用户名: 密码: 验证码:
面向结构健康监测的多主体协作融合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,结构健康监测技术作为智能材料结构研究的一个重要分支,在学术和工程化方面都得到了长足的发展。作为一项逐步从实验室阶段走向实用化的新技术,实际工程结构所需监测面积大、构型复杂,所布置的传感器种类多样,数目较多,每个传感器获得的信息是局部的、不完整的,加之环境恶劣,对传感器的可靠性也提出了挑战,并且目前各种结构损伤辨识方法也都存在着各自的不足和局限性。因此亟待解决的问题是如何管理协调庞大密集的传感器网络,如何融合不同种类的传感器信息,如何协作融合不同的损伤诊断方法,对整个结构的健康状态给出一个可靠有效的评估。本文利用多主体方法管理大型结构健康监测系统,深入研究了面向结构健康监测的多主体协作融合方法。
     所进行的主要研究与创新点如下:
     1)系统总结了主体及多主体原理,研究了多主体系统存在的冲突和消解协调策略以及协作策略,在此基础上,研究了多主体结构健康监测系统中的理论模型、体系结构和协作策略,针对大型结构传感器网络复杂损伤评估方法多样的特点,提出了基于区域监督主体和中央协调主体的联合协作融合多主体体系结构,从而将分布式和集中式监测相结合,为大型结构的多传感器多损伤监测研究奠定了基础。
     2)针对大型结构多传感器多损伤如何自主监测问题,建立了多主体结构健康监测系统,针对大型结构的三种典型损伤形式:结构应力应变分布变化、紧固件连接失效、冲击载荷,以大型航空铝板为研究对象,采用压电传感器、光纤传感器、应变传感器网络和相应采集系统,协作自组织传感器网络,自动选择诊断方法,从而对整个大型结构的损伤状况给出一个有效的评估。
     3)针对大型结构传感网络如何快速有效覆盖大型结构的各个子区域损伤,以及如何协调融合利用各种算法对各种损伤给出可靠有效的评估,提出了基于多主体黑板协作的多区域监测框架。在此基础上,针对大型结构的分布式应变分布以及损伤分类监测问题,提出了应变传感器网络的黑板协作组网方法和损伤分类评估的合同网协作融合方法;针对大型结构的分布式声源和冲击定位问题,提出了压电传感器网络的黑板协作组网方法和利用黄页服务进行声发射定位的数据融合策略,在大型航空铝板结构上验证该方法能够快速有效利用分布式信号信息处理算法资源,提高损伤定位的精度。
     4)针对大型结构冲击载荷定位准确快速辨识问题,在改进了基于切比雪夫多项式的时域载荷反演优化问题的基础上,提出了基于三角测量方法和时域载荷反演方法的多主体黑板协作冲击定位方法,在大型航空铝板结构和复合材料板上验证该方法在保证冲击定位精度的同时,提高了实时性。
     5)针对大型结构紧固件失效准确快速辨识问题,提出了基于互信息分类器选择和多主体决策融合的紧固件连接失效辨识方法。首先,研究了分类器选择指标和方法,提出了基于熵的互信息相关度为标准的分类选择算法流程;然后,研究了多分类器融合的常用方法,提出了基于置信、通信、协商主体模型,在此基础上进而提出了多主体决策融合方法,在大型航空铝板和航空铝制加筋板验证了该方法可以利用最少的分类器资源和计算时间,获得最优的损伤识别精度。
     6)针对传感器失效情况下的结构健康监测系统不能精确损伤评估问题,提出了多主体推理协作的压电激励传感网络自诊断自重构的损伤监测方法。首先,分析了传感器自诊断自重构的研究现状,提出了基于主动监测方法和压电元件脱粘失效因子来评估压电元件脱粘失效,并结合主体推理进行压电网络中失效元件的自诊断方法;然后,提出了主被动损伤监测情况下的压电网络的自重构方法,以及复用压电元件的主被动冲突消解方法,在航空铝板结构上验证了该方法能准确识别失效传感器,保证损伤定位精度。
     本文工作在机械结构力学及控制国家重点实验室完成。
Recently, structural health monitoring (SHM) technology is a research focus in the engineering and academic domain. For the actual large-scale structure monitoring, there are a number of sensors and various ones, which are distributed and dispersed, and the various evaluation methods. For the application, the integration of a wide range of sensors and different evaluation methods must be done. Hence, using the SHM technology on the large complicated practical structures, it is a critical problem that how to effectively manage the distributed sensor network, and coordinate and fusion distributed information and different evaluation methods for the efficiency evaluation of the system. In this dissertation, the multi-agent system (MAS) in Artificial Intelligence (AI) area is adopted to manage the large SHM, in which multi-agent coordination and fusion is intensively studied.
     The main works and novel researches performed in this dissertation include:
     1) The theory of the agent and MAS is summarized, and the conflict resolution and coordination strategy of the MAS is studied. Based on the theory, the agent model, the architecture and coordination of MAS based SHM are researched. Since there exits the complex sensor network and various damage assessment methods in a large SHM system, the architecture of MAS based on district monitor agent and central coordination agent is proposed, combining with the distributed and centralized structure. The architecture is the research foundation for large SHM with multi-sensor and multi-damage.
