用户名: 密码: 验证码:
无核葡萄胚珠发育进程中EST的分析及败育相关基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无核葡萄食用方便,品质优良,是鲜食葡萄和制干葡萄的主要类型。生产中栽培的无核品种属于种子败育型,受精胚珠在发育途中败育而不能形成正常的种子,在果实成熟时仅留下大小不同的种子痕迹。无核葡萄胚珠的败育在不同年份、不同地点具有高度的稳定性,不受外界环境条件的影响,主要由无核葡萄的自身遗传基因所决定,因而具有十分重要的研究利用价值。
     本研究以典型的无核品种‘无核白’败育前后胚珠为材料,构建cDNA文库,采用EST技术,并以文库为基础采用PCR技术克隆败育相关基因及其上游调控序列,以期获得无核葡萄败育相关的EST序列或基因;同时,分析有核葡萄‘京秀’和无核葡萄‘杨格尔’胚珠发育(败育)过程中活性氧的变化及其活性氧清除酶活性的变化,以揭示无核葡萄胚珠败育过程中活性氧代谢的变化趋势,探索无核葡萄胚珠发育过程中活性氧变化与种子败育的关系。研究主要取得如下结果:
     1、提取不同发育时期胚珠总RNA,构建cDNA文库通过控制授粉,以花后27d、30d、33d、36d、39d、42d、45d、48d的‘无核白’胚珠为材料,采用改良SDS法提取总RNA,构建了胚珠败育前后不同时间点混合的cDNA文库。原始文库滴度为5.87×105 pfu/ml,有效库容量为5.55×105 pfu,重组率达96.60%。插入片段主要分布在0.5-2.0kb之间,平均大小为900bp左右。扩增文库滴度为2.135×109 pfu/ml。
     2、文库的测序和EST分析通过随机测序,获得了214条质量好的EST序列。利用BlastN和BlastX程序将获得的214条序列与GenBank的nr数据库进行同源性分析,并将两种比较结果进行汇总,有144条序列与己知基因相似性很高,占67.29%;17条序列与功能尚未确定的假定蛋白或未知蛋白同源性很高,占7.94%;53条在nr数据库中未找到同源的序列,占24.77%。53条没有找到任何同源性的序列中,9条为葡萄新的EST序列。获得60个基因全长序列,文库中全长序列基因占有同源性基因161条的37.27%。其中167条EST在GenBank数据库的登陆号分别为EY254594、EY254595、EY254596、EY254922、EY254923、EY254924、EY254925、EY254926、EY254927、EY254928、EY254929、EY254930、EY254931、EY254932、EY254933、EY254934、EY254935、EY254936、EY254937、EY254938、EY254939、EY254940、EY254941、EY254942、EY254943、EY254944、EY254945、EY254946、EY254947、EY254948、EY254949、EY254950、EY254951、EY254952、EY254953、EY254954、EY254955、EY254956、EY254957、EY254958、EY254959、EY254960、EY254961、EY254962、EY254963、EY254964、EY254965、EY254966、EY254967、EY254968、EY254969、EY254970、EY254971、EY254972、EY254973、EY254974、EY254975、EY254976、EY254977、EY254978、EY254979、EY254980、EY254981、EY254982、EY254983、EY254984、EY254985、EY254986、EY254987、EY254988、EY254989、EY254990、EY254991、EY254992、EY254993、EY254994、EY254995、EY254996、EY254997、EY254998、EY254999、EY255000、EY255001、EY255002、EY255003、EY255004、EY255005、EY255006、EY255007、EY255008、EY255009、EY255010、EY255011、EY255012、EY255013、EY255014、EY255015、EY255016、EY255017、EY255018、EY255019、EY255020、EY255021、EY255022、EY255023、EY255024、EY255025、EY255026、EY255027、EY255028、EY255029、EY255030、EY255031、EY255032、EY255033、EY255034、EY255035、EY255036、EY255037、EY255038、EY255039、EY255040、EY255041、EY255042、EY255043、EY255044、EY255045、EY255046、EY255047、EY255048、EY255049、EY255050、EY255051、EY255052、EY255053、EY255054、EY255055、EY255056、EY255057、EY255058、EY255059、EY255060、EY255061、EY255062、EY255063、EY255064、EY255065、EY255066、EY255067、EY255068、EY255069、EY255070、EY255071、EY255072、EY255073、EY255074、EY255075、EY255076、EY255077、EY255078、EY255079、EY255080、EY255081、EY255082、EY255083、EY255084、EY255085。
     3、活性氧代谢相关基因的克隆以构建的cDNA文库库液为模板,以载体两端通用引物和设计的特异引物通过PCR法扩增、拼接,获得葡萄锰超氧化物歧化酶(VvMnSOD)和葡萄抗坏血酸过氧化物酶(VvAPX)基因。通过文库直接测序获得葡萄金属硫蛋白基因(VvMT)、葡萄硫氧还蛋白基因(VvTRX)、葡萄脱氢抗坏血酸还原酶(VvDHAR)共5个活性氧代谢相关基因全长cDNA序列,进一步利用生物信息学软件对其进行序列特征分析。葡萄金属硫蛋白基因(VvMT)的cDNA序列长540bp,含有一个240bp的完整的开放阅读框架(ORF),编码的蛋白含有14个高比例的半胱氨酸(Cys)残基,占总氨基酸数的17. 72%,具有C-x-C、C-x-y-C和C-C的序列结构,在GenBank的登陆号为EU280163。同时,高度保守的半胱氨酸富含区(cysteine rich region, CR区)分布在蛋白质的两端,具有典型MT基因结构的三段式特征。克隆的葡萄金属硫蛋白可以归Type 2,是MT家族的第15个成员。该基因的DNA序列长998bp,包含3个外显子和2个内含子,在GenBank的登陆号为EU280165;通过酶切、接头连接、巢式PCR,克隆了783bp的葡萄金属硫蛋白基因的上游调控序列。其核心启动子区域位于658~708bp之间,序列中TATA-box、A-box、CAAT-box、G-Box、ARE、Box-4、CCGTCC-box、GAG-motif、HSE、Skn-1_motif、TC-rich repeats、repeatscircadian等12个可能的启动子上游调控元件,其中Skn-1_motif是胚乳中特异表达的保守序列。葡萄硫氧还蛋白基因(VvTRX)的cDNA长561bp,开放阅读框架(ORF) 381bp,编码126个氨基酸,在氨基酸的13-117之间有Thioredoxin保守结构域,活性功能位点WCXP[C/S]保守性很强,VvTrx属于硫氧还蛋白基因h型的3亚类,在GenBank的登陆号为EU280164。以基因组DNA为模板,扩增VvTrx基因DNA序列长989bp,包含3个外显子和2个内含子,在GenBank的登陆号为EU280166。VvMnSOD基因cDNA全长896bp,完整的开放阅读框架(ORF) 687bp,编码228个氨基酸,序列的189~196之间含有Mn和Fe超氧化物酶的金属结合结构域DvWEHAYY,聚类分析表明为MnSOD,在GenBank的登陆号为EU280161;VvAPX基因cDNA全长1044bp,完整的开放阅读框(ORF)长度为762bp,编码253个氨基酸,序列的19~226具有peroxidase结构域,4~249之间具有ascorbate_peroxidase保守结构域,33~44之间含一个过氧化物酶的活性位点(Peroxidases active site signature)序列为APLMLRLAWHSA;其编码的蛋白属于胞质抗坏血酸过氧化物酶,在GenBank的登陆号为EU280159;脱氢抗坏血酸还原酶(VvDHAR)cDNA长990bp,完整的开放阅读框架(ORF)长639bp,编码212个氨基酸,预测位于细胞质,为1类DHAR,在GenBank的登陆号为EU280162。
     4、无核葡萄胚珠败育中蛋白质降解有关基因半胱氨酸蛋白酶及其抑制剂基因的克隆测序的VVTOV384的克隆3’端有poly(A)结构,5’端不完整。以文库菌液为模板,载体5端序列设计引物,采用半巢式PCR法进行5’RACE,克隆获得葡萄VvCysP基因,为木瓜蛋白酶型半胱氨酸蛋白酶,在GenBank的登陆号为EU280160,cDNA长1409bp,完整的开放阅读框架(ORF)长1134bp,编码377个氨基酸,是一个蛋白前体,成熟蛋白的长度可能为233个氨基酸残基,定位于细胞外。在氨基酸序列的163~174位点QGsCGSCWSfST为真核生物半胱氨酸蛋白酶的半胱氨酸活性位点,310~320位点LDHGVLLVGYG为真核生物半胱氨酸蛋白酶的组氨酸活性位点,334~353位点YWIiKNSWGENWGENGFYkI为真核生物半胱氨酸蛋白酶的天冬酰胺活性位点。半胱氨酸蛋白酶抑制剂基因(VvCPI)的cDNA长872bp,开放阅读框759bp,编码252个氨基酸,5~125为半胱氨酸蛋白酶抑制剂基因保守结构域CY,氨基酸序列的81~94位点EQVVAGKIYyLTLE为半胱氨酸蛋白酶抑制剂基因(CYSTATIN)活性位点,1~22位为信号肽;为一个蛋白前体,成熟蛋白质属于细胞外蛋白。
     5、葡萄胚珠发育中活性氧和清除酶活性的变化以盛花后不同时期的无核葡萄品种杨格尔和有核葡萄品种京秀的胚珠为材料,测定胚珠中超氧阴离子( )和过氧化氢(H2O2)含量及活性氧清除酶活性的变化。结果表明:在两品种胚珠发育过程中均呈一直上升的趋势,在胚珠发育的中后期无核品种扬格尔产生速率明显大于有核品种京秀;胚珠中H2O2含量表现先升后降再升的趋势,但再升时无核品种扬格尔显著大于有核品种京秀;胚珠内活性氧清除酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(ASA-POD)及无核品种扬格尔的过氧化物酶(POD)表现先升后降的趋势,无核品种扬格尔的酶活性在胚珠败育后明显下降,有核品种京秀仍有较高的水平,且有核品种的POD活性先快速上升后一直保持缓慢上升的趋势。胚珠内活性氧类物质及活性氧清除酶类的变化趋势与无核葡萄杨格尔幼胚败育有一定的相关性。
Seedless grapevines are conveniently edible and with good quality. They are widely used for the fresh market and raisnins. Seedless grapevines in cultivation are seed abortive. The fertilized ovules cannot develop the normal seed and only form seed trace when fruit mature. The abortion of ovules are highly invariable and not affected by external factors at various times and places. It is under the control of genes in seedless grapevines, which are valuable for research and utilization.
