用户名: 密码: 验证码:
酯合成脂肪酶高产菌的选育及其产酶发酵调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非水相中脂肪酶催化的酯合成反应已广泛用于各种酯的合成,并且也成为近二十年来脂肪酶催化的研究热点。由于并不是所有的脂肪酶都能催化非水相中的酯化反应,造成了现有脂肪酶中能有效催化酯合成反应的酶并不多,必须开发新的具有高酯合成活性的脂肪酶。
     本文以获得高酯活性脂肪酶为目标,首先建立了一种能快速筛选具有酯合成能力脂肪酶的筛选和酶活测定方法,然后以一株根霉Rhizopus chinensis Y92为出发菌,采用离子束和亚硝基胍进行诱变,以建立的方法进行初筛,最终筛选得到一株脂肪酶高产菌R. chinensis Y92-M,并对其培养条件进行了优化。深入研究了影响具有酯合成活性脂肪酶合成的主要因素,并对该菌所产胞内脂肪酶进行了详细分析,揭示了全细胞脂肪酶水解与合成活力之间的关系,找到了控制酯合成活性脂肪酶大量合成的手段。针对丝状真菌形态变化对生产的影响,详细研究了摇瓶和发酵罐中形态变化对酶合成的影响。并将全细胞脂肪酶用于酯的合成和生物柴油的生产,具体内容和结果:
     (1)为了能筛选得到酯合成活性高的脂肪酶生产菌,本文建立了一种非水相中用于具有合成活性脂肪酶筛选和活力测定的新方法。该方法的原理是利用脂肪酶在正庚烷中催化对硝基苯酚棕榈酸酯(pNPP)和乙醇之间的转酯化反应,然后用NaOH溶液快速萃取生成的对硝基苯酚并在410nm检测吸光度。该法与其它已经报道的类似方法相比,所需仪器简单,底物廉价,操作简单,因此筛选效率得到了有效提高。
     (2)以R. chinensis Y92为出发菌,采用两轮离子束注入诱变,并结合亚硝基胍诱变,以所建立的方法作为初筛方法,以气相测定酯合成能力作为复筛方法,筛选得到一株酯合成活性显著提高的菌株R. chinensisY92-M,该菌单位菌体的合成活性由200 U/g,提高到400 U/g。
     (3)为了进一步提高该菌的产酶能力,对培养条件进行了优化。首先采用田口设计对培养条件进行了初步优化,对四个培养基组成因素(麦芽糖、橄榄油、蛋白胨、和K2HPO4)和四个环境因素(摇床转速、接种量、pH和装液量)进行了考察,结果分析表明环境因素对产酶影响更显著。通过响应面对培养条件进一步优化得到最优培养条件:接种量4.25×108 spores/L,橄榄油2.37% (w/v),装液量21 mL/250mL,蛋白胨4.06% (w/v),麦芽糖0.5% (w/v),K2HPO4 0.3% (w/v),摇床转速200 r/min,pH 5.5。预测全细胞脂肪酶的最大酶活产率为14349.2 U/L,验证性实验在最优条件下,R. chinensisY92-M产具有酯合成活性全细胞脂肪酶可达13875 U/L。
     (4)通过培养基中添加不同类型、不同量的脂肪酸或脂肪酸酯,考察了发酵过程中全细胞脂肪酶水解活性与合成活性的关系。结果表明,全细胞的水解活性受各种脂肪酸和脂肪酸酯的诱导作用并不明显,而碳链大于18的脂肪酸或者脂肪酸酯对全细胞合成活性有显著的诱导作用,最高酶活力是未加油脂的培养基条件的17倍。
     (5)对细胞各部分的蛋白组分的分析结果表明,胞内脂肪酶具有水解活性而不具备合成活性。膜结合蛋白具有很好的酯合成活性,同时也具有水解活性。该微生物对具有酯合成活性脂肪酶的调节既表现在酶量的调节,也表现在酶活性的调节。酶量的调节体现在具有酯合成活性的脂肪酶为典型的诱导型酶:当诱导物三甘酯添加量大于20 g/L时,能维持酶活在650 U/g,当诱导物量不足时酶活迅速下降;具有合成活性脂肪酶的高产的条件除必须有油脂添加外,细胞还必须与油脂充分接触,解除这种接触状态,酶的合成即停止。酶活性的调节则体现在全细胞水解活力的变化上:具有高合成活性的全细胞的水解活性并不高,而实际上具有合成活性的膜结合脂肪酶水解活力可达56 U/mg。对不同培养时间的细胞各部分的蛋白组分的分析,推测造成全细胞表观水解活力和合成活力不对应的原因是膜结合脂肪酶存在变构调节。