     2) To autonomously monitor the large structure with multi-sensor and multi-damage, a MAS based SHM is built. For three typical kinds of structure damages including strain distribution change, joint failure and impact load in the large-scale aviation aluminum plate structure, the system is developed with piezoelectric sensor, FBG sensor and strain gauge sensor, and their acquirement system. Multi-agent coordination is adopted to self-organize the sensor network and automatically choose sensing object, choose suitable signal processing method and damage evaluation method to recognize three typical structural states. At last, an effective evaluation is given for the damge state of the large structure.
     3) To fast and effectively cover each sub-region damage with sensor network in large structure, as well as to coordinate and fuse various damage identification algorithms to give a reliable and effective assessment for all kinds of damage, the multi-region monitoring architecture based on the multi-agent blackboard coordination is proposed for the large-scale structure. Based on the architecture, for the large-scale distributed structural strain distribution and damage classification monitoring, the self-organization network method based on the strain sensor network and the blackboard coordination, and the contract net coordination and fusion method based on the damage classification evaluation is proposed. Also, for large-scale structural distributed acoustic emission source and impact location, the self-organization network method based on piezoelectric sensor network and the blackboard coordination, and the server directory coordination and data fusion method based on the emission source location is proposed. The experimental verification is conducted on a large aviation aluminum plate to validate the efficiencies of the resource allocation and damage location.
     4) To improve the accuracy and real-time of the large structural impact load location, based on the improved inverse analysis method in time domain with Chebyshev polynomial basis function, for the advantages and disadvantages of the acoustic emission and the inverse analysis methods, a precise impact positioning method based multi-agent blackboard coordination is proposed. A large aviation aluminum plate and T-30carbon fiber laminated composite plate experiments show that the impact positioning method is fast and efficient, with good robustness.
     5) To improve the accuracy and real-time of the large structural joint failure identification, the identification method based on the classifier choice of the mutual information and the multi-agent decision fusion is studied. Firstly, the indicator and the algorithm of classifier choice are studied, and the algorithm flow of the classifier choice based on the mutual information degree of correlation is proposed. Secondly, the commonly used methods of the classifier combination are studied, and the multi-agent decision fusion based on the agent reasoning model with confidence, communication and coordination is presented. At last, a large aviation aluminum plate and aviation aluminum stiffened plate experiments show that the method can accurately and rapidly identify the damage.
     6) To accurately assess the structural damage for the SHM system with the sensor failure, the damage monitoring method of piezoelectric sensor network self-diagnosis and self-configuration based on the multi-agent reasoning and collaboration is put forward. Firstly, the research on the sensor self-diagnosis and self-configuration is analysed. Then, the multi-agent active and passive coordination monitoring based on piezoelectric sensor network self-diagnosis and self-configuration is presented to identify the debonding sensor with the active monitoring and the debonding fault factor, and coordinate to self-configurate the normal piezoelectric sensor network to obtain the active and passive evaluation of damage on the basis of the conflict resolution on the shared piezoelectric sensor. At last, an aviation aluminum plate experiment shows that the method is efficient.
     This work is completed in State Key Laboratory of Mechanics and Control of Mechanical (?)
引文
[1]陶宝祺.智能材料结构.北京:国防工业出版社,1997.
    [2]袁慎芳.结构健康监控.北京:国防工业出版社,2007.
    [3]杜善义.先进复合材料与航空航天.复合材料学报,2007,24(1):1-12.
    [4] Bartelds G. Aircraft structural health monitoring, prospects for smart solutions from a Europeanviewpoint. Journal of Intelligent Material Systems and Structures,1998,9(11):906-910.
    [5]李兆霞,王莹,张立涛,王春苗.桥梁结构劣化与损伤过程的多尺度分析方法及其应用-I:结构模拟与分析方法.南京,大跨经桥梁结构损伤预警及状态评估技术研讨会,2010,10.
    [6]黄启远.大跨度桥梁的结构健康监测和结构安全评估.南京,大跨经桥梁结构损伤预警及状态评估技术研讨会,2010,10.
    [7] Christian Boller, Norbert Meyendorf. State-of-the-Art in structural health monitoring foraernautics. Proceeding of International Symposium on NDT in Aerospace, Furth/Bavaria,Germany,2008,12.
    [8] Boller C. Ways and options for aircraft structural health management, Proceedings of theEuropean COST F3Conference on System Identification and Structural Health Monitoring,Madrid, Spain, June,2000, p71-82.
    [9] Iglesias M J, Palomino A. SHMS, a good chance to gain experience to optimize the aircraftstructural capability. Proceedings of the European COST F3Conference on System Identificationand Structural Health Monitoring, Madrid, Spain, June,2000, p753-771.
    [10] Giurgiutiu V, Xu B, Chao Y et al. Smart sensors for monitoring crack growth under fatigueloading conditions. Journal of Smart Structures and Systems,2006,2(2):101-113.
    [11] Paul D S, Darryll J P. A review of vibration-based techniques for helicopter transmissiondiagnostics. Journal of Sound and Vibration,2005,282(1-2):475-508.
    [12] Giurgiutiu V, Cuc A, Goodman P. Review of vibration-based helicopters health and usagemonitoring methods. The Shock&Vibration Digest33,2001,5:387-443.
    [13] Jason Thomas, Christopher Neubert. Implementation of structural health monitoring for theUSMC CH-53E. The American Helicopter Society66thAnnual Forum, Phoenix, AZ,2010,5.
    [14] Trathen P N. Structural health monitoring for corrosion on military aircraft. Materials forum.2009,33.