     In this study, a cDNA library was prepared from pre- and post abortive ovules of Thompson Seedless grapevines. EST and PCR techniques were used to clone the abortion-related genes and their up-stream regulatory sequences. Meanwhile, the activity of reactive oxygen species and reactive-oxygen-scavenging enzymes were analyzed in‘Jingxiu’and seedless grapevine‘Youngle’during ovules abortion/development, to reveal the trends of these enzymes and explore the relationship between the change of reactive oxygen species and seed abortion. The potential results are as follows:
     1. RNA extraction and constructing cDNA library. At 27d, 30d, 33 d, 36d, 39d, 42d, 45d and 48d post-anthesis, ovules were collected from Thompson Seedless and snap frozen in liquid nitrogen. Total RNA was isolated respectively from above samples with SDS/phenol method modified partially. The pool of total RNA at various times was used to construct the cDNA library. The titer of primary library was 5.87×105 pfu/ml. The effective library capacity is 5.55×105 pfu. The recombinant percent accounted for 96.60%. The size of insert fragments basically ranged from 0.5 kb to 2.0 kb with average of 0.9 kb. The titer of the amplified library was 2.315×109 pfu/ml.
     2. Sequencing and analysis of EST. 214 sequences with high quality were obtained. These sequences were searched in GenBank nr database for homologue using Blastn and Blastx programs and were further classified based on their functions. The results are as follows: 144 EST sequences accounting for 67.29% showed high homologue; 17 EST sequences accounting for 7.94% matched to the genes whose protein function were unclassified; 53 EST sequences accounting for 24.77% hit no any sequence in GenBank. 9 of the 53 represented novel ESTs. 60 full length sequences accounting for 28.03% of the library sequences were obtained. The 167 cDNA sequence have submitted to GenBank database, the GenBank accession numbers are as follows,EY254594、EY254595、EY254596、EY254922、EY254923、EY254924、EY254925、EY254926、EY254927、EY254928、EY254929、EY254930、EY254931、EY254932、EY254933、EY254934、EY254935、EY254936、EY254937、EY254938、EY254939、EY254940、EY254941、EY254942、EY254943、EY254944、EY254945、EY254946、EY254947、EY254948、EY254949、EY254950、EY254951、EY254952、EY254953、EY254954、EY254955、EY254956、EY254957、EY254958、EY254959、EY254960、EY254961、EY254962、EY254963、EY254964、EY254965、EY254966、EY254967、EY254968、EY254969、EY254970、EY254971、EY254972、EY254973、EY254974、EY254975、EY254976、EY254977、EY254978、EY254979、EY254980、EY254981、EY254982、EY254983、EY254984、EY254985、EY254986、EY254987、EY254988、EY254989、EY254990、EY254991、EY254992、EY254993、EY254994、EY254995、EY254996、EY254997、EY254998、EY254999、EY255000、EY255001、EY255002、EY255003、EY255004、EY255005、EY255006、EY255007、EY255008、EY255009、EY255010、EY255011、EY255012、EY255013、EY255014、EY255015、EY255016、EY255017、EY255018、EY255019、EY255020、EY255021、EY255022、EY255023、EY255024、EY255025、EY255026、EY255027、EY255028、EY255029、EY255030、EY255031、EY255032、EY255033、EY255034、EY255035、EY255036、EY255037、EY255038、EY255039、EY255040、EY255041、EY255042、EY255043、EY255044、EY255045、EY255046、EY255047、EY255048、EY255049、EY255050、EY255051、EY255052、EY255053、EY255054、EY255055、EY255056、EY255057、EY255058、EY255059、EY255060、EY255061、EY255062、EY255063、EY255064、EY255065、EY255066、EY255067、EY255068、EY255069、EY255070、EY255071、EY255072、EY255073、EY255074、EY255075、EY255076、EY255077、EY255078、EY255079、EY255080、EY255081、EY255082、EY255083、EY255084、EY255085.
     3. Cloning the genes related to metabolism of reactive oxygen species. VvMnSOD and VvAPX genes were cloned using PCR with universal and specific primers and liquor of the library as template. The full length of five genes related to metabolism of reactive oxygen species, including VvMT, VvTRX, VvDHAR were obtained from library random sequencing. These sequences were analyzed using bioinformatics methods. The cDNA of VvMT was 540bp with an ORF of 240bp, which coded a protein with 14 Cys, accounting for 17.72% of total amino acid residues.The cDNA sequence have submitted to GenBank database, the GenBank accession numbers is EU280163. The protein sequence of VvMT contained C-x-C, C-x-y-C and C-C motifs and highly conserved cysteine rich region, which are the main features of MT genes. VvMT belonged to Type2 and the 15th member of MT family. The DNA sequence of VvMT was 998bp, including 3 exons and 2 introns. Its GenBank accession numbers is EU280165. Still, the 783bp up-stream regulatory sequence of VvMT was cloned using enzyme digest, adaptor ligation and nested PCR. The core promoter region spanned from 685bp to 708bp and contained 12 regulatory elements of TATA-box、A-box、CAAT-box、G-Box、ARE、Box-4、CCGTCC-box、GAG-motif、HSE、Skn-1_motif、TC-rich repeats、repeatscircadian. Skn-1_motif was the conserved sequence specifically expressed in endosperms.
     The cDNA of VvTRX was 561bp with an ORF of 381bp coding a protein of 126 amino acid residues. Its GenBank accession numbers is EU280164. Thioredoxin spanned from 13 to 117 of the protein and the active site WCXP[C/S] was highly conserved. VvTrx belonged to the 3rd subfamily of thioredoxin h. The DNA sequence of VvTrx was 989bp, containing 3 exons and 2 introns. Its GenBank accession numbers is EU280166.
     The cDNA of VvMnSOD, the member of MnSOD revealed by Cluster analysis was 896bp with an ORF of 687bp coding a protein of 228 amino acid residues. DvWEHAYY, the Mn and Fe binding domain of SOD spanned from 189 to 196 amino acid residues. Its GenBank accession numbers is EU280161.
     The cDNA of VvAPX was 1044bp with an ORF of 762bp coding a protein of 253 amino acid residues. The peroxidase domain spanned from 19 to 226bp, ascorbate_peroxidase from 4 to 249bp and a Peroxidases active site signature, APLMLRLAWHSA from 33 to 44. VvAPX was one cytoplasmic ascorbate peroxidase. Its GenBank accession numbers is EU280159.
     The cDNA of VvDHAR was 990bp with an ORF of 639bp coding a protein of 212 amino acid residues. VvDHAR belonged to 1st family of DHAR and probably located in cytoplasm. Its GenBank accession numbers is EU280162.
     4. Cloning the CysP and CPI gene related to protein destination. The EST of VVTOV384 had full 3' poly (A) tail and not complete 5’end. VvCysP was cloned based on this EST using 5’RACE. The cDNA of VvCysP which was a cysteine proteinases of papain, was 1409bp with an ORF of 1134bp, coding a protein of 377 amino acid residues. This protein was a precursor and the mature one probably contained 233 amino acid residues and was an extracellular protein. QGsCGSCWSfST, spanned from 163 to 174 was the cysteine active site of cysteine protease in eukaryotes, LDHGVLLVGYG, spanned from 310 to 320 was the histidine active site, YWIiKNSWgenWGenGFYkI, spanned from 334 to 353 was the asparagine active site. Its GenBank accession numbers is EU280160.
     The cDNA of VvCPI was 872bp with an ORF of 759bp coding a protein of 252 amino acid residues. CY domain of CYSTATIN spanned from 5 to 125, the active site, EQVVAGKIYyLTLE from 81 to 94 and the signal peptide from 1 to 22. This protein was a precursor and the mature one was an extracellular protein.
     5. The change of the concentrations of reactive oxygen species and the activities of the antioxidant enzymes in the ovule of grape. The concentrations of and H2O2 and the activities of the antioxidant enzymes in the ovule of seedless grape‘Youngle’and seeded grape‘Jingxiu’were studied in the different periods after bloom. The results indicated that the concentrations of rose all the time, and the increasing rate in the ovule of seedless cultivar‘Youngle’was greater than that in the ovule of seeded cultivar‘Jingxiu’during middle and later periods of development; H2O2 concentration increased initially and decreased before it increased again. The subsequent increase in the seedless cultivar‘Youngle’was significantly greater than seeded cultivar‘Jingxiu’. The activities of SOD, CAT and AsA-POD increased initially and dropped drastically after ovule abortion in the seedless cultivar‘Youngle’. But it maintained high level in seeded cultivar‘Jingxiu’. The activity of POD in the ovule of the seedless cultivar‘Youngle’displayed a similar trend to the other enzymes, but the activity in seeded cultivar‘Jingxiu’increased constantly, but the increasing speed was lower in later stages. The changes of reactive oxygen content and the activity of antioxidant enzymes in ovules have some relevance to ovule abortion in the seedless cultivar‘Youngle’.
