用户名: 密码: 验证码:
基于脉冲漏磁检测机理的缺陷检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漏磁检测技术作为电磁无损检测技术的重要分支之一,被广泛应用于导磁构件的检测。本文在分析国内外漏磁检测技术研究动态的基础上,针对目前该技术中所存在的一些不足,结合有限元仿真和实验研究,对铁磁性管道脉冲漏磁检测中的轴向缺陷如何识别、传感器结构参数对缺陷检测的影响以及内外壁缺陷的分类和识别技术等几个方面进行了深入研究。主要研究内容及创新如下:
     以电磁场理论为基础,讨论了缺陷漏磁检测模型及脉冲漏磁检测原理,对不同走向缺陷进行了有限元仿真和实验研究。利用三维有限元仿真技术,分析了周向缺陷和轴向缺陷三维漏磁场分量分布情况,并对缺陷漏磁瞬态信号与缺陷宽度、深度之间的关系进行了仿真研究,发现两种不同走向缺陷漏磁场的三维分量均有不同程度的扰动,轴向缺陷在切向分量的扰动较周向缺陷明显,综合缺陷漏磁场的三维分量变化情况将能对不同走向管道表面缺陷进行有效识别,提出三维脉冲漏磁检测方法以提高轴向缺陷检测能力。
     研究了改善传感器检测灵敏度的优化设计方法,提出了一种同时提取三维漏磁分量的新型脉冲漏磁传感器结构。对影响检测灵敏度的各种参量进行了分析,如励磁线圈的尺寸、励磁线圈形状、磁轭高度等;用有限元法分析了几种不同励磁结构的脉冲漏磁传感器,发现矩形励磁线圈漏磁传感器信噪比高于圆柱形励磁线圈漏磁传感器,但它对提离变化较圆柱形励磁传感器敏感;因为典型便携式磁轭中的实心铁氧体磁芯上的损耗将使励磁线圈电感增加,不利于检测信号特征量的提取,所以提出将脉冲漏磁检测传感器的励磁结构设计为矩形空心线圈。设计了用于场量测量的两两正交的三维漏磁检测传感器。
     研究了不同走向缺陷三维脉冲漏磁瞬态信号的特点,提出了一种利用三维脉冲漏磁瞬态信号峰值扫描波形来识别周向缺陷和轴向缺陷的新方法。研究了缺陷定量估计的方法:根据三维峰值扫描电压变化定量估计缺陷长度和宽度,以三维分量差分信号的过零时间估计缺陷深度。采用有限元仿真和实验对所设计的新型脉冲漏磁传感器结构进行了验证。仿真和实验结果表明,采用新型脉冲漏磁传感器及综合三维脉冲漏磁瞬态信号能在提高轴向缺陷检测灵敏度的同时实现两种不同走向缺陷的分类识别。同时,围绕新型传感器结构,对系统各种参数如激励脉冲信号的频率、占空比等的选择问题进行了详细探讨,设计和实现了脉冲漏磁检测硬件系统。
     对管道内外壁缺陷的分类识别技术进行了研究。由于脉冲磁化所产生的励磁场频率丰富,使得其对于内外壁缺陷都具有识别能力。利用有限元仿真技术,研究了脉冲磁化下的漏磁场三维分量分布特性。分别在时域和频域对三维脉冲漏磁瞬态信号进行了分析,在时域提取了缺陷信号过零时间、参考信号与缺陷信号的交叉点时间、缺陷瞬态信号积分峰值时间及下降点时间作为特征量,在频域提取了谱图峰度系数、谱图偏态系数、相位谱交叉点频率作为特征量。通过提取三维瞬态信号的上述时域和频域特征及轴向分量峰值电压相对变化量等22个特征量,用主成分分析法成功实现了周向内壁、周向外壁、轴向内壁、轴向外壁四种缺陷的分类。
As an important branch of electromagnetic nondestructive testing technology, magnetic flux leakage (MFL) testing technique is widely used in the detection of magnetic materials. The domestic and overseas research developments of magnetic flux leakage testing technique were analyzed in this paper. Aiming at the shortages currently existed in this technique, the research on the pulsed magnetic flux leakage (PMFL) testing of ferromagnetic pipeline was implemented combining the finite element simulation with experiments. The identification method of axial defects as well as the impact of sensor structure parameters on the flaw detection and the defect classification and recognition techniques on inner and outer walls of pipelines was studied in depth. The main research content and innovations are as follows:
     The magnetic flux leakage detection model of defects and the principle of pulsed magnetic flux leakage testing were discussed based on the electromagnetic field theory. Different types of defects were researched with finite element simulation and experiments. The 3D magnetic leakage field component distributions of circumferential and axial defects as well as the relationship between the magnetic flux leakage transient signal and the width and depth of the defects were analyzed with 3D finite element simulation technique. It is found that the two defects have different disturbance to the 3D components of magnetic leakage field. Compared with the circumferential defects, the axial defects will cause more distinct disturbance to the tangential component. Thus different defects on the pipe surface can be identified according to the change of 3D components of magnetic leakage field, and the 3D pulsed magnetic flux leakage detection method was presented to improve the testing ability of axial defects.