    [15] Ashish Purekar, Kunal Kothari, Young-Tai Choi, Norman M Wereley, Henry Wilson, NathanielBordick. Structural health monitoring for Bell407Tail Boom. The American Helicopter Society65thAnnual Forum, Grapevine, Texas,2009,5.
    [16] S awomir Klimaszewski, Andrzej Leski, Krzysztof Dragan, Marcin Kurdelski, Miros aw Wrona.Helicopter structural integrity program of polish Mi-24hind. The25thICAF Symposium,Rotterdam.2009,5.
    [17] Andersen E Y. Structural monitoring of the Great Belt East Bridge. Proceedings of the3rdSymposium on Strait Crossing. Rotterdam: Balkema,1994:189-195.
    [18] Muria Vila D, Gomez R, King C. Dynamics Structural Properties of Cable Stayed TampicoBridge. Journal of Structural Engineering, ASCE,1991,117(1):3396-3416.
    [19]张启伟.大型桥梁健康监测概念与监测系统设计,同济大学学报,2001,29(1):65-69.
    [20] Chueng M S, Tadros G S, Brown T G, et al. Field monitoring and research on performance of theConfederation bridge. Canadian Journal of Civil Engineering,1997,24(6):951-962.
    [21] Ko J M, Ni Y Q. Technology developments in structural health monitoring of large-scale bridges.Engineering Structures,2005,27:1715-1725.
    [22] Myroll F, Dibiagio E. Instrumentation for monitoring the Skarnsunder cable-stayed bridge.Proceedings of the3rd Symposium on Strait Crossing. Rotterdam: Balkema,1994:207-215.
    [23] Curran P, Tilly G. Design and monitoring of the Flintshire Bridge. Structural EngineeringInternational,1999,3:225-228.
    [24]黄方林,王学敏,陈政清等.大型桥梁健康研究进展,中国铁道科学,2005,26(2):1-7.
    [25]余天庆,陈开利,彭苗.桥梁结构的损伤现代检测与评估.世界桥梁,2004,2:52-55.
    [26] BROWNJOHN J M W. Structural health monitoring of civil infrastructure. PhilosophicalTransactions of The Royal Society. A,2007,365:589-622.
    [27] Jian Wu, Shenfang Yuan, Xia Zhao, et al. A wireless sensor network node designed for exploringa structure health monitoring application. Smart Materials and Structures,2007,16:1898-1906.
    [28] Xinlin PQ, Shawn J B, Amrita K, Advances in the development of built development of built-indiagnostic system for filament wound composite structures. Composites science and technology,2006,66:1694-1702.
    [29] Lanson C B, Zimmerman D C, Marek E L. A comparison of modal test planning techniques:Excitation and sensor placement using the NASA8-bay truss, Proceedings of the12thInternational Modal Analysis Conference, Honolulu, Hawaii, USA, Jan31-Feb3,1994:205-211.
    [30] Kammer D C. Sensor placement for on-orbit modal identification and correlation of large spacestructures. Journal of Guidance, Control and Dynamics,1991,14(2):251-259.
    [31]谢强,薛松涛,王远功.利用线性模型估计的传感器优化布置算法.固体力学学报,2006,27(1):46-50.
    [32]黄维平,刘娟,李华军.基于遗传算法的健康监测传感器优化布置.工程力学学报,2005,22(1):113-117.
    [33] Swann C, Chattopadhyay A. Optimization of piezoelectric sensor location for delaminationdetection in composite laminates. Engineering Optimization,2006,38(5):511-528.
    [34]谢强,薛松涛.结构健康监测传感器优化布置的混合算法.同济大学学报,2006,34(6):726-731.
    [35] Kim Yujun, Ha Sungwon, Chang F K. Time-domain spectral element method for built-inpiezoelectric actuator-induced Lamb wave propagation analysis. AIAA Journal,2008,46(3):591-600.
    [36] Staszewski W J, Lee B C. Lamb wave propagation modeling for damage detection:Ⅰ.Two-dimensional analysis. Smart materials and Structures,2007,16:249-259.
    [37] Staszewski W J, Lee B C. Lamb wave propagation modeling for damage detection: Ⅱ.damagemonitoring strategy. Smart materials and Structures,2007,16:260-274.
    [38]张恒萍. Lamb波在结构中的传播特性研究.硕士学位论文,南京:南京航空航天大学,2006.
    [39]王强. Lamb波时间反转方法及其在结构健康监测中的应用研究.博士学位论文,南京:南京航空航天大学,2009.
    [40]孙亚杰.基于超声相控阵原理的结构健康监测技术研究.博士学位论文,南京:南京航空航天大学,2010.
    [41]王瑜,袁慎芳,邱雷.基于改进空间滤波器的复合材料结构损伤成像方法.复合材料学报,2011,28(1):186-193.
    [42]苏永振.航空材料结构低速冲击健康监测研究.硕士学位论文,南京:南京航空航天大学,2010.
    [43] Worden K,Lane A J. Damage identification using support vector machine, Smart Materials andStructures,2001,10:540-547.
    [44] Chou J H, Ghaboussi J. Genetic algorithm in structural damage detection. Computer andStructures,2001,79(14):1335-1353.
    [45]谈丹辉,孙利民. Mamdani型模糊推理系统在桥梁状态评估中的应用.同济大学学报,2004,32(9):1131-1135.
    [46] Sohn H, Law K H. Bayesian probabilistic damage detection of a reinforced-concrete bridgecolumn. Earthquake Engineering&Structural Dynamics,2000,29(8):1131-1152.