     (6)研究了不同三油酸甘油酯添加量对产酶的影响,提出了油脂流加策略。摇瓶中采用油脂流加方式也可以使得酶活力保持在650 U/g,酶活产率13000 U/L左右,而油脂总添加量只需15 g/L。发酵罐中的菌体生长与产酶过程和摇瓶相比存在较大差距,油脂补料发酵并不能达到摇瓶的产酶效果。
     (7)通过对摇瓶过程和发酵罐过程中菌丝微观和宏观形态的观测和分析,发现菌丝微观和宏观形态变化对膜结合脂肪酶的合成影响非常显著。摇瓶过程中,聚集状态(块状,球状,固定化)下的菌丝直径稍宽,菌丝生长单位多,菌丝未出现分化现象;而松散状态下的菌丝直径稍窄,菌丝体到生长后期出现分化现象,并有膈出现。聚集状态细胞的酶活力是松散状态细胞酶活的3倍,说明菌丝聚集有利于膜结合脂肪酶的合成。通过对发酵罐中菌体形态变化以及发酵液流变特性的研究,发现小球状菌丝细胞有利于产酶,而松散状菌丝细胞不利于产酶。对发酵液流变特性的测定结果表明,球状菌体下的发酵液流动性要明显好于松散状菌体,有利于油脂的分散。载体固定化同时满足了菌体形态呈聚集状和细胞必须和油脂充分接触两个酶高产的必要条件,因此固定化细胞经发酵罐培养后酶活能达到400 U/g。
     (8)为了验证R. chinensisY92-M所产全细胞脂肪酶在非水相中的催化能力,将该酶和两种具有高酯合成活性的商品化脂肪酶Novo435和Amano PS-C的酯合成能力进行比较,结果显示Y92-M所产全细胞脂肪酶具有很好的酯合成能力。
     (9)考察了该酶在正庚烷体系中催化脂肪酸乙酯的能力,当直链脂肪酸浓度为0.6 mol/L时,该酶对碳链大于6的脂肪酸有较好的选择性,转化率可达90%以上。实验结果还表明,该脂肪酶与出发菌所产脂肪酶相比,在无溶剂体系中能有效催化辛酸乙酯和油酸乙酯的合成。还考察了该酶在无溶剂体系中合成生物柴油的能力,结果表明该全细胞脂肪酶能有效催化地沟油,豆油,麻枫籽油等各种油脂生产生物柴油,转化率均在85%以上。固定化细胞也表现出很好的催化能力,摇瓶中转化率可达75%,填充柱中的转化率可达80%,而载体内部的转化率可达到88%。若能对填充柱体系进行更为系统的研究,有望实现工业化生产。
Lipase catalyzed esterification/transesterification in nonaqueous system has been used in many esters synthesis, and is also the most intresting field in lipase catalyzed reactions during the past 20 years. Most of the research works in this field focus on the organic synthesis by a known lipase or on the mechanism of the catalytic process involving. Because not all of the lipases could catalyze ester syshtesis reaction in nonaqueous system. It makes few lipases have perfect catalytic ability in nonaqueous system. Therefore, isolation and development of novel lipase with high esters synthesis ability become very important. Hower, to our knowledge, few researchers focus on screening of lipase production strain based on the ester synthesis ability, and also few researchers focus on regulation and production this kind of lipase.