     The optimal design method to improve the detection sensitivity of the sensor was studied and a new pulsed magnetic flux leakage sensor structure was presented, which can be used to pick up the 3D magnetic flux leakage components at the same time. The influence of various parameters on detection sensitivity was analyzed, such as the size of the excitation coil, the magnetic yoke shape and the magnetic yoke height. Several different pulsed excitation magnetic flux leakage sensors were analyzed using the finite element method, and it was found that the rectangular excitation sensor has higher SNR than the cylindrical excitation sensor, but its lift-off changes is more sensitive than the cylindrical section. Because the losses of solid ferrite core in the typical portable yoke will increase inductance of the excitation coil, which is unfavorable to the feature extraction of detection signals, the excitation structure in the pulsed magnetic flux leakage sensor was proposed to be a rectangular hollow coil. The 3D magnetic flux leakage sensors was designed to obtain field measurements, which is orthogonal each other.
     The transient signal characteristics of the 3D pulsed magnetic flux leakage with defects in different directions were studied, and a new method using 3D pulsed magnetic flux leakage transient signal peak scanning waveform to classify the circumferential defects and axial defects was presented. The method of quantitative defect assessment was studied. The length and width of the defects were evaluated quantitatively according to the change of 3D scanning peak voltage, and the defect depth was evaluated with the zero passage time of the 3D differential signal. The newly designed structure of pulsed magnetic flux leakage sensor was validated with finite element simulation and experiments. The simulation and experimental results show that the utilization of this new pulsed magnetic flux leakage sensor and the 3D pulsed magnetic flux leakage signals can improve the detection sensitivity of axial defects and realize the classification and identification of defects with two different directions at the same time. Meanwhile, the system parameters such as the excitation pulsed frequency and the choice of the duty cycle around the new sensor structure were discussed in details, and the 3D pulsed magnetic flux leakage testing system was designed and realized to pick up 3D pulsed magnetic flux leakage transient signal.
     The classification and recognition techniques of the defects of the inside and outside walls of the pipeline were studied. Because of the rich frequencies of the excitation magnetic field generated by the pulsed magnetization, the defects on either the inside or the outside wall can be identified. The 3D component distribution characteristics of leakage magnetic field under pulsed magnetization were studied using finite element simulation. The 3D pulsed magnetic flux leakage transient signals were analyzed in time domain and frequency domain respectively. Time domain features such as zero-crossing time of defect signal, intersection-time of reference signal and defect signal, integration time of defect peak transient signal, arrival time of the descending point and frequency domain features such as spectrum kurtosis coefficient, skewness coefficient, phase spectral intersection frequency were extracted. After the 22 features (including the above mentioned features of 3D transient signals and peak voltage relative variation of the axial component) were extracted, four kinds of defects on the circumferential inner wall, circumferential outer wall, axial inner wall and axial outer wall were classified using principal component analysis.
引文
[1]徐章遂,徐英,王建斌等.裂纹漏磁定量检测原理与应用[M].北京:国防工业出版社, 2005.
    [2]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社, 2002.
    [3]任吉林,林俊明.电磁无损检测[M].北京:科学出版社, 2008.
    [4]徐可北,周俊华.涡流检测[M].北京:机械工业出版社, 2004.
    [5]邓娟,许万忠.五种常规的无损检测方法[J].航空维修与工程, 2004, (3): 62.
    [6]高军哲.多频涡流无损检测的干扰抑制和缺陷检测方法研究[D].长沙:国防科学技术大学, 2011.
    [7] A.Sophian, G.Y.Tian, J.Rudlin. Electromagnetic and eddy current NDT: a review. Insight, 2001, 43 (5): 302-306.
    [8] J.B.Nestleroth. In line inspection technologies for mechanical damage and SCC in pipelines. Final Report, Contract No.DTRS57-97-C-0010, 2000.
    [9]美国无损检测学会.美国无损检测手册(超声卷): [M].北京:世界图书出版公司, 1996: 28~38
    [10]傅洋.磁粉、渗透检测技术的发展——庆祝中国机械工程学会无损检测分会成立三十周年[J].无损检测, 2008, 30(9): 561~564.
    [11]李东升,王昌明,沈勇.管内在役检测技术及管道安全性评估[J].油气田地面工程, 2001, 20(5): 85~86.
    [12] D.De Silva, P.Davis, L.S.Burn. Conditon assessment of cast iron and asbestos cement pipes by in-line probes and selective sampling for estimation of remaining life. No Dig, 2002, 1:1~13.
    [13] [日]无损检测协会,戴端松译.无损检测概论[M].上海:上海科学技术出版社, 1983.
    [14]吴前驱,贺潜源,丁伟.表面无损检验[M].北京:水利电力出版社, 1991.
    [15] J.C. Drury, A. Marino. A comparison of the magnetic flux leakageand ultrasonic methods in the detection and measurement of corrosion pitting in ferrous plate and pipe, in: Proceedings of the 15th , World Conference on Non-destructive Testing, Roma, 2000.
    [16]康宜华,宋凯,杨建桂等.几种电磁无损检测方法的工作特征[J].无损检测, 2008, 30(12): 928~930, 933.
    [17]林俊明.电磁(涡流)检测技术现状及发展趋势[J].航空制造技术, 2004, (40): 40~41.