引文
[1] 卢圣栋主编,现代分子生物学实验技术(第二版) [M],中国协和医科大学出版社,北京,1999
    [2] 王关林,方宏药主编.植物基因工程[M].第二版.科学出版社.北京:2002,82-84
    [3] 杨成君 王军. cDNA 文库的构建策略及其应用[J]. 生物技术通报 2007 (1):5-9
    [4] 张霖,牛瑞芳,cDNA文库构建方法的进展[J]. 生命的化学,2002, 22 (6): 577580
    [5] Hofstetter, H., Schambock, A., van den Berg, J.etal. Specific excision of the inserted DNA segment from hybrid. plasmids constructed by the poly(dA), poly(dT) method[J]. Biochim. Biophys. Acta 1976,454, 587-591
    [6] Shibui-Nihei A. ,et a1,The 5' terminal oligopyrimidine tract of human elongation factor IA-1 gene functions as a transcriptional initiator and produces a variable number of Us at the transcriptional level, gene,2003,311:137-145
    [7] Thomas Roeder . Solid-phase cDNA library construction, a versatile approach[J]. Nucleic Acids Research,1998,26(14):3451-3452.
    [8] Woods D,Crampton J ,Clarke B ,etal.The construction of a recombinant cDNA library representative of the poly(A)+mRNA population from normal human lymphocytes[J]. Nucleic Acids Res., 1980, 8:5157-5168.
    [9] 田海生,马磊等.两个标准化cNDA差减文库的构建[[J].中国血吸虫病防治杂志,2001,13(2):75-78.
    [10] Bonaldo M F,Lennon G,Soares M B. Normalization and subtraction:Two approaches to facilitate gene discovery [J] Genome Res,1996,6:791-806.
    [11] Weissman S M. Molecular genetic techniques for mapping the human genome[J].MolBiolMed, 1987, 4(3): 133-143.
    [12] Roger A. Hoskins, Mark Stapleton, Reed A. George, Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP) [J]. Nucleic Acids Research 2005 33(21):e185
    [13] Takayuki Kohchi, Kotomi Fujishige,Kanji Ohyacna.Construction of an equalized cDNA library from Arabidopsis thaliana [J]. Animal Genetics,2000, 316: 400-404.
    [14] Minoru S. An 'equalized cDNA library' by the reassociation of short double-stranded cDNAs[J] . Nucleic Acid Res,1990, 18(19):5705-5711.
    [15] Sasaki Y F, Ayusawa D, and Oishil M. Construction of a normalized cDNA library by introduction of a semi-solid mRNA-cDNA hybridization system[J]. Nucleic Acids Research.1994:22(6):987-992.
    [16] Marcdo BS,William J,dP,et al.High-affinity binding sites for related fibroblast growth factor ligands reside within different receptor immunoglobulin-like domains[J].Proc Natl Acad Sci USA, 1994, 91:987.
    [17] Munroe, D.J., Loebbert, R., Bric, E., Whitton, T., Prawitt, D., Vu, D., Buckler, A., Winterpacht, A., Zabel, B., Housman, D.E. Systematic screening of an arrayed cDNA library by PCR[J]. Proc. Natl Acad. Sci. USA, 1995,92, 2209–2213
    [18] 储昭晖.水稻全生育期均一化cDNA文库的构建和鉴定[J].科学通报,2002, 47 ( 21 ): 1656-1662.
    [19] 高健,许晓风,鸟慧玲等.特异种质烟草全长cDNA文库的构建及质量分析[J].安徽农业大学学报,2004,31(1):22-25.
    [20] Soares M B, Bonaldo M F, Su L, et al.Construction and characterization of a normalized cDNA library[J]. Proc Natl Acad sci USA,1994, 91:9228-9232.
    [21] Tanaka T, Ogiwara A, Uchiyamal, et al .Construction of a normalized directionally cloned cDNA library from adult heart and analysis of 3040 clones by partial sequencing[J].Genomics, 1996, 35: 231-235.
    [22] Carninci P, Shibata Y, Hayastu N, et al. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes[J]. Genome Research, 2000 10:1617-1630.
    [23] Carninci, P., Nishiyama, Y., Westover, A., Itoh, M., Nagaoka, S., Sasaki, N., Okazaki, Y., Muramatsu, M., and Hayashizaki, Y. Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA[J]. Proc. Natl. Acad. Sci. 1998.95: 520-524
    [24] Vitek M P,Kreissman S G ,and Gross R H. The isolation of ecdysterone inducible genes by hybridization subtraction chromatography[J]. Nucleic Acids Res,1981,9:1191-1202.
    [25] Sargent T D ,Dawid I B .Differential gene expression in the Gastrula of Xenopus laevis[J]. Science,1983, 222 :135-139
    [26] Sive H L,John T S. A simple subtractive hybridization technique employing photoactivatable biotin and phenol extraction[J]. Neucleic Acids Res,1988,16 :10937
    [27] Schraml P et al.cDNA subtraction library construction using a magnet-assisted subtraction technique (MAST) [J] . Trends Genet, 1993, (9):70-71.
    [28] Diatchenko L ,LauY F C ,Campbel A P ,et al. Suppression subtractive hybridization:A method for generating diferentially regulated or tissue-specific cDNA probes and libraries[J]. Pro Natl Acad Sci US A, 1996 , 93:6025-6030.
    [29] Jin Z,Roger A.Gorski,Dean Hamer,et al.Differential cDNA cloning by enzymatic degrading subtraction (EDS) [J].Nucleic Acid Res,1996,24:4381-4385.
    [30] Hara E,Tomohiro Kato,Susumu Nekada,et al.Substractive cDNA cloning using oligo(dT)30-latex and PCR isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells[J]. Nucleic Acid Res,1997,15:7097-7104·
    [31] Hara E, Tomoko Y,Hidetoshi T. DNA-DNA subtractive cDNA cloning using oligo(dT) 30-latex and PCR:Identification of cellular genes which are overexpressed in senescent human diploid fibroblasts[J]. Anal Biochem,1993,214:58-64·
    [32] Kondo, H., Abe, K,Emori, Y. and Arai, S. Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins [J]. FEBS Let. 1991,278:87 -90
    [33] Nikolai Lisitsyn,Nataly Lisityn,Michael Wigler,et al.Cloning the differences between two complex genomes [J].Science,1993,259: 946-951.
    [34] Abrahamson,M . Cystatins. Methods Enzymol [J]. 1994,244:685-700
    [35] 骆蒙,孔秀英,贾继增.几种cDNA差减文库构建方法的比较[J].生物技术通报,2000, 6:14-17.
    [36] Kato S, Sekine S, Oh S W, Kim N S, Umezawa Y, Abe N, Yokoyama-Kobayashi M, Aoki T. Construction of a human fulllength cDNA bank [J].Gene,1994, 150(2):243~250.
    [37] Edery I, Chu L L, Sonenberg N, Pelletier J. An efficient strategy to isolate full-length cDNAs based onan mRNA cap retention procedure (CAPture) [J].Mol Cell Biol,1995, 15(6): 3363~3371.
    [38] Suzuki Y,Sugano S. Construction of a full-length enriched and a 5′-end enriched cDNA library using the oligo-capping method [J]. Methods Mol Biol,2003, 221(1): 73~91.
    [39] Maruyama K, Sugano S. Oligo-capping: a simple method to replace thecap structure of eukaryotic mRNAs with oligoribonucleotides [J]. Gene, 1994, 138(1-2):171-174
    [40] Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S. Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library [J].Gene,1997, 200(1-2):149~156.
    [41] Zhu Y Y, Machleder E M, Chenchik A, Li R, Siebert P D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques,2001, 30(4):892~897.
    [42] Efimov V A, Chakhmakhcheva O G, Archdeacon J, Fernandez J, Fedorkin O N, Dorokhov Yu L, Atabekov J G.. Detection of the 5′-cap structure of messenger RNAs with the use of the cap-jumping approach [J].Nucl Acids Res, 2001, 29(22): 4751~4759.
    [43] Shibata Y., Carninci P., Watahiki A., Cloning Full-Length, Cap-Trapper-Selected cDNAs by Using the Single-Strand Linker Ligation Method BioTechniques 2001, 30,( 6): 1250-1253
    [44] Carninci P, Kvam C, Kitamura A, Ohsumi T, Okazaki Y, Itoh M, Kamiya M, Shibata K, Sasaki N, Izawa M, Muramatsu M, Hayashizaki Y, Schneider C. High efficiency full-length cDNAcloning by biotinylated CAP trapper [J].Genomics,1996, 37(3): 327~336.
    [45] Carninci P, Westover A, Nishiyama Y, Ohsumi T, Itoh M, Nagaoka S, Sasaki N, Okazaki Y, Muramatsu M, Schneider C, Hayashizaki Y. High efficiency selection of full-length cDNA by improved biotinylated captrapper [J].DNA Res,1997, 4(1): 61~66.
    [46] Schmidt W M, Mueller M W. CapSelect: a highly sensitive method for 5′CAP dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs[J].Nuleic Acids Res, 1999,27(21):e31.