     In this paper, lipase with synthetic activity was concerned. So, a fast screening and activity determination method for lipase synthetic activity in organic solvent has been built up firstly, and then the strain improvment for R. chinensis Y92 by combination of N+ implantation and nitrosoguanidine (NTG) mutation was carried out. A high producing strain R. chinensis Y92-M was selected base on the new screen method. The optimization of culture conditions were also studied for lipase production with synthetic activity, and the main effect factors on the lipase production was investigated detailedly. Base on the analysis of intracellular lipases biosynthesis, relationship between the lipase synthetic activity and hydrolytic activity was revealed. The morphology changes in submerged fermentation for R. chinensis Y92-M and their effect on production of lipase with synthetic activity were investigated. In order to validate the whole cell lipase ester synthesis ability, ethyl esters and biodisel synthesis by this lipase were performed in organic solvent or in solvent free system. The detailed contents of this dissertation follow:
     (1) A fast screening and activity determination method for lipase synthetic activity in organic solvent has been built up instead of the traditional olive oil plate in order to screen a strain which can produce the lipase with higher synthetic activity, The principle of this method was based on lipase catalyzed transesterification reactions between p-nitrophenyl esters and ethanol. Liberation of pNP was detected using a common spectrophotometer after extracting aliquots of sample from the reaction medium with 1 mL 0.1 mol/L NaOH solution. Compare with the similar method described by other researchers, the substrate used in new method was less expensive and commercially obtainable, and the measurement time for the new method could be largely shortened. To validate the effectiveness of the methodology, different common commercial lipases were selected and different detection and assasy methods were performed. The result indicated that the new method could distinguish various lipases with different synthetic activities, and the result correlated well with other methods. The kinetics curve of the transesterification reaction between pNPP and ethanol catalyzed by Amano PS-C with different concentrations monitored by the new method confirmed the possibility of monitoring the transesterification by the proposed colorimetric method.
     (2) Two cycles of N+ implantation combined with nitrosoguanidine treatment were used to improve the lipase production of R. chinensis Y92. A mutant strain R. chinensis Y92-M was selected using the new screen method as primary screen and ethylcaprylate synthesis ability detected by GC as secondary screen. The production of whole cell lipase with synthetic activity by mutant strain Y92-M was remarkably improved from 200 U to 400 U per gram dry mycelium.
     (3) The cultivation conditions and medium composition for whole cell lipase production with synthetic activity by R. chinensis Y92-M were studied and optimized. Taguchi design was employed to initial optimize the cultivation conditions and medium composition, to screen the important factors, and to confirm the level of each factors. Eight factors were selected for this study, namely maltose, olive oil, peptone, K2HPO4, agitation speed, inoculum level, fermentation volume and pH. The whole-cell lipase activity yield was two times higher than the control experiment under initial optimal conditions, and four significant factors (inoculum, olive oil, fermentation volume and peptone) were selected to test the effect on the lipase production using response surface methodology. The optimal fermentation parameters for enhanced whole-cell lipase yield were found to be: inoculum 4.25×108 spores/L, olive oil 2.37% (w/v), fermentation volume 21 mL/250mL flask, peptone 4.06% (w/v), agitation speed 200r/min , maltose 0.5 %(w/v), and K2HPO4 0.3% (w/v), pH adjust to 5.5, a maximal contour (Y = 14349.2) could be predicted. The validation experiments were carried out under the optimum conditions, maximum activity yield for the whole-cell lipase obtained experimentally was found to be 13875 U/L, which 120% improved compare the result of 6300 U/L (non-optimized conditions). From the fermentation process for the R. chinensis Y92 and Y92-M, synthetic activity for the whole cell lipase was found different for two strains, but nearly no different in hydrolytic activity for the whole cell lipase. This result indicated the necessary to study the lipase production base on the synthetic activity.
     (4) To investigate the relationship between the two catalytic characteristics (hydrolytic and synthetic activity) for the whole lipase production, different amount and kinds of fatty acid and corresponding esters were added to the medium. The hydrolytic activity of the lipase was not induced by lipids efficaciously and could be detected regardless of whether substrate-related compounds were present. But the synthetic activity of the lipase was remarkably improved by the fatty acid and corresponding esters which C>18, the maxium activity was 17 times higher than medium without lipids.