    [47] Alexiou K. Accurate modeling and damage detection in high safety and cost structures(AMADEUS). Proceedings of the European COST F3Conference on System Identification andStructural Health Monitoring, Madrid, Spain, Jun3-6,2000: p667-675.
    [48] Smarsly K, Hartmann D. Artificial intelligence in structural health monitoring. The ThirdInternational Conference on Structural Engineering, Mechanics and Computation (SEMC), CapeTown, South Africa, Sep10-12,2007.
    [49] Mujica L E, Vehi J, Rodellar J, et al. A Hybrid Approach of knowledge-based reasoning forstructural assessment. Smart Materials and Structures,2005,14:1554-1562.
    [50] Qiu Lie, Yuan Shenfang. On development of a multi-channel PZT array scanning system and itsevaluating application on UAV wing box. Sensors and Actuators A,2009,151,220-230.
    [51]常琦.基于知识的结构健康管理系统关键技术研究.博士学位论文.南京:南京航空航天大学,2011.
    [52] Wooldridge Michael, Jennings Nicholas R.Intelligent agents: theory and practice. KnowledgeEngineering Review,1995,10(2),115-152.
    [53]张维明,姚莉.智能协作信息技术.北京:电子工业出版社,2002:1-138.
    [54] Jeremy W Baxter, Graham S Horn, Daniel P Leivers. Fly-by-agent controlling a pool of UAVsvia a multi-agent system. Knowledge-based system,2007,21:232-237.
    [55] Justin R Thomas. Intelligent agents for exploration systems. Space2006, Sep.2006, San Jose,California. AIAA.
    [56] Lyell M J, Krueger W, Zhang G, Xu R, Haynes L. An agent-based approach to health monitoringsystems applied to the ISS power system. The45th AIAA Aerospace Sciences Meeting andExhibit. Reno, Nevada, USA,2008,1-17.
    [57]龙兵,姜兴渭,宋政吉.基于多Agent卫星遥测数据实时监测与诊断技术.航空学报,2005,26(6):726-732.
    [58]王仲生,刘贞报,隆莹. D_S多Agent飞行器结构系统早期故障智能诊断.2006,24(5):600-603.
    [59]张晓光.基于多Agent的航天自主运行系统关键技术研究.硕士学位论文,北京:中国科学院空间科学与应用研究中心,2007.
    [60]宗令蓓,谢凡,秦世引.基于MAS的无人机编队飞行智能优化控制.航空学报,2008,29(5):1326-1333.
    [61] Mariela Cerrada, Juan Cardillo, Jose Aguilar, Raul Faneite. Agents-based design for faultmanagement systems in industrial processes. Computers in industry,2007,58:313-328.
    [62] Kai-Ying Chen, Chun-Jay Chen. Applying multi-agent technique in multi-section flexiblemanufacturing system. Expert systems with applications.2010,37:7310-7318.
    [63] Andrey Romanenko, Lino O Santos, Paulo A.F.N.A. Afonso. Application of agent technologyconcepts to the design of a fault-tolerant control system. Control engineering practice,2007,15:459-469.
    [64] Xavier Desforges, Bernard Archimede. Multi-agent framework based on smart sensors/actuatorsfor machine tools control and monitoring. Engineering applications of artificial intelligence,2006,19:641-655.
    [65] Stephen D J McArthur, Scott M Strachan, Gordon Jahn. The design of a multi-agent transformercondition monitoring system. IEEE Transactions on Power Systems,2004,19(4),1845-1852.
    [66] Yew Seng Ng, Rajagopalan Srinivasan. Multi-agent based collaborative fault detection andidentification in chemical processes. Engineering Applications of Artificial Intelligence,2010,23(6),934-949.
    [67] Niu Gang, Tian Han, Bo-Suk Yang, Andy Chit Chiow Tan. Multi-agent decision fusion for motorfault diagnosis. Mechanical systems and signal processing,2007,21:1285-1299.
    [68] Jeremy Lagorse, Damien Paire, Abdellatif Miraoui. A multi-agent system for energymanagement of distributed power sources. Renewable Energy,2010,35:174-182.
    [69] Pratik K Biswas, Hairong Qi, Yingyue Xu. Mobile-agent-based collaborative sensor fusion.Information fusion,2008,9:399-411.
    [70]钟联炯,孙璐.基于MAS的故障诊断任务分解和结果综合.西安工业大学学报,2007,27(2):176-180.
    [71]刘金根.基于CBR与多Agent的分布式故障诊断系统研究.硕士学位论文,南京:南京航空航天大学,2006.
    [72]于志伟,苏宝库,曾鸣.基于多智能体的监控与故障诊断技术及其应用.计算机工程,2006,32(13):222-224.
    [73]孙红岩.大型旋转机械智能诊断多Agent系统的研究.博士学位论文,重庆:重庆大学,2007.
    [74]吴伟蔚,杨叔子.故障诊断Agent研究.振动工程学报,2000,13(3):393-399.
    [75]邱忠宇.基于多Agent的汽轮发电机组故障诊断技术的研究与应用.博士学位论文,浙江:浙江大学,2000.
    [76]陈真勇,何永勇,褚福磊等.多Agent故障诊断原型系统研究.中国机械工程,2002,13(13):1084-1087.
    [77]肖小峰,蔡金燕,梁玉英.基于多Agent的监测与诊断系统功能模型.2006,22(3-1):212-214.
    [78]武兵,熊诗波,林健,张宏.基于Multi-agent技术的大型机电设备故障诊断系统.测试技术学报,2006,20(5):412-417.