    [47] Guido Schramm, Iris Bruchhaus, and Thomas Roeder A simple and reliable 5′-RACE approach Nucleic Acids Res. 2000 November 15; 28(22): e96.
    [48] Chenchik A, Zhu Y Y, Diatchenko L, et al. Gene cloning and analysis by RT-PCR[J]. Biology Techniques, 1998, 5:305-319
    [49] Sughara Y, Carninci P, Iton M, et al. Comparative evaluation of 5-end-sequence quality of clones in CAP trapper and other full length cDNA libraries[J]. Gene, 2001, 263:93-102
    [50] 赵光耀 小麦全长CDNA文库构建、测序和分析[D].中国农业科学院博士学位论文 2006
    [51] Liu L F, Chang C C, Liu M Y, et al. Genetic characterization of the mRNAs encoding [alpha]-bungarotoxin: isoforms and RNA editing in Bungarus multi- cinctus gland cells [J]. Nucleic Acids Research, 1998, 26 (24):5624-5629
    [52] 傅作申, 程远国, 张玉静, 等. 用长距 PCR 法构建恶性疟原虫cDNA表达文库[J].热带医学杂志, 2002, 2(3): 225-229
    [53] 高健,许晓风,乌慧玲,等.特异种质烟草全长 cDNA 文库的构建及质量分析[J].安徽农业大学学报, 2004, 31(1):22~25
    [54] 刘文华, 王义良, 陈慧萍, 等. 玫瑰红绿海葵触手cDNA 表达文库的构建和初步分析[J].生物工程学报, 2002, 18(6):749-753.
    [55] 张朝红 李琰. 化学药剂诱导葡萄无核化的研究进展 第二届国际葡萄葡萄酒学术研讨会论文集[M] .2001.4:105-108
    [56] Wellenreuther R, Schupp I, Poustka A, et al. SMART amplificationcombined with cDNA size fractionation in order to obtain largefull-length clones[J]. BMC Genomics, 2004, 5(36):1-8
    [57] 胡松年 基因表达序列标签(EST)数据分析手册[M].浙江大学出版社 2005
    [58] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. and Wheeler D.L. GeneBank [J]. Nucleic Acids Res. 2003,31,23-27
    [59] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. and Wheeler D.L. GeneBank: update. Nucleic Acids Res. 2004,32 ,D23-D26
    [60] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000,408, 796–815.
    [61] Meinke D.W., Cherry J.M,Dean C.D., Rounsley S. and Koomneef M. Arabidopsis thaliana:a model plant for genome analysis [J]. Science ,1998,282,662-682
    [62] Salanoubat M .,Lemcke K .,Rieger M .,Ansorge W .et al. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana [J]. Nature, 2000,408,820-822
    [63] Delseny M., Cooke R., Raynal M. and Grellet F. The Arabidopsis thaliana cDNA sequencingp rojects [J]. FEBS Lett. 1997,403, 221-22
    [64] Burr B . Mapping and sequencing the rice genome [J]. Plant Cell 2002,14 ,521-523
    [65] Eckardt N .A. Sequencing the rice genome. Plant Cell 2000,12 ,2011-2017
    [66] Feng Q .,Zhang Y ,Hao P .,Wang S. Sequence and analysis of rice chromosome 4 [J].Nature,2002,420, 316-320
    [67] Sasaki T,Matsumoto T., Yamamoto K., Sakata K.The genome sequence and structure of rice chromosome 1 [J] .Nature, 2002,420, 312-316
    [68] Sasaki T .,Song J .Y,BanY K.,Matsui E ..Toward cataloguing all rice genes: large-scales equencing of randomly chosen rice cDNAs from a callus cDNA library [J]. Plant J. 1994, 6, 615-624
    [69] Tuskan, G. A. , DiFazio S., Jansson S., et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) [J]. Science 2006,313:1596–1604 .
    [70] Olivier Jaillon, Jean-Marc Aury, Benjamin Noel,et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla [J]. Nature 449, 463-467.
    [71] Adams M D, Kelley J M, Gocayne J D,et al. Complementary DNA sequencing: expressed sequence tags and human genome project [J]. Science, 1991,252: 1651~1656
    [72] Hatey F, Tosser-Klopp G, Clouscard-martinato C,et al. Expressed sequenced tags for genes: a review [J]. Genet Sel Evol, 1998,30(5): 521~541
    [73] Cato S A ,Gardner R C ,Kent J etal . A rapid PCR-based method for genetically mapping ESTs.Theor Appl Genet. 2 001.102:2 96-306
    [74] Temesgen B ,Brown G R,Harry D E et al. Genetic mapping of expressed sequence tag polymorphism(ESTP) markers in loblolly pine [J]. Theor Appl Genet.2001.102:664-675
    [75] Thiel T ,Michalek W ,Varshney K et al .Exploiting EST database for the development and characterization of gene-derived SSR-markers in barley.(Hordeum vulgare L .) [J]. Theor Appl Genet.2003.106(3):411-412
    [76] Scot K D ,Eggler P ,Seaton G et al .Analysis of SSRs derived from grape ESTs [J]. Theor Appl Genet. 2000.100 (5) :723 -726
    [77] Kota R,Varshney R K ,Thiel T et al. Generation and comparison of EST-derived SSRs and SNPs inbarley (Hordeum vulgareL .) [J]. Hereditas.2001.135( 2-3):145-151
    [78] Decroocq V,FavMG,Hagen L,et al.Development and transferability of apricot and grape EST microsatellite markers across taxa[J].Theor Appl Genet,2003,106:912~922
    [79] Buetow K H ,Edmonson M N,Cassidy A B .Reliable identification of large numbers of candidate SNPs; from public EST data [J]. Nat Genet.1999.2 1( 3):323-325
    [80] Grivet L, Glaszmann J C, Vincentz M et al. ESTs as a source for sequence polymorphism discovery in sugarcane:example of the Adh genes [J].Theor Appl Genet. 2002.106(2):190-197
    [81] Picoult-Newberg L, Ideker T E, Pohl M G. et al. Mining SNPs from EST database [J]. Genome Res. 1999.9 (2) :167 -174
    [82] Rise ML, von Schalburg KR, Brown GD . Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics [J]. Genome Res. 2004 ,14(3):478-90.
    [83] Olson M., Hood L,Cantor C. and Botstein D. () A common language for physical mapping of the human genome. Science ,1989,245,1434-1435
    [84] Martin K .J.and Pardee A .B. Identifying expressed genes. Proc. Natl.Acad.Sci.USA 2000, 97, 3789-3791
    [85] Kotani H ,Nakamura Y ,Sato S et al. Structural analysis of A rabidopsis thaliana chromosome 5 .VI.Sequence features of the regions of 1 ,367,185bp covered by 19 physically assigned PI and TAC clones [J]. DNA Res. 1998 .5 (3):203-216
    [86] Schuler G D ,Boguski M S,Steuart E A et al .A gene map of the human genome. Science. 1996,274:540-546
    [87] Brown G R,Kadel E E,Bassoni DL,et al.Anchored Reference Loci in Loblolly Pine(Pinus taedaL.) for Integrating Pine Genomics[J].Genetics,2001,159:799~809
    [88] Rounsley S, Linx, Ketchumka. Large-scale sequencing of plant genome [J]. Curr Opin Plant Biol. 1998.1 (2) :136 -141.
    [89] Vasmatzis G, Essand M, Brinkmann U, Lee B, Pastan I. Discovery of three genes specifically expressed in human prostate by expressed sequence tag database analysis [J]. Proc.Natl. Acad.Sci. USA.1998,95 (1):300-304.
    [90] Delseny M ,Cooke R ,Raynal M etal. The Arabidopsis thaliana cDNAs equencingp rojects [J]. FBBS Lett.19 97. 40 3(3 ): 22 1-22
    [91] Yammanoto K ,Sasaki T .La rge-scale ESTs equencing in rice.Plant [J]. Molecular Biology. 1997, 35: 135-144
    [92] Fernandez P ,Heinz R ,Paniego N et al .Characterization of sunflower ESTs from leaf and developing flower [J]. Plant & Animal Genome Ⅸ Conference.2001p p6
    [93] Zhou Y, Tang J B, Walker M G et al. Gene identification and expression analysis of 86136 expressed sequence tags (E ST) from the rice genome [J]. Geno. Prot.& Bioinfo.2003.1:26-42
    [94] Liu J .Y,Hara C .,Umeda M .,Zhao Y ,Okita W .and Uchimiya H . Analysis of randomly isolated cDNAs from developing endosperm of rice( Oryzas ativaL .):evaluation of expressed sequence tags,and expression levels of mRNAs [J]. Plant Mol.Biol. 1995,29:685-689
    [95] Sterky E,Regan S .,Karlsson J .,etal. Gene dicovery in the wood-forming tissue of poplar:analysis of 5692 expressed sequence tags [J]. Proc.Natl.Acad.Sci.USA 1998,95(22):13330-13335
    [96] Allona I, Quinn M ,shoop E ,et al .Analysis of Xylem formation in pine by cDNAs equencing Proc Natl Acad Sci USA,1998,95(16):9693-9689
    [97] WhiteJ .A.,Todd J,Newman T,et al . A new set of Arabidopsis expressed sequence tags f rom developing seeds.The metabolic pathway from carbohydrates to seed oil. Plant Physiol. 2000,124, 1582-1594
    [98] Epple P . ESTs reveal multigene family for plant defenses in Arabidopsis thalina [J]. FEBS Ieeters. 1997,400(2):168-192.