    [18]《美国无损检测手册》译审委员会译.美国无损检测手册电磁卷(下册)[M].北京:世界图书出版公司, 1999: 972~973.
    [19]张国光.管道漏磁检测中漏磁信号与缺陷特征关系的研究[J].化工自动化及仪表, 2008, 35(2):39 ~41.
    [20] P.C.Porter.Use of magnetic flux leakage for the inspection of pipelines and storage tanks[J].SPIE, 1996(2454), 172~184.
    [21]李路明,黄松岭,施克仁.漏磁检测的交直流磁化问题[J].清华大学学报(自然科学版),2002, 42 (2):154~156.
    [22] K. Mandal, T. Cramer, D.L. Atherton. The study of a racetrack shaped defect in ferromagnetic steel by magnetic Barkhausen noise and flux leakage measurements[J]. Journal of Magnetism and Magnetic Materials, 2000, 212 (1–2): 231~239.
    [23]康宜华,武新军,杨叔子.磁性无损检测技术中的磁化技术[J].无损检测, 1999, 21(5): 206~209.
    [24] Kirkwood G J., Stanley R.K. Flux Magnetic Method for Inspection of Installed Ferromagnetic Tubing[J].Mateiral Evaluation, 1992, 50(4):502~505.
    [25] A.C.Bruno, R.Schifni, et al. New magnetic techniques for inspection and metal-loss assessment of oil pipelines[J]. Journal of Magnetism and Magnetic Material, 2001, 226- 230:2061~2062.
    [26] Atherton D.L. Deve1opments in magnetic inspection techniques for pipelines[J].CS NDT Journal, 1990, 11(1):28~35.
    [27]叶代材,苏李广.磁粉检测[M].北京:机械工业出版社, 2004.
    [28]余浩然,吴斌,陈丽萍.漏磁通法油气管道在役检测技术[J].实用测试技术, 1997, 5:1~9.
    [29]杨叔子,康宜华.钢丝绳断裂定量检测原理与技术[M].北京:国防工业出版社, 1995.
    [30]王长龙,梁四洋,左宪章等.漏磁检测的研究现状及发展[J].军械工程学院学报,2007,19(4):13~16.
    [31]林俊明.漏磁检测技术及发展现状研究[J].无损探伤, 2006, 30(1):1~5
    [32] Minkov D, Takeds Y, Shoji T, et al. Estimating the size of surface cracks based on hall element measurements of the leakage magnetic field and a dipole model of a crack[J]. Applied Physics A: Materials Science & Processing, 2002, 74: 169~176.
    [33] Mandche C, Clapham L. A model for magnetic flux leakage signal predictions[J]. Journal of Physics D: Applied Physics, 2003, 36: 551~554.
    [34] Jansen H J M, Van de Camp P B J, Geerdink M. Magnetisation as a key parameter of magnetic flux leakage pigs for pipeline inspection[J].insight, 1994, 36(9):672~677.
    [35] Katoh M, Nishio K, Yamaguchi Y. FEM study on the influence of air gap and specimen thickness on the detectability of flaw in the yoke method[J]. NDT&E International, 2000, 33:333-339.
    [36] Mandayam S, Upda L, Udpa S S, et al. Invariance transformations for magnetic flux leakage signals[J]. IEEE Transations on Magnetics. 1996, 32(3), 1577~1580.
    [37] Yong Li, Gui YunTian, Steve Ward. Numerical simulation on magnetic flux leakage evaluation at high speed[J]. NDT&E International,39(2006): 367~373.
    [38] Mitsuaki Katoh, Noritaka Masumoto, Kazumasa Nishio et al. Modeling of the yoke-magnetization in MFL-testing by finite elements[J]. NDT&E International, 36(2003): 479~486.
    [39] N.B.S. Gloria, M.C.L.Areiza , I.V.J.Miranda et al. Development of a magnetic sensor for detection and sizing of internal pipeline corrosion defects[J]. NDT&E International. 42 (2009) 669~677.
    [40] Yong Li,John Wilson, Gui YunTian. Experiment and simulation study of 3D magnetic Field sensing for magnetic flux leakage defect characterisation[J]. NDT&E International.40(2007): 179~184.
    [41]孙宏亮.油管漏磁检测中的磁化技术[J].军械工程学院学报, 2007,19(4):13~16
    [42]孙雨施.关于永磁场的计算模型[J].电子学报, 1982, 9: 86~89.
    [43]宋凯,康宜华,孙燕华等.漏磁与涡流复合探伤时信号产生机理研究[J].机械工程学报, 2009, 45 (7):233~237.
    [44]孙燕华,康宜华,石晓鹏.基于单一轴向磁化的钢管高速漏磁检测方法[J].机械工程学报, 2010, 46(5):8~13.
    [45]石晓鹏.轴向磁化下钢管纵向刻槽漏磁检测实验研究[D].武汉:华中科技大学,2009:12~17.
    [46]仲维畅.磁偶极子与磁粉探伤——磁粉探伤原理之一[J].无损检测, 1990, 12 (3) : 66~70
    [47]刘志平,康宜华,武新军等.大面积钢板局部磁化的三维有限元分析[J].华中科技大学学报(自然科学版). 2003, 3l(8): 10~12.