    [79]陈斌,王建中.基于多Agent的分布式通信设备智能实时故障监测系统.武汉科技大学学报,2006,29(3):280-282.
    [80] Abbott David, Briony Doyle, John Dunlop, et al. Development and evaluation of sensor conceptsfor ageless aerospace vehicles. NASA technical report NASA/CR-2002-211773, LangleyResearch Center, Hampton, Virginia,2002.
    [81] Price D C, Scott D A, Edwards G C, et al. An integrated health monitoring system for an agelessaerospace vehicle. The4th International Workshop on Structural Health Monitoring, StanfordUniversity, USA, Sep15-17,2003. Published in Structural Health Monitoring2003: FromDiagnostics&Prognostics to Structural Health Management, Fu-Kuo Chang, DEStechPublications,2003, p310-318.
    [82] Prokopenko M, Wang P, Foreman P, et al. On connectivity of reconfigurable impact networks inageless aerospace vehicles. The Journal of Robotics and Autonomous Systems,2005,53(1):36-58.
    [83] Hoschke N, Lewis C J, Price D C, et al. A self-organising sensing system for structural healthmanagement. Lecture Notes in Computer Science, Springer Berlin,2006, Vol.4253: p349-357.
    [84] Albert Esterline, Bhanu Gandluri, Mannur Sundaresan, Jagannathan Sankar. Verified models ofmulti-agent systems for vehicles health management. Smart Structures and Materials2005:Modeling Signal Processing and Control, in proceedings of SPIE,2005,5757.
    [85] Albert Esterline, Bhanu Gandluri, Mannur, Sundaresan. Characterizing environmentalinformation for monitoring agents. In Hinchey, M. G., et al., Innovative Concepts for Autonomicand Agent-Based Systems, Springer,2006,74-85.
    [86]张亮,多主体协作技术在结构健康监测领域的初步研究.硕士学位论文,南京:南京航空航天大学,2005.
    [87] Yuan Shenfang, Lai Xiaosong, Zhao Xia, Xu Xin, Zhang Liang. Distributed structural healthmonitoring system based on smart wireless sensor and multi-agent technology. Smart Materialsand Structures,2006,15(1),1-8.
    [88] Zhao Xia, Yuan Shenfang, Yu Zhenhua. Designing strategy for multi-agent system based largestructural health monitoring. Expert Systems With Applications,2008,34(2),1154-1168.
    [89] Zhao Xia, Yuan Shenfang, Zhou Hengbao, Sun Hongbing, Qiu Lei. An evaluation on themulti-agent system based structural health monitoring for large scale structures. Expert Systemswith Applications,2009,36(3),4900-4914.
    [90]赵霞.多主体协作结构健康监测系统的关键技术研究.博士学位论文,南京:南京航空航天大学,2008.
    [91] Ruiz-Sandoval M.‘Smart’ sensors for civil infrastructure systems. Doctor of Philosophy Thesis,Department of Civil Engineering and Geological Science, University of Notre Dame, NotreDame, IN,2004.
    [92]邓志刚.基于MAS的大型桥梁健康监测系统研究与开发,硕士学位论文,2007.
    [93] Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach (Second Edition),Prentice-Hall,2003.
    [94]史忠植.智能主体及其应用,北京:科学出版社,2000.
    [95]毛新军.面向主体的软件开发,北京,清华大学出版社,2005.
    [96]王珊珊.基于JADE的多Agent系统仿真系统.硕士学位论文,武汉:华中科技大学,2006.
    [97]许雪琦.分布式智能化状态监测与故障诊断系统的设计与研究.博士学位论文,天津:天津大学,2004.
    [98]黄敏,佟振声.分布式多Agent系统的研究.电力情报,2002,1:65-70.
    [99] Finin T, Labrou Y. KQML as an Agent communication language. Bradshaw J W. Software agents.MIT Press,1997:291-316.
    [100]Fabio Bellifemine, Giovanni Caire, Dominic Greenwood. Developing multi-agent systems withJADE. Wiley Press,2004.
    [101]Corkill Daniel D. Blackboard Systems. AI Expert,1991,6(9):40-47.
    [102]Barai S V, Pandey P C. Integration of damage assessment paradigms of steel bridges on ablackboard architecture. Expert Systems with Applications,2000,19:193-207.
    [103]Smith R. The contract net protocol: High-level communication and control in a distributedproblem solver. IEEE Transactions on Computers,1980, C-29(12):1104-1113.
    [104] OSA-CBM Website, http://www.osacbm.org/
    [105] http://www.fipa.org/.
    [106] Genesereth M R, Ketchpel S P. Software Agents. Communications of the ACM,1994,37(7):48-53.
    [107]魏宝刚.基于协商的冲突消解研究.小型微型计算机系统,1998,19(11):44-49.
    [108]韩崇昭,朱洪艳,段战胜.多源信息融合,北京:清华大学出版社,2006.
    [109]石立华.基于压电元件的损伤自诊断自适应智能结构研究,博士学位论文,南京:南京航空航天大学,1996:75-116.
    [110]高峰,王德俊,江钟伟.压电阻抗技术用于螺栓松紧健康诊断.中国机械工程,2001,12(9):1048-1049.
    [111]Vincent Caccese, Richard Mewer, Senthil S Vel. Detection of bolt load loss in hybridcomposite/metal bolted connections. Engineering Structures,2004,26:895-906.