     (5) The analysis of protein for the intracellular enzymes indicated that intracellular lipases have high hydrolytic activity, but nearly have no synthetic activity. However, the membrane-bound lipases exhibit both high synthetic activity and hydrolytic activity. The regulations of membrane bound lipase production by R. chinensis Y92 might have two ways: regulation of enzyme quantity and regulation of enzyme activity. The regulation of enzyme quantity was confirmed by the lipase with synthetic activity were strict inducible enzyme. This enzyme could be induced by oleic acid, and the synthetic activity could increase sharply only a little triolein (1 g/L) was added to the medium. The synthetic activity could be maintained at 650 U/g when more than 20 g/L triolein was added to the medium. Two requirements must be met at same time for high quantity of enzyme production: One is that the medium must contained oleic acid or it corresponding ester; another one is that the lipids must adhere to the fungi cell. Biosynthesis of this enzyme would be stopped once the adherence was eliminated. The regulation of enzyme activity was reflected by the change of hydrolytic activity for whole cell lipase. The whole cell with high synthetic activity exhibited low hydrolytic activity, whereas, hydrolytic activity was 55 U/mg for the membrane bound lipase which with high synthetic activity. Based on the analysis of protein for the intracellular enzymes obtained by different fermentation times, the allosteric regulation for the membrane lipase was suggested to explain the different between synthetic activity and hydrolytic activity for the whole cell lipase.
     (6) Fed batch cultivation was developed base on the study of effect of triolein initial concentration on the lipase production. The synthetic activity could reach 650 U/g, and the activity yield was about 13000 U/g, when triolein was fed at certain times in the shake flask. The final oil comsuption is 15 g/L, which is low than 20 g/L. Cell growth and enzyme production were different between the shake flask and fermentor, lipase production in fermentor by the triolein feeding could not get the same level as in the shake flask.
     (7) The changes in the macromorphology and micromorphology for mycelium were found to have remarkable effect on the membrane bound lipase production both in shake flask and fermentor process via observation and analyzing the mycelia macromorphology and micromorphology. During the shake flask process, the diameter of fully entangled filaments (clump, pellet or immobilized) was larger, the growth units were bigger, and no differentiations were found in the mycelia compare with the dispered filaments. When the mycelia morphology was fully entangled, the lipase production was 3 times higher than the dispered filaments.This result indicated that the mycelia aggregation was favor of membrane bound lipase production. Except for the effect on lipase biosynthesis and secretion directly, the changes in mycelium morphology also affected the mass transfer and hot transfer in the fermentation system. During the fermentor process, pellet morphology benefited the lipase production, and dispersed morphology was not. Result of broth rheology study in fermentor reveal that pelleted morphology could decreased the viscosity of the culture fluid, and improved mixing and mass transfer properties. Oil can dispersed completely under this condition. Cell immobilization on biomass support particles could improve the lipase production effectively, 400 U/g activity could be abtained in fermentor using immobilization.
     (8) In order to validate the catalytic ability of whole cell lipase produced by R. chinensis Y92-M in nonaqueous system. Comparison of ester synthesis ability between the whole cell lipase and two commercial lipases Novo435 and Amano PS-C were performed. The result indicated that whole cell lipase produced by R. chinensis Y92-M had excellence ester synthesis ability in organic solvent. Compare with the two commercial lipases, even though the activity and thermostabilization is little lower for this whole-cell lipase, but the lipase is easy to produce, more cheaper and suitable for industrialization.
     (9) The catalytic ability for fatty acid ester synthesis in heptane was investigated, when the concentration of fatty acid is 0.6 mol/L, and carbon number is more than 6, more than 90% of conversion was obtained. The whole cell lipase also able to catalyze esterification for ethylcaprylate and ethyloleate formation in solvent free system. Biodiesel productions in solvent free system by the enzyme were also studied. The enzyme was proved to be efficient in catalyzing many oils, such as waste oil, jatropha curcas oil and soybean oil to producing biodiesel, and 85% conversion could be realized. Immobilized mycelia also exhibited good ability in biodiesel production, 75% conversion could be abtained in shake flask, and could be improved to 80% in packed-bed reactor system. Even in the inner of immobilized biomass support particles in packed-bed reactor system, the 88% conversion could be achieved. This result indicated that the immobilized mycelia have potential application for industrial process.
引文
1. Desnuelle P, Pancreatic lipase and phospholipase. Molecular and cellular basis of digestion. [M]. Elsevier, Amsterdam, 1986.
    2. Carriere F, Gargouri Y, Moreau H, et al., Gastric lipases: cellular, biochemical and kinetic aspects Lipases: their structures, biochemistry and application. [M]. Cambridge University Press., 1994:181-208.
    3. Mukherjee K D, Plant lipases and their application in lipid biotransformations. [J]. Progress in Lipid Research, 1994, 33:165-174.
    4. Jakab G, Manrique A, Zimmerli L, et al., Molecular characterization of a novel lipase-like pathogeninducible gene family of Arabidopsis. [J]. Plant Physiology, 2003, 132:2230-2239.