    [48]崔伟,黄松岭,赵伟.传感器提离值对管道漏磁检测的影响[J].清华大学学报(自然科学版), 2007, 47(1):21~24.
    [49]李路明,郑鹏,黄松岭等.表面裂纹宽度对漏磁场Y分量的影响[J].清华大学学报(自然科学版),1999,39(2):43~45.
    [50]吴先梅,钱梦骤.有限元法在管道漏磁检测中的应用[J].无损检测, 2000, 22(4):147~150.
    [51]何辅云,张艳,张海燕等.钢管端头漏磁检测技术[J].无损检测, 2005, 27(8):405~406.
    [52]周林,阙沛文.海底输油管道缺陷漏磁检测信号采集与处理系统的设计[J].计算机测量与控制, 2004, 12 (2) : 120~121.
    [53]陈亮,阙沛文,黄作英等.一种新型磁阻式传感器在漏磁检测中的应用[J].传感器技术, 2004, 23 (10):75~76,79
    [54]徐章遂,靳英卫,张政保等.基于磁检测的螺栓孔裂纹定量检测方法[J].无损检测, 2001, (6): 237~239.
    [55] V.E. Scherbinin and A.I.Pashagin. Influence of the Extension of a Defect on the Magnitude of its Magnetic Field[J]. Defektoskopiya, 1972, (4): 74~82.
    [56] W.L.Ko and P.H. Francis. Magnetic Field Leakage due to a Surface Crack[J]. British Journal of NDT, 1975:141~144.
    [57] F. Forster. New Findings in the Field of Non-Destructive Magnetic Leakage Field Inspection[J]. NDT&E International,1986, 19(1): 3~14.
    [58] S.Lukyanets, A.Snarskii, M. Shamonin et al. Calculation of magnetic leakage field from a surface defect in a linear ferromagnetic material: an analytical approach[J]. NDT&E International, 36(2003): 51~55.
    [59] F.I. Al-Naemi, J.P. Hall, A.J. Moses. FEM modelling techniques of magnetic flux leakage-type NDT for ferromagnetic plate inspections[J]. Journal of Magnetism and Magnetic Materials, 304 (2006): 790~793.
    [60] E.1awa and L. pielarski. Design of Hall-effect sensors for magnetic testing of steel ropes[J]. NDT&E International, 5(1987): 295~298.
    [61] Atherton D.L, SzpunarJ.A. Effect of stress on magnetization and magnettostricition in Pipeline steel[J]. IEEE TransactionsonMagnetics. 1986, Voloume MAG--22:514~516.
    [62] Atherton D.L, Jiles D.C. Effects of stress on magnetization[J]. NDT&E International, 1986, 19(1): 15~19.
    [63] Y.K.Shin. and W.Lord. .Numerical modeling of moving probe effects for electromagnetic nondestructive evaluation[J]. IEEE Transactions on magnetic, 1993, 29(2): 1865~1868.
    [64] S.Yang, Y Sun, L.Udpa. 3D simulation of velocity induced fields for nondestructive evaluation application [J]. IEEE Transactions on magnetic, 1999, 35(3): 1754~1756
    [65] Gwan Soo Park and Sang Ho Park. Analysis of the velocity-induced eddy current in MFL[J]. IEEE Transactions on magnetic, 2004, 40(2): 663~666.
    [66] M. Katoh, K. Nishio, T. Yamaguchi, FEM study on the infuence of air gap and specimen thickness on the detectability of faw in the yoke method[J]. NDT&E International, 2000 (33) :333~339
    [67]杜志叶,阮江军,余世峰等.油管漏磁检测的有限元建模技术研究[J].中国电机工程学报. 2007, 27(9): 108~113.
    [68] S. Mukhopadhyay, G.P. Srivastava. Characterisation of metal loss defects from magnetic flux leakage signals with discrete wavelet transform[J]. NDT&E International, 2000, 33: 57~65.
    [69] Muhammad Afzal, Satish Udpa.Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline[J]. NDT&E International, 35 (2002) 449~457.
    [70]蔡少川.经验模态分解在管道缺陷漏磁检测信号处理中的应用研究[J].中国机械工程, 2006, 17(21):2201~2204.
    [71] Wenhua Han , Peiwen Que. A modified wavelet transform domain adaptive FIR filtering algorithm for removing the SPN in the MFL data. Measurement[J]. NDT&E International, 39 (2006) 621~627.
    [72] K.Mandal, D. Dufour, D.L. Atherton. Use of magnetic Barkhausen noise and magnetic flux leakage signals for analysis of defects in pipeline steel[J]. NDT&E International, 36 (2003) 111~116.
    [73] Weihua Mao, Lynann Clapham, David L, Atherton. Effects of alignment of nearby corrosion pits on MFL[J]. IEEE Transactions on magnetic, 1999, 33(3): 2007~2017.
    [74]徐全生,林森.管道漏磁信号压缩技术[J].沈阳工业大学学报, 2008, 30(5): 555~558.
    [75]杨理践,王大为,高松巍.管道漏磁检测数据压缩算法的研究[J].沈阳工业大学学报, 2006, 28(6): 628~631.
    [76] Jun-Youl Lee, Mubhammad Afzal, Satish UdPa. Hierachical rule based classification of MFL signals obtained from natural gas pipeline inspection[J]. IEEE Transactions on Magneitcs, 2000:71~76.
