition in vertical two phase gas-liquid flows. Int. J. Multiphase Flow,1982,8(4):443-447.
    [135]夏靖波,夏军利,白鸥.BP神经网络在电容成像流型识别中的应用.沈阳工业大学学报,1999,21(3):262-264.
    [136]董峰,姜之旭,乔旭彤.基于ERT技术的垂直管道两相流流型识别.仪器仪表学报,2004,23(4):457-461.
    [137]邓湘.基于层析成像技术的智能化两相流测量系统研究.博士学位论文,天津大学,天津,2001.
    [138]姜之旭.基于电阻层析成像技术的两相流流型识别方法的研究.硕士学位论文,天津大学,天津,2003.
    [139]C.Tan, F.Dong, M.M.Wu. Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction. Flow Measurement and Instrumentation,2007,18(5),255-261.
    [140]T.Tambouratzis. Non-invasive on-line two-phase flow regime identification employing artificial neural networks. Annals of Nuclear Energy,2009,36(4): 464-469.
    [141]华陈权,王昌明,耿艳峰等.非标刻度气体转子流量计的流量换算.化工自动化及仪表,2009,36(5):48-50.
    [142]华陈权,王昌明,耿艳峰等.高准科里奥利质量流量计通信接口软硬件的开发.工业仪表与自动化装置,2009(5):14-18.
    [143]R.D.Blevins. Flow Induced Vibrations, Second Edition. Krieger, Malabar,1990.
    [144]S.Kaneko, T.Nakamura, F.Inada, M.Kato. Flow Induced Vibrations Classifications and Lessons from Practical Experiences. Elsevier Ltd,2008.
    [145]F.Axisa, B.Villard, R.J.Gibert. Vibration of Tube Bundles Subjected to Air-Water and Steam-Water Cross flow:Preliminary Results on Fluidelastic Instability. Proceedings of ASME Symposium on Flow-Induced Vibrations, ASME, New Orleans,1984:269-284.
    [146]M.J.Pettigrew, C.E.Taylor, A.Yasuo. Vibration analysis of shell-and-tube heat exchangers:an overview-Part 1:flow, damping, fluidelastic instability. Journal of Fluids and Structures,2003,18(5),469-483.
    [147]M.J.Pettigrew, C.E.Taylor, N.J.Fisher. Flow-induced vibration:recent findings and open questions. Nuclear Engineering and Design,1998,185(2),249-276.
    [148]F.Hara, T.Yamashita. Parallel Two-Phase Flow Induced Vibrations in Fuel Pin
    Model. Journal of Nuclear Science and Technology,1978,15(5):346-354.
    [149]T.Nakamura, K.Fujita, K.Kawanshi, N.Yamaguchi. Study on the vibrational characteristics of a tube array caused by two-phase flow. Journal of Fluids and Structures,1995,9(5):519-538.
    [150]P.A.Feenstra, D.S.Weaver, R.L.Judd. Modeling Two-phase Flow-excited Damping and Fluidelastic Instability in Tube Arrays. Journal of Fluids and Structures,2002, 16(6):811-840.
    [151]S.N.Kim, C.Sin. The Experimental of Flow Induced Vibration in PWR RCCAs. KSME International Journal,2001,15(3):291-299.
    [152]P.Feenstra, D.S.Weaver, T.Nakamura. Two-Phase Flow-Induced Vibration of Parallel Triangular Tube Arrays with Asymmetric Support Stiffness. Journal of pressure vessel technology,2009,131(3):1-9.
    [153]H.K.Dae, H.C.Soon. Flow-induced vibration in two-phase flow with wire coil inserts. International Journal of Multiphase Flow,2008,34(4):325-33.
    [154]谭蔚,聂清德,段振亚.横向流中两相流体诱发的振动.化工设备与管道,2005,42(5):11-15.
    [155]程正兴.小波分析算法与应用.西安:西安交通大学出版社,1998.
    [156]Z.Chong, X.Z.Chong, L.Y.Xiao. Automatic Recognition of Cognitive Fatigue from Physiological Indices by Using Wavelet Packet Transform and Kernel Learning Algorithms. Expert Systems with Applications,2009,36(3):4664-4671.
    [157]E.Sami, Y.Selcuk, P.Y.Mustafa. Energy and Entropy-based Feature Extraction for Locating Faulton Transmission Lines by Using Neural Network and Wavelet Packet Decomposition. Expert Systems with Applications,2008,34(4):2937-2944.
    [158]S.Abdulkadir, T.Ibrahim. Wavelet packet neural networks for texture classification. Expert Systems with Applications,2007,32(26):527-533.