    5. van Roermund C W T, Waterham H R, Ijlst L, et al., Fatty acid metabolism in Saccharomyces cerevisiae [J]. Cellular and Molecular Life Sciences, 2003, 60(9):1838-1851.
    6. K?hler J and Wünsch B, The allosteric modulation of lipases and its possible biological relevance [J]. Theoretical Biology and Medical Modelling, 2007, 34(4):1-16.
    7. Hasan F, Shah A A, and Hameed A, Industrial applications of microbial lipases [J]. Enzyme and Microbial Technology, 2006, 39(2):235-251.
    8. Jaeger K E and Eggert T, Lipases for biotechnology [J]. Current Opinion in Biotechnology, 2002, 13(4):390-397.
    9. Jaeger K E, Dijkstra B W, and Reetz M T, Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases [J]. Annual Review of Microbiology, 1999, 53:315-351.
    10. Jaeger K E and Reetz M T, Microbial lipases form versatile tools for biotechnology [J]. Trends in Biotechnology, 1998, 16:396-403.
    11. Schmid R D and Verger R, Lipases: interfacial enzymes with attractive applications [J]. Angewandte Chemie International Edition, 1998, 37:1608-1633.
    12. Svendsen A, Lipase protein engineering [J]. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 2000, 1543(2):223-238.
    13. Bornscheuer U T and Kazlauskas R J, Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations [M]. Weinheim:Wiley-VCH, 1999.
    14. Reetz M T, Lipases as practical biocatalysts [J]. Current Opinion in Chemical Biology, 2002, 6(2):145-150.
    15. Gupta R, Gupta N, and Rathi P, Bacterial lipases: an overview of production, purification and biochemical properties [J]. Applied Microbiology and Biotechnology, 2004, 64(6):763-781.
    16. Patel M T, Nagarajan R, and Kilara A, Lipase-catalyzed biochemical reactions in novel media: A review [J]. Chemical Engineering Communications, 1996, 153:365-404.
    17.徐岩,溶剂相中微生物脂肪酶催化脂肪酸酯合成的研究[D].博士论文.无锡:无锡轻工大学, 1997.
    18.宋欣,脂肪酶菌种库的建立、酶学性质以及在有机合成中的应用[D].博士学位论文.济南山东大学, 1999.
    19.郭诤,非水相系统中脂肪酶催化酯化反应的研究[D].博士学位论文.天津;天津大学, 2003.
    20. Zaks A and Klibanov A M, Enzymatic Catalysis in Organic Media at 100-Degrees-C [J]. Science, 1984, 224:1249-1251.
    21. Fukumoto J, Iwai M, and Tsujisaka Y, Studies on lipase .1. Purification and crystallization of lipase secreted by Aspergillus niger [J]. Journal of general and applied microbiology 1963, 9:353-361.
    22.孙志浩,杨利荣,徐岩等.生物催化工艺学[M].北京:化学工业出版社, 2004, 262-296
    23. Krishna S H and Karanth N G, Lipases and lipase-catalyzed esterification reactions in nonaqueous media [J]. Catalysis Reviews-Science and Engineering, 2002, 44(4):499-591.
    24. Hoydonckx H E, De Vos D E, Chavan S A, et al., Esterification and transesterification of renewable chemicals [J]. Topics in Catalysis, 2004, 27(1-4):83-96.
    25. Lortie R, Enzyme catalyzed esterification [J]. Biotechnology Advances, 1997, 15(1):1-15.
    26. Gandhi N N, Patil N S, Sawant S B, et al., Lipase-catalyzed esterification [J]. Catalysis Reviews-Science and Engineering, 2000, 42(4):439-480.
    27. Andersch P, Berger M, Hermann J, et al., Ester synthesis via acyl transfer (transesterification), in Lipases, Pt B. [M]. Academic Press Inc: San Diego. 1997: 406-443.
    28.谢红想,有机相中芳香酯合成用脂肪酶产生菌的筛选及其应用[D].硕士论文.无锡:无锡轻工大学, 1998.
    29. Xu Y, Wang D, Mu X Q, et al., Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase [J]. Journal of Molecular Catalysis B-Enzymatic, 2002, 18(1-3):29-37.