    [77] Mukhopadhyay S, Srivastava G P. Characterisation of metal loss defects from magnetic flux leakage signals withdiscrete wavelet transform[J]. NDT& E International, 2000, 33(1): 57~65.
    [78] K.Hwang, S. Mandayam, S.S.Udpa. Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J]. NDT&E International, 33 (2000): 531~545.
    [79] R.Perrzo, A. Pignotti, S. Reich. Feature extraction in MFL signals of machined defects in steel tubes[J]. Review of progress in Quantitative Nondestructive Evaluation,. 20(2001):619~626.
    [80] A rkadan A. A., Sareen T., Subramaniam S., Genetic algorithms for nondestructive testing in crack identification[J]. IEEE Transactions on Magnetics, 1994, 30(6),4320~322.
    [81] Haueisen J ,UngerR , B eukerT ,et al. Evaluation of inverse algorithms in theanalysis of magnetic flux leakage data[J]. IEEE Transactions on Magnetics. 2002, 38(3): 1481~1488.
    [82] Ramuhalli P, Neural network based iterative algorithms for solving electromagnetic NDE inverse problems[J]. NDT&E International, 2002,35: 6~10.
    [83]李莺莺,靳世久,魏茂安.采用小波基神经网络进行埋地管道缺陷特征提取[J].电子测量与仪器学报, 2005. 19 (4), 68~72.
    [84] Yong Zhang , Zhongfu Ye , Chong Wang. A fast method for rectangular crack sizes reconstruction in magnetic flux leakage testing[J] . NDT&E International. 2009, 42(2): 1~7
    [85] Ramuhalli P, Upda S. Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation[J]. Journal of Applied Physics, 2003,93(10):8274~8275.
    [86] Hwang K, Mandayam S, Upda S S et al. Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J]. NDT&E International, 2000, 33 (6): 531~545.
    [87] Bruno A C, Miranda L C, Barbosa C L et al. Image reconstruction of spherical inclusions in ferromagnetic structures using the generalized inverse[J]. IEEE Transactions on magnetics, 1998, 34(5): 2912~2915.
    [88] Chen Z M, Gabriel P, Ovidiu M, et al. Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach[J]. IEEE Transactions on magnetics, 2002, 38(2): 1025~1028.
    [89] Yan M, Udpa S, Mandayam S et al. Solution of inversion algorithms in magnetic flux leakage nondestructive evaluation. Journal of Applied Physics[J]. 2003, 93(10):8274~8275.
    [90]王长龙,纪凤珠,王建斌等.油气管道漏磁检测缺陷的三维成像技术[J].石油学报, 2007, 28(5):146~148.
    [91]解源,康宜华,胡阳.钢绳芯胶带接头状况的漏磁成像检测原理[J].华中科技大学学报(自然科学版), 2002, 30(8):46~48.
    [92]刘美全,徐章遂,王建斌.基于磁偶极子能级分布的缺陷反演成像[J].中国机械工程, 2005, 16(11): 952~955.
    [93]李琼,金建华,阙沛文.漏磁检测方法实现管道缺陷图形重构技术的研究[J].计算机测量与控制, 2003, 11(1): 9~22.
    [94]韩文花.油气管道漏磁信号去噪及缺陷重构算法的研究[D].上海:上海交通大学, 2007.
    [95] Yuji Gotoh and Norio Takahashi. Study on Problems in Detecting Plural Cracksby Alternating Flux Leakage Testing Using3-D Nonlinear Eddy Current Analysis[J]. IEEE Transactions on magnetics, 2003, 39(3): 1527~1530.
    [96] Yuji Gotoh and Norio Takahashi. Proposal of detecting method of outer side crack by alternating flux leakage testing using 3-D nonlinear FEM[J]. IEEE Transactions on magnetics, 2006, 42(4): 1415~1418.
    [97] Ali Sophian , Gui Yun Tian, Sofiane Zairi. Pulsed magnetic flux leakage techniques for crack detection and characterization[J]. NDT&E International, 125(2006): 186~191.
    [98]杨宾峰,张辉,余付平等.新型脉冲漏磁传感器的仿真设计与实验研究[J].《空军工程大学学报:自然科学版》, 2010, 11(4): 57~61.
    [99]王韫江,王晓峰,丁克勤.基于脉冲漏磁理论的管道腐蚀缺陷宽度定量技术[J].测试技术学报, 2009, 23(5):390~395.
    [100]王韫江,王晓峰,丁克勤.脉冲漏磁无损检测影响因素分析[J].计量技术, 2009, 2:3~6.
    [101]兵器工业无损检测人员技术资格鉴定考核委员会.磁粉探伤[M].北京:兵器工业出版社,1999.
    [102] Friedrich Forster. New finding in the field of non-destluctlve magnetic leakage field inspection[J]. NDT&E International, 1986, 19(1):3~13.
    [103]中国机械工程学会无损检测学会编.磁粉探伤[M].北京:机械工业出版社,1987.
    [104] Alex Rubinshteyn. Magnetic flux leakage investigation of dents[D]. Canda:Queen’s University, 2005.
    [105] Gwan Soo Park, Eun Sik Park. Improvement of the sensor system in magnetic flux leakage-type nondestructive testing[J]. IEEE Trans on Magnetics, 2002, 38(2): 1277~1280.