    [112]Yen C S, Wu E. On the inverse problem of rectangular plates subjected to elastic impact, Part I:method development and numerical verification. Journal of Applied Mechanics,1995,62:692-698.
    [113]Yen C S, Wu E. On the inverse problem of rectangular plates subjected to elastic impact, Part II:experimental verification and further application. Journal of Applied Mechanics,1995,62:699-705.
    [114]Tracy M, Chang F K. Identifying impact load in composite plates based on distributedpiezo-electric sensor measurements. SPIE Proceeding,1996,2779:118-123.
    [115]吴键.面向结构监测的智能无线传感网络关键技术研究.博士学位论文,南京:南京航空航天大学,2010.
    [116]Singh S, Haddon J, Markou M. Nearest-neighbor classifiers in natural scene analysis. PatternRecognition,2001,34,1601-1612.
    [117]Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Proceedings of theInternational Joint Conference on Neural Networks (IJCNN),1,593-605. IEEE, New York,1989.
    [118]陈锡辉,张银鸿,等. LabVIEW8.20程序设计从入门到精通.北京:清华大学出版社,2007.
    [119]梁栋,袁慎芳,常琦.基于黑板协作的多区域冲击监测.系统工程与电子技术,2011,33(3):700-706.
    [120]Ziola S M, Gorman M R. Source location in thin plates using cross-correlation. Journal of theAcoustical Society of America,1991,90:2551-2556.
    [121]Cortes C, Vapnik V N. Support vector networks. Machines Learning,1995,20:273-297.
    [122]Quinlan J R. C4.5Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann,1992.
    [123]Berger A. The improved iterative scaling algorithm: a gentle introduction.1997. http://www.cs.cmu.edu/afs/~aberger/www/ps/scaling.ps.
    [124]Hong Q Y, Kwong S. A genetic classification method for speaker recognition. EngineeringApplication of Artificial Intelligence,2005,18(1):13-19.
    [125]Tobias A. Acoustic emission source location in two dimensions by an array of three sensors.Non-Destructive Testing,1976,9(1):9-12.
    [126]焦敬品,何存富,吴斌等.基于模态分析和小波变换的声发射源定位新算法研究.仪器仪表学报,2005,26(5):482-485.
    [127] Dong Liang, Shenfang Yuan. Impact location based on multi-agent coordination and fusion forlarge structures. Proceedings of8th international workshop structural health monitoring,September13-15,2011, Stanford University, CA, USA: p626-634.
    [128]Inoue H. Review of inverse analysis for indirect measurement of impact force. AppliedMechanics Reviews,2001,54:503-524.
    [129]Seydel R, Chang F K. Impact identification of stiffened composite panels: I. Systemdevelopments. Smart Materials and Structures,2001,10(2):354-369.
    [130]Seydel R, Chang F K. Impact identification of stiffened composite panels: II. Implementati-onstudies. Smart Materials and Structures,2001,10(2):370-379.
    [131]Salehian A. Identifying the location of sudden damage in composite laminates using waveletapproach. MSc thesis, Worcester Polytechnic Institute,2003.
    [132]Ying S P, Hamlin D R, Tanneberger D. A multi-channel acoustic emission monitoring systemwith simultaneous multiple event data analyses. Journal of Acoustical Society of America,1974,55(2):350-356.
    [133]Hsu N N, Simmons J A, Hardy S C. An approach to acoustic emission signal analysis-theory andexperiment. Material Evaluation,1977,35(10):100-106.
    [134]Jeong Hyunjo, Jang Young Su. Wavelet analysis of plate wave propagation in compositelaminates. Composite Structures,2000,49(4):443-450.
    [135]Goodier J N, Jahsman W E, Ripperger E A. An experimental surface-wave method for recordingforce-time curves in elastic impacts. ASME Journal of Applied Mechanics,1959,26:3-7.
    [136]Doyle J F. An experimental method for determining the dynamic contact law. ExperimentalMechanics,1984,24,10-16.
    [137]Chang C, Sun CT. Determining transverse impact force on a composite laminate by signaldeconvolution. Experimental Mechanics,1989,29:414-419.
    [138]Wu E, Tsai T D, Yen C S. Two methods for determining impact-force history on elastic plates.Experimental Mechanics,1995,35:11-18.
    [139]Yen C S, Wu E. On the inverse problem of rectangular plates subjected to elastic impact, Part II:Experimental verification and further applications. ASME Journal of Applied Mechanics,1995,62:699-705.
    [140]Wu E, Yeh J C, Yen C S. Impact on composite laminated plates: an inverse method. InternationalJournal of Impact Engineering,1994,15:417-433.
    [141]Tsai C Z, Wu E, Luo B H. Forward and inverse analysis for impact on sandwich panels. AIAAJourna,1998,36:2130-2136.
    [142]Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems. Kluwer Academic,Dordrecht,1996.
    [143]Groetsch C W. Inverse Problems in the Mathematical Sciences. Vieweg, Braunschweig,1993
    [144]Hansen P C. Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia,1998.
    [145]Haywood J, Coverley P T, Staszewski W J, Worden K. An automatic impact monitor for acomposite panel employing smart sensor technology. Smart Materials and Structures,2005,14(1):265-271.
    [146]Chandrashekhara K, Chukwujekwu Okafor A, Jiang Y P. Estimation of contact force oncomposite plates using impact-induced strain and neural networks. Composites Part B:Engineering,1998,29(4):363-370.