    [99] Mekhedov S, Martinnez de Ilarduya O,Ohlrogge J. Towards a functional catalog of the plant genome:a survey of genes for lipid biosynthesis[J]. Plant Physiol.2000,122:389-401.
    [100] Ewing R.M., Kahla A.B., Poirot O., et al .. Large –scale statistical analyses of rice ESTs reveal correlated patterns of gene expression [J] .Genome Res. 1999,9 ,950-959
    [101] RonningC .M.,Stegalkina S .S,Ascenzi R .A., et al . Comparative analyses of Potato expressed sequence tag libraries. Plant Physiol. 2003,131,419-429
    [102] Carulli J P, Artinger M, Swain P M et al. High throughput analysis of differential gene expression [J]. Cell Biochem Suppl,1998.30-31:286-296
    [103] Benton D. Bioinformatics-principles and potential of a new multidisciplinary tool [J]. TIBTECH. 1996,14(8):261-272
    [104] Ruan YJ., Gilmore J. and Conner T. Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays [J] .Plant J . 1998,19, 821- 833
    [105] Ewing R, Poirot O ,Claverie J M. Comparative analysis of the arabidopsis and rice expressed sequence tag sets [J]. In Silico Biology I, 1999-2000,1(4):197-213.
    [106] Varshney RK, Sigmund R, Borner A, et al . Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice [J]. Plant Science, 2005,168, 195–202.
    [108] Green P, Lipman D, Hillier L, et al. Ancient conserved regions in new gene sequences and the protein databases [J]. Science,l993, 259 (5102): 1711一1716
    [109] Rossetto M, McNally J, Henry RJ.Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae [J]. Theoretical and Applied Genetics, 2002,104, 61– 66.
    [110] Mian MAR, Saha MC, Hopkins AA, Wang ZY.Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses [J]. Genome, 2005, 48, 637–647.
    [111] Tiffin P, Hahn MW Coding sequence divergence between two closely related plant species, Arabidopsis thaliana and Brassica rapa ssp. pekinensis [J]. Journal of Molecular Evolution, 2002,54, 746–753.
    [112]Seki M .,Narusaka M ., Kamiya A . Functional annotation of a full-length Arabidopsis cDNA collection [J]. Science 2002,296: 141-145
    [113] Liang F .,HoltI., Pe rtea G ,Karamycheva S .,Saizberg S .Land Quackenbush J . An optimized protocol for analysis of EST sequences [J]. Nucleic Acids Res. 2000,28 ,3657 -3665
    [114] Sunyaev S,Hanke J,Brett D,etal. Individua lvariationin protein-coding sequences of human genome [J]. AdvProteinChem, 2000,54:409~37
    [115] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome [J]. Nature,2001, 409:860~9219
    [116] Venter J C, Adams M D, Myers E W, etal. The sequence of the human genome [J].Science, 2001,291:1304~1351
    [117] Graveley B R. Alternative splicing increasing diversity in the proteomic world [J].Trends Genet, 2001, 17:100~107
    [118] Hanke J,Brett D,Zastow I,etal.Alternative splicing of human genes more the rule than the exception [J] . TrendsGenet,1999,15 (10):389~390
    [119] 钱骏,董利,张必成,等.表达序列标签数据库搜索鉴定小鼠UBAP1基因及其数字化表达分析[J].生物化学与生物物理进展,2002,29(2):323~327
    [120] Boguski M S. Biosequence exegesis [J].Science,1999,286:453-456.
    [121] 贺普超主编.葡萄学[M].北京:中国农业出版社,1999,240-267.
    [122] Ledbetter C.A. & Ramming D.W. Seedless in grapes[J]. Horticultural reviews, 1989, 11: 159-184
    [123] Ledbettter C.A. & Burgos L. Inheritance of stenospermocarpic seedlessness in Vitis vinifera L[J]. The Journal of Heredity.1994: 85(2): 157-160
    [124] 王近卫,屈内昭作,林伯年,沈德绪. 无核白葡萄的无核果形成的组织形态学研究[J]. 园艺学报, 1992, 19(1): 1~6.
    [125] 中川昌一 著,曾骧 等译. 果树园艺原论[M]. 北京:农业出版社,1982.
    [126] Loomis NH, Weinberger JH. Inheritance studies of seedlessness in grapes [J]. J Amer Soc Hort Sci, 1979, 104(2): 181-184
    [127] Ledbetter C.A., Shonnard C.B. Berry and seed characteristics associated with stenospermy in vinifera grapes[J]. Journal of Horticultural Science, 1991, 66(2): 247-252
    [128] Constantinescu G, Pena A, Indreas A. Inheritance of some quanlitative and quantitative characters in the progeny of crosses between functionally female (gynodynamic) and apyrene (androdynamic) varieties [J]. Plobleme de Genetica Teoretica, SiAplicata, 1975, 7: 213-241
    [129] Dudley JW. Molecular markers in plant improvement manipulation of genes affecting quantitative. Crop Sci, 1993, 33: 660-668
    [130] Khachatryan SS, Martirosyan EL. Nature of the inheritance of large fruit and size and number of seeds per fruit in hybrid progenies of vinifera [J]. Referativnyi Zhurnal, 1971, 7, 55, 19
    [131] Bozhinova-Boneva I. Inheritance of seedlessness in grapes. Genet Sel, 1978, 11: 399-405
    [132] Golodriga PY, Troshin LP, Frolava. Inheritance of character of seedlessness in the hybrid generation of V. vinifera [J]. Tsitologyia Genetika, 1985, 19 (5) 372-376
    [133] Weinberger JH, Harmon FN. Seedlessness in vinifera grapes [J]. Proc Amer Soc Hort Sci, 1964: 85: 270-271
    [134] Roytchev V. Inheritance of Grape Seedlessness in Seeded and Seedless Hybrid Combinations of Grape Cultivars with Complex Genealogy [J] Am. J. Enol. Vitic. 1998 49: 302-305.
    [135] Bouquet A, Danglot Y. Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis [J], 1996, 35: 35-42
    [136] Yamane H. Ph.D thesis: Studies on the breeding in grapes with reference to large berry and seedlessness[D]. Kyoto University, Japan, 1997
    [137] Notsuka K., Tsuru T. & Shiraishi M. Seedless-seedless grape hybridization via in ovule embryo culture[J]. Journal of the Japanese Society for Horticultural Science, 2001, 70(1): 7-15
    [138] Striem M.J., Spiegel-Roy I.B. & Sahar N. The degree of development of the seed coat and the endosperm as separate subtraits of stenospermocarpic seedlessness in grapes[J]. Vitis, 1992, 31:149-155
    [139] Striem M.J., Ben-Hayyin G. et al. Developing molecular genetic markers for grape breeding using polymerase chain reaction procedures[J]. Vitis, 1994, 33: 53-54
    [140] Striem M.J., Ben-Hayyim G., & Spiegel-Roy. Identifying molecular genetic markers associated with seedlessness in grape [J]. Journal of the American Society for Horticultural Sciences, 1996, 121(5): 758-763
    [141] Doligez A., Bouquet A., Danglot Y. et al. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedless and berry weight[J]. Theoretical Applied Genetics, 2002, 105: 780-795
    [142] Cabezas J A; Cervera M T; Ruiz-García L; Carre?o J; Martínez-Zapate J M r. A genetic analysis of seed and berry weight in grapevine [J] Genome; 2006, 49(12):1572-1585
    [143] 刘家驹,卢春生. 无核葡萄[J].果树科学,1985,4:15~20.
    [144] 杨克强,王跃进,张今今,王西平,万怡震,张剑侠 用限制性酶切和Southern杂交对葡萄无核基囚分子标记的分析[J] 农业生物技术学报 2005,13 (3): 294-298.
    [145] 张潞生,孟新法. 大粒无核葡萄品种选育技术(综述)[J]. 北京农业大学学报,1993,19(4):92~97.
    [146] 徐海英,张国军,闫爱玲.葡萄无核新品种瑞峰无核的选育[J].中国果树,2005,2:3~5.
    [147] Uri Hanania, Margarita Velcheva, Etti Or, Moshe Flaishman, Nachman Sahar, Avihai Perl Silencing of chaperonin 21, that was differentially expressed in inflorescence of seedless and seeded grapes, promoted seed abortion in tobacco and tomato fruits [J].Transgenic Research 2007,16(4):515–525
    [148] Tsolova C.V., Jiang L. & Perl A. Cyto-embryological aspects of seedlessness in Vitis vinifera L. and exploiting DNA recombinant technology as an advanced approach for introducing seedlessness into vinifera and muscadine grapes[J]. Acta Horticulturae, 2003, 603(1): 195-199
    [149] Wang YJ, Lamikanra O, Lu J, et al. Identification of genetic marker linked to seedless genes in grapes using RAPD [J]. 西北农业大学学报,1996,24(5):1-10.
    [150] Wang YJ. Lamikanra O. Analysis of sequencing the RAPD marker linked to seedless gene in grape [J]. 西北农业大学学报,1997,25(4):1-5.
    [151] 王跃进,Lamikanra Olusola.检测葡萄无核基因DNA探针的合成与应用[J].西北农林科技大学学报(自然科学版),2002,30(3):42-46.
    [152] 杨英军,王跃进,周鹏,等.葡萄无核基因SCAR标记的序列构成与酶切分析[J].果树学报,2002,19(1):12-14.
    [153] 杨克强,王跃进,,张今今,王西平,万怡震,张剑侠 葡萄无核基因定位与作图的研究[J] 遗传学报 2005,32(3):297-302.
