用户名: 密码: 验证码:
复配混凝剂(PAC-PDMDAAC)处理嘉陵江水源水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嘉陵江典型水质主要有春季“桃花水”及夏季高浊水。“桃花水”即桃花讯,原水水质复杂,腐殖质类有机物含量高,药剂消耗量大,混凝形成的絮体沉淀性能差,常规水处理工艺处理困难。高浊度水,原水水质混浊,泥沙含量大,同时伴有大量有机物冲入水体,药剂消耗量大,浊度去除效果差等等。本文主要研究聚合氯化铝(PAC)与聚二甲基二烯丙基氯化铵(PDMDAAC)复配混凝剂的强化混凝技术,实现在高浊度时提高浊度去除率和在“桃花水”时提高腐殖质类及部分有毒有害有机物的去除率。
     PDMDAAC是季铵盐系有机高分子,试验表明该混凝剂不适合单独投加,需要与其它混凝剂复配投加。通过几种混凝剂与PDMDAAC复配试验,发现PAC与PDMDAAC复配混凝效果最好。
     “桃花水”时期,最优复配比例为M(PDMDAAC):M(PAC)=1:100,复配混凝剂平均投药量为8mg/L ,单独投加PAC平均投药量为14.3 mg/L。试验表明复配混凝剂混凝效果优于单独投加PAC,而且复配比例越低,矾花粒径越小。采用复配混凝剂处理后,出厂水剩余铝的平均浓度为0.028 mg/L; CODMn平均浓度为1.52mg/L,平均去除率为35.8%;沉淀池出水氨氮平均浓度为0.15mg/L,平均去除率为35.8%。
     高浊水时期,最优复配比例为M(PDMDAAC):M(PAC)=3:500,混凝效果随着药液浓度增大而提高。浊度小于100NTU时,复配混凝剂投药量为6~15mg/L,PAC投药量为15~20 mg/L;浊度在100~2000NTU时,复配混凝剂投药量为15~25 mg/L,PAC(未复配)投药量为30~40 mg/L;浊度在2000~6000NTU时,复配混凝剂投药量为30~40 mg/L,PAC(未复配)投药量为40~60 mg/L。试验表明,复配混凝剂与单独投加PAC相比,不仅可以节约较多的投药量,而且混凝效果较好。采用复配混凝剂处理后,出厂水剩余铝的平均浓度为0.034 mg/L;CODMn平均浓度为1.37mg/L,平均去除率为66.82%;沉淀池出水氨氮平均浓度为0.11mg/L,平均去除率为34.81%。
     因此,复配混凝剂PAC-PDMDAAC可以实现在高浊度时提高浊度去除率和在“桃花水”时期提高腐殖质类或其它有机物的去除率。
Jialing River is typical of "Peach Blossom Water" in spring and the high turbidity water in summer. "Peach Blossom water" is peach hearing, it means that is the complexity quality of the raw water, high content of humus organic compounds, pharmaceuticals consumed in large quantities, the poor sedimentation of the flocs by coagulation, and it is hard to deal with by conventional water treatment processes. High turbidity water means that is turbidity of the raw water, large sediment content, it mainly refers to the turbidity of the water is greater than or equal to 1000NTU. The complex coagulant coagulation technology of aluminum chloride (PAC) and poly diallyl dimethyl ammonium chloride(PDMDAAC)is researched to raise turbidity removal in the high turbidity and to raise the humus removal of toxic and some hazardous organic compounds in "Peach Blossom Water" in this article.
     PDMDAAC is organic polymer quaternary ammonium in the test. The test shows that the coagulant dosage is not suitable for adding separately, and with other coagulant dosing. Through complex tests with the several coagulant dosing and PDMDAAC, it demonstrates that mixed PDMDAAC and PAC is the best.
     Duing the "Peach Blossom water" period, the optimal mixture ratio was PDMDAAC: PAC = 1:100, the average complex coagulant dosage was 8mg/L, PAC was 14.3mg/L. The proportion of complex was lower, the size of alum was smaller. It showed that compound coagulant dosing was superior to PAC by production experiment. The average concentration of the remaining aluminum was 0.028 mg/L in the treated water by compound coagulant; the average concentration of CODMn was 1.52mg/ L, the average removal rate was 35.8%; the average concentration of ammonia nitrogen was 0.15mg / L in settling tank effluent, the average removal rate was 35.8%.
     Duing the high turbidity water, the optimal mixture ratio was PDMDAAC: PAC = 3:500, the coagulation effect increased with the increase of the solution concentration. When the turbidity was less than 100NTU, the complex coagulant dosage was 6~15mg /L, the PAC was 15~20 mg/L; when the turbidity was in the 100~2000NTU, the complex coagulant dosage was 15~25 mg/L, the PAC was 30~40 mg/L; when the turbidity was in the 2000 ~ 6000NTU, the complex coagulant dosage was 30~40 mg/L, the PAC was 40~60 mg/L. It showed that compound coagulant dosing compared with the single PAC, it not only could save more dosage, and coagulation effect was well. The average concentration of the remaining aluminum was 0.034 mg/L in the treated water by compound coagulant; the average concentration of CODMn was 1.37mg/ L, the average removal rate was 66.82%; the average concentration of ammonia nitrogen was 0.11mg / L in settling tank effluent, the average removal rate was 34.81%.