    [147]高宝成,刘红霞,杨叔子.神经网络用于结构动荷载识别的研究.郑州工学院学报,1996,17(2):91-94.
    [148]周晚林,王鑫伟,胡自力.压电智能结构荷载识别方法的研究.力学学报,2004,36(4):491-495.
    [149]苏永振,袁慎芳,张炳良.基于声发射和神经网络的复合材料冲击定位.传感器与微系统,2008,28(9):56-61.
    [150]黄红梅,袁慎芳,常琦.基于光纤Bragg光栅和支持向量机的冲击损伤识别研究.振动与冲击,2010,29(10):53-56.
    [151]Hu N, Fukunaga H, Matsumoto S, Yan B, Peng X H. An efficient approach for identifyingimpact force using embedded piezoelectric sensors. International Journal of Impact Engineering,2007,34(7):1258-1271.
    [152]Boukria Z, Perrotin P, Bennani A. Experimental impact force location and identification usinginverse problems: application for a circular plate. International Journal of Mechanics,2011,1(5):48-55.
    [153]Yoshiaki O, Hideki T. Estimation of impact force and its location exerted on a spacecraft. TheJapan Society of Mechanical Engineers,1997,63(616):168-174.
    [154]马晨明. Kirchhoff板和Mindlin板上动态分布载荷的辨识问题的研究.博士学位论文,上海:复旦大学,2004.
    [155]徐荣桥.结构分析的有限元法与MATLAB程序设计.北京:人民交通出版社,2006.
    [156]Sakai T, et al. Bolt clamping force measurement with ultrasonic waves. Transactions of theJapan Society of Mechanical Engineers,1977,43:723-729.
    [157]Gotoh Y, et al. Study on inspection method to measure slack of a bolt using electromagneticVibration. Journal of the Japanese Society for Non-Destructive Inspection,2002,51:24-31.
    [158]Nai N, Hess D. Experimental study of loosening of threaded fasteners due to dynamic shearloads. Journal of Sound and Vibration,2003,253(3):585-602.
    [159]Nai N, Hess D. Influence of fastener placement on vibration-induced loosening. Journal ofSound and Vibration,2003,268:617-626.
    [160]Brown R L, Adams D E. Equilibrium point damage prognosis models for structural healthmonitoring. Journal of Sound and Vibration,2003,262:591-611.
    [161]Todd M D, Nichols J M, Nichols C J, Virgin L N. An assessment of modal property effectivenessin detecting bolted joint degradation: theory and experiment. Journal of Sound and Vibration,2004,275:1113-1126.
    [162]Nichols J, Todd M, Wait J. Using state space predictive modeling with chaotic interrogation indetecting joint preload loss in a frame structure. Smart Material and Structure,2003,12:580-601.
    [163]Nichols J, Nichols C, Todd M, Seaver M, Trickey S. Use of data driven phase space models inassessing the strength of a bolted connection in a composite beam. Smart Material and Structure,2004,13:241-250.
    [164]Moniz L, Nichols J M, Nichols C J, Seaver M, Trickey S T, Todd M D, Pecora L M and Virgin LN2005A multivariate, attractor-based approach to structural health monitoring Journal of Soundand Vibration283295-310.
    [165]Rutherford A C, Park G, Farrar C R. Non-linear feature identifications based on self-sensingimpedance measurements for structural health assessment. Mechanical Systems and SignalProcessing,2007,21:322-33.
    [166]Ritdumrongkul S, Fujino Y. Identification of the location and level of damage in multiplebolted-joint structures by PZT actuator-sensors. Journal of Structural Engineering,2006,132:304-311.
    [167]Ritdumrongkul S, Abe M, Fujino Y, Miyashita T. Quantitative health monitoring of bolted jointsusing a piezoceramic actuator-sensor. Smart Material and Structure,2004,13:20-29.
    [168]Park G, Sohn H, Farrar C, Inman D J. Overview of piezoelectric impedance-based healthmonitoring and path forward. Shock and Vibration Digest,2003,35:451-63.
    [169]Park G., Cudney H, Inman D J. Feasibility of using impedance-based damage assessment forpipeline systems. Earthquake Engineering and Structural Dynamics Journal,2001,30:1463-1474.
    [170]Yang J, Change F K, Derriso M M. Design of a hierachical health monitoring system fordetection of multilevel damage in bolted thermal protection panels: A preliminary study.Structural Health Monitoring,2003,2:115-122.
    [171]Okugawa M. Bolt loosening detection methods by using smart washer adopted4SID.Proceedings of45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials Conference19-22April2004, Palm Spring, CA, AIAA2004-1981.
    [172]Milanese A, Marzocca P, Nichols J M, Seaver M, Trickey S T. Modeling and detection of jointloosening using output-only broad-band vibration data. Structural Health Monitoring,2008,7:309-28.
    [173]Derek Doyle, Andrei Zagrai, Brandon Arritt, Hakan akan. Damage detection in bolted spacestructures. Journal of Intelligent Material Systems and Structures,2010,21:251-264.
    [174]Yan L H, Yan Y J, Chang L, Jiang J S. Identification of complex crack damage for honeycombsandwich plate using wavelet analysis and neural networks. Smart Materials and Structures,2003,12:661-671.
    [175]Grady I Lemoine, Kevin W Love, Todd A Anderson. An electric potential-based structural healthmonitoring technology using neural network In: Fu-Kuo Chang. Proceedings of the4thInternational Workshop on Structural Health Monitoring. Stanford, CA, USA: DEStechPublications387-395,2003.