    [154] Adam-Blondon, A.F., Lahogue-Esnault, F., Bouquet, A., Boursiquot, J.M., and This, P.. Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars [J]. Vitis, 2001,40: 147-155.
    [155] Lahogue F, This P, Bouquet. Identification of a codominant scar marker linked to the seedlessness character in grapevine [J]. Theor Appl Gent, 1998, 97: 950-959
    [156] 王跃进,万怡震.美国加州的葡萄生产与科研[J].西北农林科技大学学报,2002,143(1):134-140
    [157] 刘崇怀,孔庆山,潘兴.我国鲜食葡萄育种的种质基础与种质创新[J].果树学报,2002,19(4):256-261.
    [158] Misaka T., Kuroda M., Iwabuchi K., Abe K. Arai, S. Soyacystatin, a novel cysteine proteinase inhibitor in soybean, is distinct in protein structure and gene organization from other cystatins of animal and plant origin. European Journal of Biochemistry, 1996,240(3)609-614
    [159] Martinez M. , Abraham Z. ,Gambardella M., Echaide M., Carbonero,P ,Diaz,I. The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties [J]. Journal of Experimental Botany, 2005,56 (417):1821-1829
    [160] Manuel Martínez , Zamira Abraham, Pilar Carbonero and Isabel Díaz. Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley [J]. Molecular Genetics and Genomics 2005,273: 423-432
    [161] Moreira Reis Emerson ; Margis Rogério. Sugarcane phytocystatins: Identification, classification and expression pattern analysis [J]. Genetics and molecular biology,2001,24:291-296
    [162] 张今今; 王跃进; 王西平; 杨克强; 杨进孝. 葡萄总RNA提取方法的研究[J]. 果树学报, 2003 20(3):178-181
    [163] Effie Ablett, George Seaton, Kirsten Scott, et al Aanalysis of grape ESTs: global gene expression patterns in leaf and berry[J]. Plant scienc, 2000, 159:87-95
    [164] Rugang Li, Roger Rimmer, Lone Buchwaldt, et al. Interaction of Sclerotinia sclerotoirum with a resistant Brassica napus cultivar:expressed sequence tag analysis identified genes associated with fungal pathogenesis[J]. Fungal Genetic and Biology , 2004, 41: 735-753
    [165] Hofte H, Desprez, Amselen J. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana[J]. The Plant Journal, 1993, 4(6): 1051-1061
    [166] Yammanoto K, Sasaki T. Large-scale EST sequencing in rice[J]. Plant Molecular Biology, 1997, 35: 135-144
    [167] Bevan M.,Bancroft E, Bent K, Love H,et al. Analysis of 1.9Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature, 1998, 391:485-488
    [168] Kozak, M., An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs [J]. Nucleic Acids Res. 1987,15: 8125–8148.
    [169] Kozak, M., An analysis of vertebrate mRNA sequences: intimations of translational control [J]. J. Cell Biol. 1991,115:887–903.
    [170] Graziano Pesole, Sabino Liuni, Giorgio Grillo and Cecilia Saccone. Structural and compositional features of untranslated regions of eukaryotic mRNAs [J]. Gene , 1997 , 205 (1 - 2) :95~102.
    [171] Mignone F , Gissi C , Liuni S and Pesole G. Untranslated region of mRNAs [J]. Genome Biol , 2002 , 3 ( 3) : reviews0004. 1 ~ reviews0004. 10.
    [172] Rogozin I B , Kochetov A V , Kondrashov F A , Koonin E V , Milanesi L. Presence of ATG triplets in 5′untranslated regions of eukaryotic cDNAs correlates with a‘weak’context of the start codon [J]. Bioinformatics , 2001 , 17 (10) :890~900.
    [173] Kochetov A V , Ischenko I V , Vorobiev D G, Kel A E , Babenko V N , Kisselev L L , Kolchanov N A. Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features [J]. FEBS Lett , 1998 ,440 (3) :351~355.
    [174] Kochetov A V , Syrnik O A , Rogozin IB. Context organization of Mrna 5′-untranslated regions of higher plants [J]. Mol Biol (Mosk) , 2002 , 36 :649~656.
    [175] Seki M, Carninci P , NishiyamaY, Hayashizaki Y and Shinozaki K. High efficiency cloningArabidopsis full-length cDNA by bioti-nylated CAP trapper [J]. The plant Journal , 1998 , 15 ( 5) : 707~720.
    [176] 刘小宁,王跃进,张剑侠,江淑萍.Flame seedless 葡萄胚珠、胚乳及胚发育与败育的研究[J].西北植物学报,2005,25(10):1947~1953.
    [177] 王飞,王跃进,周会玲,万怡震,杨进孝.无核葡萄与中国野生葡萄杂种胚发育和败育的细胞学研究[J].西北农林科技大学(自然科学版),2005,33(3):61~65.
    [178] 王飞,王跃进,万怡震,任杰.无核葡萄与中国野生葡萄杂种胚败育的某些生理生化变化[J].园艺学报,2004,31(5):651~653.
    [179] Ueda K,Kobayashi S,Morita J,et al. Sitc-specific DNA damage caused by lipid peroxidation product [J]. Biochem et Biophys Acta,,1985, 824:341~348
    [180] 田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用[J].植物生理学通讯,2005,41(2):235~241
    [181] Desikan R, Cheung M-K, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells [J]. J.Exp Bot, 2004,55: 205~212
    [182] 王爱国,罗光华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(6):55~57
    [183] 陈建勋,王晓峰主编.植物生理学实验指导[M].广州:华南理工大学出版社,2002,119-123
    [184] 罗华建,刘星辉,谢厚钗.水分胁迫对枇杷叶片活性氧代谢的影响[J],福建农业大学学报,1999,28(1):33~37.
    [185] 高俊凤主编.植物生理学实验技术[M].西安:世界图书出版公司, 2000, 159-160
    [186] 王跃进,Lamikanra Olusola,Schell L. 卢江.用RAPD分析鉴定葡萄属远缘杂种[J].西北农业大学,1997,25(3):16~20.
    [187] 董晓玲,贺普超.无核葡萄杨格尔的胚发育及胚珠培养[J].果树科学,1991,8(2):8~9
    [188] 王晶,罗国光.巨峰葡萄胚和胚乳的发育[J].园艺学报,1996,23(2):191~193
    [189] Wojtaszek P .Oxidative burst: an early plant response to pathogen infection [J]. Biochem J. 1997,322: 681~692
    [190] Jabs T, Dietrich RA, Dangl JL.Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide [J]. Science, 1996,273:1853~1856
    [191] Paula A,Belinky,Nufar Flikshtein,et al. Reactive Oxygen Species and Induction of Lignin Peroxides in Phanerochaete chrysosporium [J]. Appl. Envir. Microbiol. 2003,69: 6500~6506.
    [193] Chen HJ, Hou WC, Yang CY et al. Molecular cloning of two metallothionein-like protein genes with differential expres-sion patterns from sweet potato (Ipomoea batatas) leaves [J]. J Plant Physiol, 2003, 160(5): 547~555
    [193] Chatthai M, Osusky M, Osuska L, Yevtushenko D, Misra S. Functional analysis of a Douglas-fir metallothionein-like gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco [J].Planta,2004,220 (1):118~128.
    [194] Chatthai M., Kaukinen K.H., Tranbarger T.J., Gupta P.K., Misra S.. The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by ABA, osmoticum, and metal ions, Plant Mol. Biol. 1997,34:243–254.
    [195] Eva Freisinger. Spectroscopic characterization of a fruit-specific metallothionein: M. acuminata MT3 [J]. Inorganica Chimica Acta, 2007360(1):369-380.
    [196] Robinson N J, Tommy A M, Kuske C. Plant metallothioneins [J]. Biochem J, 1993,295:1-10.
    [197] 常团结 朱祯 植物金属硫蛋白研究进展(一)——植物MT的分类、特征及其基因结构[J].生物技术通报 2002(3):5-10.
    [198] Okumura N, Nishizawa NK, Umehara Y, Mori S. An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains [J]. Plant Mo1 Biol 1991,17: 531-533
    [199] Hsieh H M, Liu W K, Huang P C. A Novel Stress-inducible Metallothionein-Like Gene from Rice[J]. Plant Mol Biol, 1995, 28: 381-389
    [200] Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins:roles in Heavy Metal Detoxification and Homeostasis [J]. Annu Rev Plant Biol. 2002, 53:159~182
    [201] Binz P.A., Kagi J.H.R. http://www.biochem.unizh.ch/mtpage/MT.html
    [202] 余荔华,刘进元,梅田正明,内宫博文,赵南明。水稻金属硫蛋白核基因的克隆及其序列特征[J]. 科学通报,1999,44(15):1645-1648
    [203] 刘桂丰,褚延广,王玉成,侯英杰,杨传平. 星星草cDNA文库构建和金属硫蛋白(MT-1)基因的克隆[J].植物生理通讯,2005,41(4):424-428
    [204] 帖建科,李令媛,茹炳根,慈云祥.金属硫蛋白清除自由基及其对自由基引起的核酸损伤保护作用的研究[J].生物物理学报,1995,11(2):276-282
    [205] 张亨山.金属硫蛋白的抗氧化作用[J]. 国外医学卫生分册,1994,21(2):21-25
    [206] Hussain S., Slikker W., Ali S.F.. Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection [J], Neurochem. Int. 1996, 29(2) : 145–152.