    30. Cardenas F, Alvarez E, de Castro-Alvarez M S, et al., Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases [J]. Journal of Molecular Catalysis B-Enzymatic, 2001, 14(4-6):111-123.
    31. Cardenas F, de Castro M S, Sanchez-Montero J M, et al., Novel microbial lipases: catalytic activity in reactions in organic media [J]. Enzyme and Microbial Technology, 2001, 28(2-3):145-154.
    32. Torres M, Dolcet M M, Sala N, et al., Endophytic fungi associated with Mediterranean plants as a source of mycelium-bound lipases [J]. Journal of Agricultural and Food Chemistry, 2003, 51(11):3328-3333.
    33.宋欣,魏留梅,刘瑞田, et al.,脂肪酶高产菌株选育和菌种库的建立[J].微生物学通报, 2002, 28:6-10.
    34.余琼and梁运祥,产低温脂肪酶假单胞菌的选育及产酶条件的优化[J].湖北农业科学, 2006, 5(45):662-665.
    35.张金伟and曾润颖,南极产低温脂肪酶菌株Psychrobacter sp.7195的选育、发酵条件及酶学性质研究[J].生物磁学, 2006, 6:6-10.
    36.付建红,石玉瑚,欧阳平凯, et al.,产低温脂肪酶菌株Geotrichum candidum ch-3的选育、发酵条件及酶学性质研究[J].中国生物工程杂志, 2007, 27:22-27.
    37.袁红玲,汤鲁宏,许正宏, et al.,产有机相催化酯合成活性的脂肪酶菌株的筛选[J].微生物学通报, 2007, 34:19-24.
    38. Chattopadhyay M, Banik A K, and Raychaudhuri S, Production and purification of lipase by a mutant strain of Rhizopus arrhizus [J]. Folia Microbiologica, 1999, 44(1):37-40.
    39. Mala J G S, Kamini N R, and Puvanakrishnan R, Strain improvement of Aspergillus niger for enhanced lipase production [J]. Journal of General and Applied Microbiology, 2001, 47(4):181-186.
    40. Mahadik N D, Bastawde K B, Puntambekar U S, et al., Production of acidic lipase by a mutant of Aspergillus niger NCIM 1207 in submerged fermentation [J]. Process Biochemistry, 2004, 39(12):2031-2034.
    41.周延,张鹏,孟庆云, et al.,用快中子法选育细菌脂肪酶高产菌株[J].微生物学通报, 2001, 28:81-85.
    42.章文贤,蒋咏梅,施巧琴, et al., YAG激光诱变选育产低温脂肪酶罗伦隐球酵母及产酶条件优化[J].福建轻纺, 2007(11):1-6.
    43.谭珍连,梁静娟,庞宗文, et al.,原生质体紫外诱变选育白地霉GXU08脂肪酶高产菌株[J].生物技术, 2007, 17:42-44.
    44. Clausen I G, Aspects in lipase screening [J]. Journal of Molecular Catalysis B: Enzymatic 1997, 3:139-146.
    45. Beisson F, Tiss A, Riviere C, et al., Methods for lipase detection and assay: a critical review [J]. European Journal of Lipid Science and Technology, 2000, 102(2):133-153.
    46. Gilham D and Lehner R, Techniques to measure lipase and esterase activity in vitro [J]. Methods, 2005, 36(2):139-147.
    47. Sylvestre J, Chautard H, Cedrone F, et al., Directed evolution of biocatalysts [J]. Organic Process Research & Development, 2006, 10(3):562-571.
    48. Schmidt M, Baumann M, Henke E, et al., Directed evolution of lipases and esterases, in Protein Engineering. [M]. Elsevier Academic Press Inc: San Diego. 2004: 199-207.
    49. Reetz M T, Becker M H, Klein H W, et al., A method for high-throughput screening of enantioselective catalysts [J]. Angewandte Chemie-International Edition, 1999, 38(12):1758-1761.
    50. Reetz M T, New methods for the high-throughput screening of enantioselective catalysts and biocatalysts [J]. Angewandte Chemie-International Edition, 2002, 41(8):1335-1338.
    51. Baumann M, Sturmer R, and Bornscheuer U T, A high-throughput-screening method for the identification of active and enantioselective hydrolases [J]. Angewandte Chemie-International Edition, 2001, 40(22):4201-4204.