    [106] Gwan Soo Park,Sang Ho Park.. Analysis of the velocity-Induced eddy current in MFL type nondestructive testing[J]. IEEE Trans on Magnetics, 2004, 40(2): 663~666.
    [107] Mandayam S, Udpa S. Invariance transformations for magnetic flux leakage signals. [J]. IEEE Trans on Magnetics, 1996, 32(3): 1577~1580.
    [108]彭永胜.钢管小缺陷精确量化识别理论及系统研究[D].天津:天津大学, 2005.
    [109] Minkov. D, Takeda Y. Shoji T, Lee J. Estimating the Sizes of Surface Cracks Based on Hall E[ement Measurements of the Leakage Magnetic Field and a Dipole Model of a Crack[J]. App1 Phys, 2002, 74: 169~176.
    [110] Minkov. D, Takeda Y, Shoji T, Lee J. Study of the Dipole Model of a Crack[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2000: 521~528.
    [111]任吉林,林俊明,高春法.电磁检测[M].北京:机械工业出版社, 2000.
    [112]杨宾峰.脉冲涡流检测关键技术研究[D].长沙:国防科学技术大学, 2006.
    [113] J.H.V.Lefebvre. Simultaneous conductivity and thickness measurements using pulsed eddy current. Thesis, Faculty of the Royal Military College of Canada, 2003.
    [114] A. Sophian, G.Y. Tian, D. Taylor. Design of a pulsed eddy current sensor for detection of defects in aircraft lap-joints,Sens. Actuators A: Phys. 2002, 101 (1–2) : 92~98.
    [115]陈重,崔正勤.电磁场理论基础[M].北京:北京理工大学出版社, 2003.
    [116] FORSTER F. On the way from the know how to know why in the magnetic leakage method of nondestructive testing [J]. Materials evaluation,1985, 43(9): l154~l162.
    [117]杨克冲,郑军,康宜华等.钢管管缝磁化段表面漏磁场特性及其检测[J].机械工程学报, 1994, 30(增刊): 191~197.
    [118]康宜华,武新军.数字化磁性无损检测技[M].北京:机械工业出版社, 2007.
    [119]康宜华,刘斌,谭波等.多规格油套管漏磁检测方法研究[J].钢管, 2007, 36(1): 50-54.
    [120] Sushant M.Dutta. Magnetic flux leakage sensing: the forward and inverse problems[D]. America, 2008:27~40
    [121]张志刚,周晓军,宫然等.小波局域Laplace模型降噪算法及其在机械故障诊断中应用[J].机械工程学报, 2009, 45 (9):52~57.
    [122]吕振肃,马文.自适应小波阈值算法在心电信号去噪中的应用[J].数据采集与处理, 2009, 24 (3):313~317.
    [123]宋蓓蓓,许录平,孙文方.一种新型图像变换方法在图像去噪中的应用[J].仪器仪表学报,2008,29(7):1455~1459.
    [124] STARCK J L, CANDES E J, DONOHO D L. The curvelet transform for image denoising[ J ]. IEEE Trans on Image Processing, 2002, 11 (6): 670~684.
    [125] K. Mandal, T. Cramer, D.L. Atherton, The study of racetrack shaped defect in ferromagnetic steel by magnetic Barkhausen noise and flux leakage measurements[J]. Journal of Magnetism and Magnetic Materials, 2000,212 (1–2):231–239.
    [126]李家伟,陈积.无损检测手册[M].北京:机械工业出版社, 2002.
    [127] P Silvester, M V K Chari. Finite element solution of saturable magnetic field problem[J]. IEEE Trans. PAS, 1970, (7):1642~1651.
    [128]纪凤珠,王长龙,陈正阁等.基于三维有限元法的漏磁场分析[J].兵工学报, 2007, 28(7): 876~879.
    [129] M. Katoh, K. Nishio, T. Yamaguchi.FEM study on the infuence of air gap and specimen thickness on the detectability of faw in the yoke method[J]. NDT&EInternational 33 (2000) 333~339
    [130]谢德馨.三维涡流场的有限元分析[M].北京:机械工业出版社, 2008
    [131]幸玲玲.用时域有限元边界元耦合法计算三维瞬态涡流场[J].中国电机工程学报. 2005, 25(19): 131~134.
    [132] Anderson O W. Laplacian electrostatic field calculations by finite elements with automic grid generation[J]. IEEE Trans. PAS, 1973, 92(5):1485~1492.
    [133]周奇,康宜华,武新军等.直流线圈励磁的有限元分析计算[J].无损检测, 2006, 28(12):630~632
    [134]李莺莺,靳世久,魏茂安.管道漏磁法检测的ANSYS仿真研究[J].无损检测.2005,27(2): 72~76
    [135]第一作者.脉冲漏磁检测的三维场特征分析及缺陷分类识别.仪器仪表学报. 2009, 30(12) :2506~2510.
    [136] F.I. Al-Naemi, J.P. Hall, A.J. Moses. FEM modelling techniques of magnetic flux leakage-type NDT for ferromagnetic plate inspections[J]. Journal of Magnetism and Magnetic Materials, 2006, 304 :790~793.