    [207] Chubatsu L.S., Meneghin R.. Metallothionein protects DNA from oxidative damage [J], Biochem. J. 1993,291:193–198.
    [208] Meyer Y., Vignols F., Reichheld J.P., Classification of plant thioredoxins by sequence similarity and intron position [J], Methods Enzymol. 2002,347:394–402.
    [209] Holmgren A. Thioredoxin and glutaredoxin systems[J]. J. Biol. Chem,1989,264(24):13963-13966.
    [210] Arnér E. S. J. and Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase[J]. Eur. J. Biochem, 2000,267 (20): 6102-6109.
    [211]刘 雷,尹 钧. 硫氧还蛋白的研究[J]. 东北农业大学学报,2003,34(2):219~225
    [212] Meyer Y, Verdoucq L, Vignols F.. Plant thioredoxins and glutaredoxins: identity and putative roles [J]. Trends plant science 1999,4(10):388-394
    [213] Eric Gelhaye, Nicolas Rouhier, Joelle Ge′ rard, Yves Jolivet. A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase [J]. PNAS 2004,101(40):14545-14550
    [214] Powis G, Montfort WR. Properties and biological activities of thioredoxins [J] Annu Rev Biophys Biomol Struct. 2001;30:421-55
    [215] Eric Gelhaye, Nicolas Rouhier, Jean-Pierre Jacquot. The thioredoxin h system of higher plants [J]. Plant Physiology and Biochemistry 42 (2004) 265–271
    [216] Reichheld J.-P., Mestres-Ortega D., Laloi C., Meyer Y. The multigenic family of thioredoxin h in Arabidopsis thaliana: specific expression and stress response [J] Plant Physiology and Biochemistry, 2002,40 (6) :685–690
    [217] Eric Gelhaye, Nicolas Rouhier, Jean-Pierre Jacquot. Evidence for a subgroup of thioredoxin h thatrequires GSH/Grx for its reduction [J]. FEBS Letters. 2003,555 (3) :443-448
    [218] Motohashi Ken, Kondoh Aiko, Stumpp Michael T.,et al. Comprehensive survey of proteins targeted by chloroplast thioredoxin [J].Proc.Natl.Acad.Sci.USA.,2001, 98 (20):11224-11229.
    [219] Daisuke Yamazaki; Ken Motohashi; Takeshi Kasama; Yukichi Hara; Toru Hisabori Target Proteins of the Cytosolic Thioredoxins in Arabidopsis thaliana Plant & Cell Physiology; Jan 15, 2004; 45(1):18-24.
    [220] Wynn R, Cocco MJ, Richards FM.. Mixed disulfide intermediates during the reduction of disulfides by Escherichia coli thioredoxin [J]. Biochemistry 1995,34(37), 11807–11813
    [221] Qin J, Clore GM, Kennedy WM, Huth JR, Gronenborn AM.. Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B [J], Structure 1995,15 (3):289–297
    [222] Lionel V,Florence V,Jean-pierre J,et al. In vivo characterization of a thioredoxin-h target protein defines a new peroxiredoxin family [J]. J. Biol. Chem., 1999, 274(28): 19714 -19722.
    [223] Bagnoli F, Giannino D, Caparrini S, et al. Molecular cloning, charactersation and expression of a manganese superoxide dismutase gene from peach (Prunus persica[L.] Batsch) [J].Mol Genet Genomics, 2002, 267(3): 321-328.
    [224] Kim EJ, Chung HJ, Suh B ,et al .Transcriptional and post-transcriptional regulation by nickel of sod N gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor [J]. Molecular Microbiology.1998,27 ( 1):187-195.
    [225] Kim EJ, Chung HJ, Sun, B. Expression and Regulation of the sodF Encoding Iron-and Zinc- Containing Superoxide Dismutase in Streptomyces coelicolor [J]. Journal of Bacteriology, 1998 ,180(8):2014-2020
    [226] Kim EJ, Kim HP. Different expression of superoxide dismutase containing Ni and Fe/Zn in Streptomyces coelicotor [J]. Journal of Biochemistry,1996,241:178-185
    [227] Stallings WC, Pattridge KA, Strong RK, Ludwig ML. Manganese and iron superoxide dismutases are structural homologs [J]. J. Biol. Chem. 1984,259: 10695-10699.
    [228] Camp WV, Bowler C, Villarroel R, Tsang EWT, Montagu MV, Inze D. Characterization of Iron Superoxide Dismutase cDNAs from Plants Obtained by Genetic Complementation in Escherichia coli [J]. PNAS 1990: 87: 9903-9907.
    [229] Fink RC ,Scandalios J G. 2002. Molecular evolution and structure function relationships of the superoxide dismutase gene families in Angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutase [J]. Archives of Biochemistry and Biophysics ,399 (1) :19~36
    [230] Hiroi S, Harada H, Nishi H. Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese [J]. Biochem Biophys Res Commun 1999,261:332 -9.
    [231] Rosenblum JS, Gilula NB, Lerner RA: On signal sequence polymorphisms and diseases of distribution [J]. Proc Natl Acad Sci USA 1996;93:4471-4473
    [232] 陈惠芳,王琦,付学池,等.超氧化物歧化酶SOD的分子生物学[J],生命的化学.2003.23(4),291- 293.
    [233] Kim Y C. Miller C D. Anderson A J. Transcriptional regulation by iron of genes encoding iron and manganese superoxide dismutases from Pseudomonas putida [J]. Gene.1999,239:129-135.
    [234] Bannister JV , Bannister WH , Rotilio G Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 1987,22 (2 ): 111-118
    [235] Parker MW , Blake CC. Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures [J]. FEBS Lett. 1988 , 229 (2 ): 377-382
    [236] Smith MW , Doolittle RF A comparison of evolutionary rates of the two major kinds of superoxide dismutase [J]. J. Mol. Evol. 1992,34 (2 ): 175-184
    [237]Panchuk, II, Zentgraf, U, Volkov, RA Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana [J]. PLANTA 2005,222 (5): 926-932.
    [238]Felipe Karam Teixeira, Larissa Menezes-Benavente, Rogério Margis, Márcia Margis-Pinheiro Analysis of the Molecular Evolutionary History of the Ascorbate Peroxidase Gene Family: Inferences from the Rice Genome Journal of Molecular Evolution 2004, 59(6):761-770
    [239] Shigeru Shigeoka; Takahiro Ishikawa; Masahiro Tamoi; Yoshiko Miyagawa; Toru T Regulation and function of ascorbate peroxidase isoenzymes [J] .Journal of Experimental Botany; 2002,53(372):1305-1319
    [240] Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system [J]. Physiol Plant, 2001, 112:487-494
    [241] Dunford H B ,Stillman J S. On the function and mechanism of peroxidases [J]. Coord Chem Rev , 1976 ,19 (2) :187~251
    [242] Welinder K G. Superfamily of plant ,fungal and bacterial peroxidases [J]. Curr Opin Struct Biol , 1992 ,2 (3) :388~393[243] Laurent Duroux, Karen G. Welinder The Peroxidase Gene Family in Plants: A Phylogenetic Overview [J]. J Mol Evol ,2003,57:397–407
    [244] Jespersen HM, Welinder KG. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase [J]. Biochem J 1997,326:305–310
    [245] Foyer CH, Hailiwell B. The presence of glutathione and glutathione reductase in chloroplasts: proposed role in ascorbic acid metabolism [J]. Planta, 1976, 133:21~25
    [246] Welinder K G. Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily[J]. Biochem Biophys Acta, 1991,1080: 215-220.
    [247] Yoshimura K,Yabuta Y, Ishikawa T, et al. Expression ofspinach ascorbate peroxidase isoenzymes in response tooxidative stresses [J]. Plant Physiol, 2000, 123:223-233
    [248] Yamaguchi K, Mori H, Nishimura MA. Novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin [J]. Plant Cell Physiol, 1995,36:1157-1162
    [249] Miyake C, Asada K. Thylakoid-bound ascorbate peroxidasein spinach chloroplasts and photoreduction of its primaryproduct monodehydroascorbate radical in thylakoids [J]. PlantCell Physiol, 1992, 33:541-553
    [250] Santos M, Gousseau H, Lister C, Foyer C, Creissen G, Mullineaux P. Cytosolic ascorbate peroxidase from Arobidopsis thaliana L. is encoded by a small multigene family [J]. Planta, 1996, 198:64-69
    [251] Cristina Pignocchi , Christine H Foyer. Apoplastic ascorbate metabolism and its role in the regulation of cell signaling [J]. Current Opinion in Plant Biology, 2003, 6(4):379-389.
    [252] Liping Zou, Hanxia Li, Bo Ouyang, Junhong Zhang , Zhibiao Ye.Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism [J] .Plant Science,2006,170 :120–127
    [253] Chen Z, Young T E, Ling J, et al. Increase vitamin C content of plant through enhanced ascorbate recycling[J]. Proc Natl Acad Sci USA, 2003, 100:3525-3530.
    [254] Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress [J]. J Plant Physiol. 2006 Nov;163(11):1179-84.
    [255] 靳月华,陶大利,郝占庆,等.环境胁迫和抗坏血酸的氧化还原状态[J].植物学报, 2003, 45 (7) :795-801.
    [256] Seiji Yoshida,Masanori Tamaoki,Takeshi Shikano,Nobuyoshi Nakajima,Daisuke Ogawa, Motohide Ioki,Mitsuko Aono,Akihiro Kubo,Hiroshi Kamada,Yasunori Inoue,and Hikaru Saji. Cytosolic Dehydroascorbate Reductase is Important for Ozone Tolerance in Arabidopsis thaliana [J] .Plant Cell Physiol. 2006,47(2): 304–308.