     Therefore, the complex coagulant PAC-PDMDAAC can raise the turbidity removal rate during the high turbidity water, and the removal rate of the humus or other organic matter during the "Peach Blossom water".
引文
[1]陈光虹,刘映祥等人.嘉陵江高浊度水处理工艺设计构思[J].西南给排水.2003,25(5),1~4.
    [2]王占生,刘文君.微污染水源饮用水水处理[M].中国建筑工业出版社. 1999.10.
    [3]方晞,茯苓等人.高浊度给水理论与技术[M]化学工业出版社2006(07).
    [4]栾兆坤.微絮凝—深床过滤理论与应用研究[J]环境化学.1997.16(6):590.
    [5]杨智宽.污染控制化学[M].武汉.武汉大学出版社.1998:48.
    [6] AMIRTHARAJAHA,ASCE M,TUUSLER S L. Destabi lization of particles by Turbulent Mixing[J]. Envir Engeg Div-ASCE,1986,112:1 085.
    [7] AWWA Coagulation Committee Report: Coagulation as An Integrated Water Treatment Process [J]. Am Water Works Assoc,1989,81(10):72.
    [8]王绍文混凝动力学的涡旋理论探讨[J].中国给水排水,1991,7(1):4,7(4):8.
    [9] DENTEL SK,GOSSETT JM.Mechanisms of Coagulation.With Aluminum Salts [J]. Am. Water Works Assoc,1988,80(4):187.
    [10] KATZ LE,HAYES KF. Surface Complexation. Modeling[J].ⅠⅡColloid Interface Sci,1995:170,477.
    [11] DENTEL SK. Applieation of the Precipitation-Charge. Neutralization Model of Coation [J]. Envirn Sci Technol.1988,22(7):825.
    [12] R.D.LeTerman,D.R.Iyer.Modelling The EffecTs of Hydrolyzed Aluminum and SoluTion,Environ.Sci&Technoi.1985,19:673-678.
    [13] S.K.DenTel,T.A.Bober,ID.Ivans,J.M.GosseT.A Physical-chemical,Model ofCoagulaTion,in AWWA 1985 Annu.Conf.Proc. Am.WaTer Works Assoc.1985:659-667.
    [14] S.K.DenTel. ApplicaTion of The PrecipiTaTion-charge NeuTralizaTion Model of CoagulaTion.Environ[J]. Sci&Technol.1988,22(7):825-828..
    [15]王志石.混凝和过滤工艺过程的基础理论研究土木工程学报.1988,21(4):48-51.
    [16] Hahn H.H&Stumm,W. kinetics of coagulation with hydrolyzed aluminum[J].Jour. Colloid and Inter.Science.1968,28:133.
    [17] LaMer,V.K,Healy,T.W.,Adsorption-flocculation reactions of macro-molecules at the solid-liquidinterface[J].Rev.Pure Appl.Chem,1963,13:112.
    [18] R.F.Packham.Some STudies of The CoagulaTion of Dispersed Clays with Hydrolyzed SalTs[J].Colloid Sci.1965,20:81-85.
    [19]宗栋良,张锡辉,张光明.水温对混凝过程流动电流的影响[J].环境科学与技术,2004,27(6):73-75.
    [20]王敏.预臭氧化对强化混凝影响的研究[M].中国地质大学(北京).2006.
    [21] Douglas M.Owen.Gary L.Amy.Nom Characterization And Treatability[J]. AWWA,1995,87(1).
    [22] Gary L.Amy , Michael R.Collins , Comparing Gel Permeation Chromatography And UltrafiltrationFor The Molecular Weight Characterization Of Aquatic Organic Matter[J]. AWWA,1987,79(1).
    [23] Michael R.Collins,Gary L.Amy,Molecular Weight Distribution,Carboxylic Acidity,And Humic Substances Content Of Aquatic Organic Matter:Implications For Removal During WaterTreatment[J]. Environ.Sci.Technol.1986,Vol.20,No.10.
    [24] William R.Knocke,Holly L.Shorney,Examining The Reactions Between Soluble Iron,Doc,And Alternative Oxidants During Conventional Treatment,J.AWWA 1994,86(1).
    [25] O’Melia C.R.,Becker,W.C.,Au.,K.K.,Removal of humic substances by coagulation[J]. Wat.Sci.Technol.1999,40,47~54.
    [26]何文杰,李伟光等人.安全饮用水水质保障技术[M].中国建筑工业出版. 2006.