    [137] Mitsuaki Katoh, Noritaka Masumoto, Kazumasa Nishio. Modeling of the yoke-magnetization in MFL-testing by finite elements[J]. NDT&E International, 2003, 36 47~486.
    [138] József Pávó. Numerical Calculation Method for Pulsed Eddy-Current Testing[J]. IEEE transactions on magnetics, 2002, 38(2):1169~1172
    [139] Dariusz Golda, Martin L. Culpepper. Modeling 3D magnetic fields for precision magnetic actuators that use non-periodic magnet arrays[J]. Precision Engineering, 2008, 32:134–142
    [140]于亚婷,杜平安,李代生.电涡流传感器线圈阻抗计算方法[J].机械工程学报, 2007, 43(2): 210-214.
    [141]纪凤珠,王长龙,陈正阁等.基于三维有限元法的漏磁场分析[J].兵工学报,2007(7): 876~879.
    [142] Thomas G.K. Madabushi V.K. The application of finite element method analysis to eddy current nondestructive evaluation[J]. IEEE Transactions on magnetics, 1979, 15(6): 1956~1960.
    [143]张玉华,罗飞路,孙慧贤等.脉冲涡流检测中三维磁场量的特征分析与缺陷定量评估[J].传感技术学报, 2008, 21(6): 801~805.
    [144]孙明礼,胡仁喜,崔海蓉.ANSYS 10.0电磁学有限元分析实例[M].北京:机械工业出版社, 2007: 371~374 .
    [145] Shannon C E. A Mathematical Theory of Communication[J]. The Bell System Technical Journal, 1948, (27): 379~423, 623~656.
    [146]张玉华.基于场-路耦合模型的涡流探头设计及提离干扰抑制方法研究[D].长沙:国防科学技术大学, 2010.
    [147] Y.Zhang, Y.Yu, D L.Atherton. Stress corrosion cracks: through wall transmission measurements in 510mm steel pipe[J]. Insight, 1998, 40(5); 347~351.
    [148] Hajime Tsuboi, Norio Seshima, Imre Sebestyén.Transient Eddy Current Analysis of Pulsed Eddy Current Testing by Finite Element Method[J]. IEEE Transactions on magnetics, 2004, 40(2):1330~1333.
    [149]徐小杰.铁磁性管道中轴向裂纹的远场涡流检测技术研究[D].长沙:国防科学技术大学, 2008.
    [150]任吉林,林俊明.高春法.电磁无损检测[M].北京:机械工业出版社, 2000:20~21.
    [151]于亚婷,杜平安,廖雅琴.线圈形状及几何参数对电涡流传感器性能的影响.仪器仪表学报[J]. 2007, 28(6):1045~1050
    [152]于亚婷.与被测材料无关的电涡流传感器基础理论与实现方法研究[D].成都:电子科技大学, 2007.
    [153]刘延雪,戴光,郑津洋.漏磁检测管道裂纹的有限元分析与试验研究[J].压力容器. 2006, 23(12):16~19.
    [154]周奇,康宜华,武新军.直流线圈励磁的有限元分析计算[J].无损检测. 2006, 28(12): 630~632.
    [155] Li Shu, Huang Songling, Zhao Wei. Study of pulse eddy current probes detecting cracks extending in all directions [J].Sensors and Actuators A, 2008, 141:13~19.
    [156]宋志强,李著信,张镇等.检测探头提离效应对管道漏磁检测影响分析[J].后勤工程学院学报, 2011, 27(1):29~34
    [157]苏毅,李著信,易方.漏磁检测探头提离对检测信号的影响分析[J].后勤工程学院学报, 2008, 24(3):24~27
    [158]张勇,叶中付,王种.漏磁检测传感器提离值的一种快速估计方法[J].传感技术学报, 2009, 22(5):655~658
    [159]第一作者.脉冲漏磁检测技术中传感器性能影响因素研究.仪器仪表学报. 2010, 31(12) :2875~2880.
    [160] LEON H I, ALVIN B. Apparatus for detecting longitudinal and transvese imperfections in elongated ferrous work pieces: USA, 421865l[P]. 1980: 8~19.
    [161] RANDEL B. Apparatus and method for detection of defects using flux leakage techniques: USA, 11411235[P], 2006.
    [162] UETAKE I, NAGAI k. Magnetic flux leakage testing method using rotatingfield for detection of all-directional sulface flaw[J]. Journal of JSNDl, 2003, 52: 246~253.
    [163]熊娟,姚巧鸽.基于AT89S51单片机的多机通信系统的研究与设计[J].牡丹江师范学院学报(自然科学版). 2010, 70(1):22~24.
    [164]陈德山,孙寿龙.D/A转换器双极性输出的硬件设计与分析[J].德州学院学报. 2004, 20(6):59~62.
    [165]司海涛,刘波.管道漏磁检测中缺陷尺寸对漏磁信号的影响[J].石油矿场机械, 2008, 37(9): 18~20.
    [166]吴欣怡,赵伟,黄松岭.基于漏磁检测的缺陷量化方法[J].电测与仪. 2008, 45(509): 20~22.
    [167] Dutta S, Ghorbel F, Stanley R. Dipole modeling of magnetic flux leakage[J]. IEEE Transactions on Magnetics , 2009, 45(4):1959~1965.