    [257] 娄平,王晓武,Guusje.Bonnema,方智远. 利用cDNA-AFLP技术鉴定甘蓝显性核不育基因相关表达序列[J]. 园艺学报,2003,30(6):668-672,
    [258] Jun'ichi Urano, Tomofumi Nakagawa, Yasushi Maki, Takehiro Masumura, Kunisuke Tanaka, Norio Murata, Takashi Ushimaru Molecular cloning and characterization of a rice dehydroascorbate reductase [J]. FEBS Letters,2000,466:107~111
    [259] Haas,B.J., Volfovsky,N., Town,C.D., Troukhan,M., Alexandrov,N., Feldmann,K.A., Flavell,R.B., White,O. and Salzberg,S.L. Full-length messenger RNA sequences greatly improve genome [J]. Genome Biol. 2002,3 (6):1-12.
    [260] Ohyanagi,H., Tanaka,T., Sakai,H., Shigemoto,Y., Yamaguchi,K., Habara,T., Fujii,Y., Antonio,B.A., Nagamura,Y., Imanishi,T., Ikeo,K., Itoh,T., Gojobori,T. and Sasaki,T. The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information [J] .Nucleic Acids Res. 2006,34:741-744 .
    [261] 李晓晓,李 蕊,李雅轩,蔡民华,胡英考.大豆脱氢抗坏血酸还原酶基因的电子克隆及进化分析[J].大豆科学 2007,26(1):45-50
    [262] Chun JA, Lee WH, Han MO, Lee JW, Yi YB, Goo YM, Lee SW, Bae SC, Cho KJ, Chung CH. Molecular and biochemical characterizations of dehydroascorbate reductase from sesame (Sesamum indicum L.) hairy root cultures [J]. J Agric Food Chem. 2007 ,55(15):6067-73.
    [263] 张国裕,康俊根,张延国,程智慧,王晓武. 青花菜雄性不育相关基因BoDHAR的克隆与表达分析[J]. 生物工程学报 2006,22(5):751-756.
    [264] 张燕子,马锋旺,张军科,梁 东. 苹果脱氢抗坏血酸还原酶(DHAR)基因cDNA片段的克隆及序列分析[J]. 西北农林科技大学学报(自然科学版) 2007,35(1):179-193
    [265] Hideo Kuriyama ,Hiroo Fukuda. Developmental programmed cell death in plants Current [J]. Opinion in Plant Biology, 2002,5(6):568-573.
    [266] Della Mea M. , Serafini-Fracassini D. , Del Duca S. Programmed cell death: similarities and differences in animals and plants. A flower paradigm [J]. Amino Acids,33(2):395-404
    [267] Paul J. Berti and Andrew C. Storer Alignment/Phylogeny of the Papain Superfamily of Cysteine Proteases [J]. J. Mol. Biol. 1995,246, 273–283
    [268] Leonidas G. Theodorou , Joseph G. Bieth, Emmanuel M. Papamichael. The catalytic mode ofcysteine proteinases of papain (C1) family [J] .Bioresource Technology, 2007,98:1931–1939.
    [269] Torben Asp, Steve Bowra, S?ren Borg, Preben Bach Holm. Cloning and characterisation of three groups of cysteine proteasegenes expressed in the senescing zone of whiteclover (Trifolium repens) nodules [J]. Plant Science, 2004,167 :825–837.
    [270] Jiang B, SiregarU, WillefordKO, Luthe DS, WilliamsWP. Association of 33 kD cysteine [J]. Plant Physiol, 1995,108: 1 631-1 640
    [271] Jennifer T J,John E M.A salt-and dehydration-inducible pea gene,Cyp15a,encodes a cell-wall protein with sequence similarity to cysteine protease[J].Plant Molecular Biology,1995,28:1055-1065.
    [272] Grudkowska M,Zagdanska B. Multifunctional role of plant cysteine proteinases[J].Acta Biochemical Polonica,2004,51(3): 609-624.
    [273] Schaffer MA, Fischer R L. Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato [J]. Plant Physiol, 1988,87: 431-436
    [274] Linthorst H J M, van der Does C, Brederode FTh, Bol J F. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase [J]. Plant Mol Biol, 1993,21: 685-694
    [275] Alonso JM, Granell A. Aputative vacuolar processing protease is regulated by ethylene and also during fruit ripening in Citrusfruit [J]. Plant Physiol, 1995,109: 541-54
    [276] Rojo E, Martin R, Carter C,et al.VPE gamma exhibits a caspase-like activity that contributes to defense against pathogens [J]. Current Biology,2004,14 (21):1897-1906.
    [277] Wittenbach V A, Lin W, Hebert R. Nacuolar localization of proteasesand degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves [J]. Plant Physiol, 1982,69: 98-102
    [278] Drake R, John I, Farrell A, Cooper W, Schuch W, Grierson D. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence [J].Plant Mol Biol, 1996,30: 755-767
    [279] CercosM, Carbonell J. Purification and characterization of a thiol-protease induced during senescence of unpollinated ovaries of Pisum sativum [J].Physiol Plant, 1993,88: 267-274
    [280] NaitoY, FujieM, Usami S, Murooka Y, YamadaT. The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuiisubsp.rengei [J]. Plant Physiol, 2000, 124: 1087-1095
    [281] Valpuesta V, Lange NE, Guerrero C, ReidMS. Up-regulation of cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers [J].Plant Mol Biol, 1995,28: 575-582
    [282] Tadamasa U,Shigemi S,Yuko O,et al.Circadian and senescence-enhanced expression of a tobacco cysteineprotease gene[J]. Plant Molecular Biology,2000,44:649-657.
    [283] Matarasso N,Schuster S,Avni A.A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression[J].The Plant Cell,2005,17 (4): 1205 -1216
    [284] Bernd W.Structure-function relationship in class CA1 cysteine peptidase propeptides[J].Acta Biochemical Polonica,2003,50 (3):691-713.
    [285] Vierstra R D.The ubiquitin/26S proteasome pathway,the complex last chapter in the life of many plant proteins[J].Trends in Plant Science,2003,8(3):135-142.
    [286] Basset G,Raymond P,Malek L,et al.Changes in the expression and the enzymic properties of the 20Sproteasome in sugar-starved maize roots,evidence for an in vivo oxidation of the proteasome[J].Plant Physiology,2002,128(3):1149-1162.
    [287] Adeliana, S., Oliveira, J. Xavier-Filho and Mauricio P. S. Cysteine proteinasea and cystatins [J]. Brazilian Archives of biology and technology. 2003,46 :91-104
    [288] Kalinski A, Weisemann J M, Matthews B F, Herman EM. Molecular cloning of a protein associated with soybean seed oil bodies that is similar to thiol proteases of the papain family [J].J Biol Chem, 1990,265: 13 843-13 848
    [289] VernetT, Tessier D C, Chatellier J, et al. Structural and functional rolesof asparagine 175 in the cysteine protease papain [J].J Biol Chem, 1995,270: 16645- 16652
    [290] 程仲毅,薛庆中.植物蛋白酶抑制剂基因结构、调控及其控制害虫策略[J].遗传学报, 2002,30(8):790-79
    [291] Turk V , Bode W The cystatins: protein inhibitors of cysteine proteinases FEBS Lett. 1991,285 (2 ):213-219
    [292] Watanabe, H., Abe,K,Emori, Y, Hosoyama, H. and Arai, S. Molecular cloning and gibberellin induced expression of multiple cysteine protease of rice seeds( Orizains) [J]. J. Biol.Chem., 1991,266:16897-16902
    [293] Arai S., Matsumoto L, Emori Y., Abe,K Plant seed cystatins and their target enzymes of endogenous and exogenous origin [J]. J. Agric. Food. Chem., 2002,50(22):6612-6617.
    [294] Akiko O ,Hjima S, Katsumi H . An extracellular insoluble inhibitor of cystine proteinase in cell culture and seeds of carrot [J]. Plant Molecular Biology. 1997,34:99-109
    [295] Repka V. Evidence for the involvement of cysteine proteases in the Regulation of methyl jasmonate-induced cell death in grapevine [J].Vitis. 2002,41 (3):115-121
    [296] Sugawara H., Shibuya K., Yoshioka T., Hashiba T., Satoh S. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophylus L.) flowers [J]. Journal of Experimental Botany, 2002,53(368):407-413
    [297] Paulra, J.K,Ram,K. Plant protease inhibitor in control of phytophageous insects [J]. Electronic Journal of Biotechnology, 2002,5 (1):93 -109
    [298] Urwin,P E .,Troth,K M.,Zubko,E .L, Atkinson,H .J. Efective transgenic Resistance to Globodera pallida in potato field trials [J]. Molecular Breeding ,2001 ,8 (1):95 -101
    [299] 曾仲奎,鲍锦库,周红,等. 水稻巯基蛋白酶抑制剂的分子修饰与其对水稻瘟病菌的抑制作用[J].中国生物化学与分子生物学报, 199612(6): 709-713
    [300] Margis,R ., Reis, E .M .,Villeret, V . Structural and Phylogenetic Relationships among Plant and Animal Cystatins. Arch [J]. Biochem. Biophys., 1998,359(1):24 -30
    [301] Rawlings N. D., and Barret, A. J. Evolution of proteins of the cystatin superfamily [J]. J. Mol.Evol., 1990,30:60-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700