    [176]Chung Bang Yun, Eun Young Bahng. Substructrual identification using neural networks.Computers and Structures,2000,77:41-52.
    [177]Akira Mita, Ryuta Taniguchi. Active damage diagnosis of bolted joints using support vectormachines. The13th World Conference on Earthquake Engineering, Vancouver B C, Canada,2004.
    [178]Wang Xiaoming, Greg Foliente, Su Zhongqing, Ye Lin. Multilevel decision fusion in adistributed active sensor networks for structural damage detection. Structural Health Monitoring,2006,5(1):45-58.
    [179]Hansen Lars Kai, Salamon Peter. Neural Network ensembles. IEEE Transactions on PatternAnalysis and Machine Intelligence,1999,12(10):993-1001.
    [180]Villmann Th, Schleif F, Hammer B. Comparison of relevance learning vector quantization withother metric adaptive classification methods. Neural Networks,2006,19(5):610-622.
    [181]Han T. Development of a feature based fault diagnostics system and its application to inductionmotors, Ph.D. Thesis, Pukyong National University, South Korea,2005.
    [182]Sathyanarayana Shashi. Pattern Recognition Primer II. Wolfram demonstration project.http://demonstraions.wolfram.com/PatternRecognitionPrimerII.
    [183]Shipp C A, Kuneheva L I. Relationships between combination methods and measures ofdiversity in combining classifiers. Information Fusion,2002,3:135-148.
    [184]Dymitr Ruta, Bogdan Gabrys. Classifier selection with majority voting. Information Fusion,2005,6(1):63-81.
    [185]Hamburg M. Statistical analysis for decision making. Harcourt Bruce and World, New York,1970.
    [186]Liu Wenyao, Wu Zhaohui, Pan Gang. An Entropy-based diversity measure for classifiercombining and its application to face classifier ensemble thinning. Advances in Biometric PersonAuthentication,2005,3338:118-124.
    [187]Battiti R, Colla A. Democracy in neural nets: voting schemes for classification. Neural Networks,1994,7(4):691-707.
    [188]Lam L, Suen C. Optimal combination of pattern classifiers. Pattern Recognition Letters,1995,16,945-954.
    [189]Xu Lei, Krzyzak Adam, Suen Ching Y. Methods of combining multiple classifiers and theirapplications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics.1992,22(3):418-435.
    [190]Huang Y, Liu K, Suen C. The combination of multiple classifiers by a neural network approach.Journal of Pattern Recognition and Artificial Intelligence,1995,9:579-597.
    [191]Anas Quteishat, Chee Peng Lim, Jeffrey Tweedale, Lakhmi C Jain. A neural network-basedmulti-agent classifier system. Neurocomputing,2009,72:1639-1647.
    [192]Beer M, D’Inverno M, Jennings N, Luck M, Preist C, Schroeder M. Negotiation in multi-agentsystems. Knowledge Engineering Review,1999,14:285-289.
    [193]Petrakos M, Benediktsson J A. The effect of classifier agreement on the accuracy of thecombined classifier in decision level fusion. Transaction on Geoscience and Remote Sensing,2001,39(11):2539-2546.
    [194]苗苗.基于光纤光栅的结构连接失效及应变场监测研究.硕士学位论文,南京:南京航空航天大学,2006.
    [195]王长坤.结构连接失效的监测与辨识研究.硕士学位论文,南京:南京航空航天大学,2007.
    [196]Gyuhae Park, Charles R Farrar, Francesco Lanza di Scalea, Stefano Coccia. Performanceassessment and validation of piezoelectric active-sensors in structural health monitoring. Smartmaterials and structures,2006,15:1673-1683.
    [197]Friswell M I, Inman D J. Sensor validation for smart structures. Journal of Intelligent MaterialSystems and Structures,1999,10:973-982.
    [198]Worden K. Sensor validation and correction using auto-associative neural networks andprincipal component analysis. Proceedings of21st IMAC Structural Dynamics Conference, Feb3-6,2003.
    [199]Kerschen G, Boe P De, Golinval J, Worden K. Sensor validation using principal componentanalysis. Smart Materials and Structures,2005,14:36-42.
    [200]Saint Pierre N, Jayet Y, Perrissin Fabert I, Baboux J C. The influence of bonding defects on theelectric impedance of a piezoelectric embedded element. Journal of Physics D: Applied Physics,1996,29(12):2976-2982.
    [201]Giurgiutiu V, Zagrai A N. Embedded self-sensing piezoelectric active sensors for on-linestructural identification. ASME Journal of Vibration and Acoustics,2002,124:116-125.
    [202]Pacou D, Pernice M, Dupont M, Osmont D. Study of the interaction between bondedpiezo-electric devices and plates. Proceedings of1st European Workshop on Structural HealthMonitoring,2002.
    [203]Bhalla S, Soh C K. Electromechanical impedance modeling for adhesively bondedpiezo-transducers. Journal of Intelligent Material Systems and Structures,2004,15:955-972.
    [204]Park G, Farrar C R, Rutherford C A, Robertson A N. Piezoelectric active sensor self-diagnosticsusing electrical admittance measurements. ASME Journal of Vibration and Acoustics,2006,128(4):469-476.
    [205]Timothy G Overly, Gyuhae Park, Kevin M Farinholt, Charles R Farrar. Piezoelectricactive-sensor diagnostics and validation using Instantaneous baseline data. IEEE Sensors Journal,2009,9(11):1414-1421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700