    [27]汤鸿霄.无机高分子复合混凝剂研究趋向[J].中国给水排水.1999,15 (2):2.
    [28]高宝玉,刘总纲.聚硅硫酸铝混凝剂的性能研究[J].环境科学学报.2001,21(增):30~36.
    [29]胡翔,周定高效无机混凝剂聚硅酸铁铝的研究[J].中国环境科学.1999,19(3):266~269.
    [30]王林竹,王闻伟.有机高分子絮凝剂的研究应用评述[J].包钢科技.2004,30(5):16~19.
    [31] Chernoberezhskii A Yu , Korovin L K, Parkhamovich E S et al.Bum. Prom - st . , 1988 ;7 :6~7.
    [32] Joakimis E , Shmidt B B , Usmanova G I et al. Khim. Tekhnol.Topl. masel , 1988 ;6 :38~39.
    [33] Wang L K, Wang M H , Zieyler R C et al. Ind. Eng. Chem. Product Res. Dev. ,1997 ;16 :311.
    [34]高华星,程树军,饶炬等.功能高分子学报[J].1996 ;9 (4) :544.
    [35]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨Ⅰ:从絮凝体分形构造谈起[J].环境科学学报,2000,20(3):257-262.
    [36]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨Ⅱ:致密型絮凝体形成操作模式[J].环境科学学报,2000,20(4):385-390.
    [37]邹琳,陈卫,汪德爟,等.水处理絮凝动力学模型研究与应用[J].河海大学学报(自然科学版),2006,34(5):496-500.
    [38]高宝玉王燕岳钦艳等人.PAC与PDMDAAC复合絮凝剂中铝的形态分布[J].中国环境科学,2002,22(5):472~476.
    [39]王燕,高宝玉,岳钦艳等人.聚合铝基复合絮凝剂的特性[J].环境科学,2004,25(增):70~73.
    [40]龚竹青,刘立华,郑雅杰.聚二甲基二烯丙基氯化铵与聚合硫酸铁复合絮凝剂的制备及应用研究[J]环境污染治理技术与设备,2004,5(10):35~39.
    [41]聚二甲基二烯丙基氯化铵与聚合硫酸铁复合絮凝剂的制备及絮凝性能研究[J].湖南科技大学学报.2005,20(4):90~94.
    [42]张海彦,郑怀礼,龙腾锐.PAC—PDMDAAC无机/有机复合絮凝剂除磷效果研究[J].水处理技术.2005,31(3):69~71.
    [43]张跃军,李潇潇,苏林等人.PAC/PDM复合混凝剂用于春季长江水制水生产研究[J].净水技术.2008,27(6):17~20.
    [44]张跃军,李潇潇等人.PDM复合PFS用于夏季长江水强化混凝脱浊处理[J].水处理技术.2009,35(8):95~98.
    [45]张跃军,李潇潇等人.复合聚铝处理秋季长江水脱浊研究[J].精细化工.2009,26(5):493~497.
    [46]张跃军,李潇潇等人.复合聚铝用于冬季太湖水的混凝脱浊研究[J].精细化工.2008,25(9):908~913.
    [47]王东升,刘海龙,汤鸿霄等.强化混凝与优化混凝:必要性、研究进展和发展方向[J].环境科学学报. 2006, 26(4):543~551.
    [48] O’Melia C.R.,Becker,W.C.,Au.,K.K.,Removal of humic substances by coagulation[J]. Wat.Sci.Technol.1999,40,47~54.
    [49]国家环境保护总局、水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M]中国环境科学出版社. 2002. 12.
    [50]中华人民共和国卫生部,中国国家标准化管理委员会,生活饮用水卫生标准[M]中华人民共和国国家标准,2006,12.29.
    [51]彭振华,中南大学聚二甲基二烯丙基氯化按的合成及在水处理中的应用研究[D]中南大学,2007.
    [52]崔霞,肖锦.铝盐絮凝剂及其环境效应[J].工业水处理.1998,18(3):6一9.
    [53]吕新之.铝的污染和危害[J].环境保护.1998,(5):38一39.
    [54]阮复昌,黄国水.铝的生物毒性及其防治策略.环境污染与防治,1999,2l(5):32一33.
    [55]严瑞煊.水溶性高分子[M].北京:化学工业出版社,2000.143一149.
    [56] Jane B . wongshing , Karen R.. Tubergen . HydroPhilic DisPersion Polymers of Polydiallyldimethylammonium chloride and Acrylamide for the Clarifieation of Deinking Process Waters [P].US 6019904,1979.04.24.
    [57]俞益平.聚二甲基二烯丙基氯化铰的合成研究[J]二浙江化工,1990,22(4): 1~3.
    [58]常青.水处理絮凝学[M]化学工业出版社,2003.04.
    [59]常青,陈野.二甲基二烯丙基氯化钱的合成[J].环境科学.1999,20(l): 87~90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700