    [168] Jinfeng Ding, Yihua Kang, Xinjun Wu. Tubing thread inspection by magnetic flux leakage. NDT&E International [J]. 2006, 39(1):53~60.
    [169] G.Y. Tian, A. Sophian, D. Taylor and J. Rudlin.Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT[J].IEEE Proc-Sci.Meas.Technol[J],2005,152(4):141~148
    [170]康中尉.基于场量和频率扫描技术的电磁无损检测技术研究[D].长沙:国防科学技术大学, 2005.
    [171]宋小春,黄松岭,赵伟.基于小波分析的水冷壁管缺陷识别和分类方法[J].电测与仪表. 2006, 43(6): 9~12.
    [172]戴光,杨海英,于永亮.基于有限元分析的管道漏磁检测信号识别技术[J].大庆石油学院学报.2010, 5(34):122~127.
    [173]第一作者.管道腐蚀检测中的脉冲漏磁检测技术[J].无损检测, 2010, 1(18): 38~43.
    [174] Lebrun B, Jayet Y, Baboux J C. Pulsed Eddy Current Signal Analysis: Application to the Experimental Detection and Characterization of Deep Flaws in Highly Conductive Materials[J]. NDT&E International, 1997, 30(3): 163~170.
    [175] Wilson J W, Tian G Y. Pulsed Electromagnetic Methods for Defect Detection and Characterisation[J]. NDT&E International, 2007, (40): 275~283.
    [176]郑岗,刘丁,张震等.基于提离点的脉冲涡流测厚研究[J].仪器仪表学报, 2008, 29(8): 1745~1749.
    [177] Tianlu Chen, Gui Yun Tian a, Ali Sophian. Feature extraction and selection for defect classification of pulsed eddy current NDT[J], NDT&E International. 2008, 41: 467~476.
    [178] Yunze He, Feilu Luo, Mengchun Pan, et al. Defect classification based on rectangular pulsed eddy current sensor in different directionsSensors andActuators A , 157 (2010) 26~31.
    [179]周增建,王海,郑胜峰等.一种基于希尔伯特变换的相位差测量方法[J].电子测量, 2009, 9:18~19.
    [180]贾建秀,王光杰,黄航.增强弱磁异常信号的Hilbert变换方法[J].吉林地质, 2008, 27(1):51~55.
    [181]李风民.希尔伯特变换及其应用研究[J].中国无线电, 2006,7:53~54.
    [182] Ali Sophian,Gui Yun Tian, David Taylor, John Rudlin. A feature extraction technique based on principal component analysis for pulsed Eddy current NDT[J]. NDT&E International, 36, 2003: 37~41.
    [183]郑君里,应启珩,杨为理.信号与系统[M].北京:高等教育出版社, 2000.
    [184]奥本海姆A V,谢弗R W,巴克J R.离散时间信号处理[M].西安:西安交通大学出版社, 2001.
    [185] John W. Wilson, Gui Yun Tian. Pulsed electromagnetic methods for defect detection and characterisation[J]. NDT&E International, 2007, 40: 275~283.
    [186]叶江水,王仲岗,陈友良等.基于前四阶矩的非高斯响应概率密度函数逼近方法研究[J].后勤工程学院学报, 2010, 26(1):12~16.
    [187]杜健辉,石永华,王国荣等.基于PCA--RVM的焊缝偏差识别[J].华南理工大学学报(自然科学版), 2010, 38(12):20~23.
    [188]王学仁,王松桂.实用多元统计分析[M].上海:上海科学技术出版社, 1990.
    [189]李果,张鹏,李学仁等.基于动态主元分析法的传感器故障检测[J].数据采集与处理, 2008, 23(3): 338~341.
    [190] Ali Sophian,Gui Yun Tian, David Taylor, John Rudlin. A feature extraction technique based on principal component analysis for pulsed Eddy current NDT[J]. NDT&E International, 36, 2003: 37~41.
    [191] G.Y. Tian, A. Sophian, D. Taylor and J. Rudlin.Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT[J]. IEE Proc.-Sci. Meas. Technol, 2005,152(4):141~148.
    [192] Yong Li, Gui Yun Tian, Steve Ward. Numerical simulation on magnetic flux leakage evaluation at high speed[J]. NDT&E International, 2006,39: 367~373.
    [193] Ameet Vijay Joshi. Inverse problems in non-destructive evaluation of gas transmission pipelines using magnetic flux[D].American: Michigan State University, 2006:20~25.
    [194] Zaoui F, Marchand C, Pavo J. Stochastic crack inversion by an integral approach. 5th Workshop on Electromagnetic Non-destructive Evaluation[C]. Budapest (Hungary) , 2000: 129-136.
    [195] Ioan D, Mihai M. Use of evolution to solve ENDE inverse problems. 5thWorkshop on Electromagnetic Non-destructive Evaluation, Budapest (Hungary), June 28-30, 2000:129~136.
    [196] Young H.Kim, S.J.Song, J.S.Hur. Inversion of eddy current test signals obtained from steam generator tubes[J]. Key Engineering Materials, 2005: 2219~2224.
    [197]宋凯,康宜华,孙燕华等.漏磁与涡流复合探伤时信号产生机理研究[J].机械工程学报, 2009, 45(7):233~237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700