    [159]X.Hu, Z.Z.Wang, X.M.Ren. Classifications of surface EMG signal using relative wavelet packet energy. Computer Methods and Programs in Biomedicine,2005, 79(3):189-195.
    [160]边肇棋,张学工等.模式识别(第二版).北京:清华大学出版社,2002.
    [161]C.Zhang, C.X.Zheng. Automatic recognition of cognitive fatigue from physiological indices by using wavelet packet transform and kernel learning algorithms. Expert Systems with Applications,2009(36):4664-4671.
    [162]K.Ghorbanian, M.Gholamrezaei. An artificial neural network approach to compressor performance prediction. Applied Energy,2009(86):1210-1221.
    [163]T. Masters. Advanced Algorithms for Neural Networks. Wiley, New York,1995.
    [164]O.Hulisi, A.Ramazan. Prediction of financial information manipulation by using support vector machine and probabilistic neural network. Expert Systems with Applications,2009,36(3):5419-5423.
    [165]M.Hajmeer, I.Basheer. A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. Journal of Microbiological Methods,2002(51):217-226.
    [166]D.F.Specht. Probabilistic neural networks. Neural Networks,1990(3):109-118.
    [167]V.N.Vapnik. Statistical Learning Theory. John Wiley & Sons, New York,1998.
    [168]张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32-42.
    [169]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机.北京:科学出版社,2004.
    [170]M.H.Horng. Multi-class support vector machine for classification of the ultrasonic images of supraspinatus. Expert Systems with Applications,2009,36(4):8124-8133.
    [171]M.L.Macek. A Slotted Orifice Plate Used as a Flow Measurement Device. Texas A&M University, College Station,1993.
    [172]G.L.Morrison, K.R.Hall, J.C.Holste, M.Macek, L.Ihfe. Comparison of orifice and slotted plate flow meters. Flow Measurement and Instrumentation,1994,5(2): 71-77.
    [173]G.L.Morrison, D.Terracina, C.Brewer, et al. Response of a slotted orifice flow meter to an air/water mixture. Flow Measurement and Instrumentation,2001, 12(3):175-180.
    [174]Y.F.Geng, S.C.Feng. Study on a new type of sensor for wet gas meter. The 4th International Symposium on Measurement Techniques for Multiphase Flows. Beijing:International Academic Publishers,2004:536-541.
    [175]邢兰昌,耿艳峰,孙苗苗.一种新的低含液率气液两相流槽式孔板压降倍率相关式.中国电机工程学报,2008,28(14):86-90.
    [176]Y.F.Geng, J.W.Zheng, T.M.Shi. Study on the metering characteristics of slotted orifice for wet gas flow. Flow Measurement and Instrumentation,2006(17):123-128.
    [177]华陈权,王昌明,耿艳峰等.槽式孔板低压湿气计量修正模型.南京理工大学学报,2010,34(1):91-95.
    [178]华陈权,王昌明,耿艳峰等.基于神经网络的槽式孔板湿气计量修正模型.中国石油大学学报(自然版),2009,33(6):152-156.
    [179]用旋进旋涡流量计测量天然气流量.SY/T 6658-2006,2006.
    [180]张涛,贾云飞,吴蕾.基于FLUENT数值仿真下的旋进旋涡流量计的研究与优化.化工自动化及仪表,2005,32(6):62-64.
    [181]周凯,张洪军等.旋进旋涡流量计结构参数优化研究.中国计量学院学报,2009,20(2):107-112.
    [182]彭杰纲,傅新,陈鹰.旋进旋涡流量计旋涡进动效应的数值模拟研究.中国机械工程,2005,16(5):402-406.
    [183]彭杰纲,傅新,陈鹰.脉动流场中旋进旋涡流量计流体振动特性的实验研究.计量学报,2004,25(1):38-42.
    [184]J.G.Peng. Response of a swirlmeter to oscillatory flow. Flow Measurement and Instrumentation,2008(19):107-115.
    [185]F.Cascetta. Field test of a swirlmeter for gas flow measure. Flow Measurement and Instrumentation,1999(10):183-188.
    [186]C.Q.Hua, C.M.Wang, Y.F.Geng. Study on the Differential Pressure Characteristics of Swirlmeter for Wet Gas Flow.2009 IEEE International Conference on Information Science and Engineering, Nanjing,2009.
    [187]C.Q.Hua, C.M.Wang, Y.F.Geng. The Design of A Conductance Probe for Measuring Liquid-film Thickness in Gas-liquid Two-phase Flow. The 8th International Symposium on Test and Measurement, Chongqing,2009:2882-2885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700