    52. Konarzycka-Bessler M and Bornscheuer U T, A high-throughput-screening method for determining the synthetic activity of hydrolases [J]. Angewandte Chemie-International Edition, 2003, 42(12):1418-1420.
    53. Bornscheuer U T, High-throughput-screening systems for hydrolases [J]. Engineering in Life Sciences, 2004, 4(6):539-542.
    54. Schmidt M and Bornscheuer U T, High-throughput assays for lipases and esterases [J]. Biomolecular Engineering, 2005, 22(1-3):51-56.
    55. Amaya C L, Stubbs D, and Marangoni A G, A new assay for lipase activity in organic solvents.Lipase-catalyzed synthesis of octyl-linolenate in a hexane microaqueous reaction system [J]. Enzyme and Microbial Technology, 1995, 17:131-135.
    56. Furutani T, Su R H, Ooshima H, et al., Simple screening method for lipase for transesterification in organic solvent [J]. Enzyme and Microbial Technology, 1995, 17(12):1067-1072.
    57. Kiran K R, Krishna S H, Babu C V S, et al., An esterification method for determination of lipase activity [J]. Biotechnology Letters, 2000, 22(19):1511-1514.
    58. Sandoval G and Marty A, Screening methods for synthetic activity of lipases [J]. Enzyme and Microbial Technology, 2007, 40(3):390-393.
    59. Vanot G, Deyris V, Guilhem M C, et al., Optimal design for the maximization of Penicillium cyclopium lipase production [J]. Applied Microbiology and Biotechnology, 2001, 57(3):342-345.
    60. Abdel-Fattah Y R, Optimization of thermostable lipase production from a thermophilic Geobacillus sp using Box-Behnken experimental design [J]. Biotechnology Letters, 2002, 24(14):1217-1222.
    61. Burkert J F M, Maugeri F, and Rodrigues M I, Optimization of extracellular lipase production by Geotrichum sp using factorial design [J]. Bioresource Technology, 2004, 91(1):77-84.
    62. Teng Y and Xu Y, Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method [J]. Bioresource Technology, 2008, 99(9):3900-3907.
    63. Nakashima T, Fukuda H, Kyotani S, et al., Culture Conditions for Intracellular Lipase Production by Rhizopus chinensis and Its Immobilization within Biomass Support Particles [J]. Journal of Fermentation Technology, 1988, 66(4):441-448.
    64. Espinosa E, Sanchez S, and Farres A, Nutritional Factors Affecting Lipase Production by Rhizopus delemar Cdbb-H313 [J]. Biotechnology Letters, 1990, 12(3):209-214.
    65. Cruz P M, Christen P, and Farres A, Medium Optimization by a Fractional Factorial Design for Lipase Production by Rhizopus delemar [J]. Journal of Fermentation and Bioengineering, 1993, 76(2):94-97.
    66. Salleh A B, Musani R, Basri M, et al., Extracellular and Intracellular Lipases from a Thermophilic Rhizopus oryzae and Factors Affecting Their Production [J]. Canadian Journal of Microbiology, 1993, 39(10):978-981.
    67. Essamri M, Deyris V, and Comeau L, Optimization of lipase production by Rhizopus oryzae and study on the stability of lipase activity in organic solvents [J]. Journal of Biotechnology, 1998, 60(1-2):97-103.
    68. Fadiloglu S and Erkmen O, Lipase production by Rhizopus oryzae growing on different carbon and nitrogen sources [J]. Journal of the Science of Food and Agriculture, 1999, 79(13):1936-1938.
    69. Elibol M and Ozer D, Lipase production by immobilised Rhizopus arrhizus [J]. Process Biochemistry, 2000, 36(3):219-223.
    70. Iftikhar T, Ikram Ul H, and Javed M M, Optimization of cultural conditions for the production of lipase by submerged culture of Rhizopus oligosporous T-UV-31 [J]. Pakistan Journal of Botany, 2003, 35(4):519-525.
    71. Ghorbel S, Souissi N, Triki-Ellouz Y, et al., Preparation and testing of Sardinella protein hydrolysates as nitrogen source for extracellular lipase production by Rhizopus oryzae [J]. World Journal of Microbiology & Biotechnology, 2005, 21(1):33-38.
    72. Bapiraju K, Sujatha P, Ellaiah P, et al., Sequential parametric optimization of lipase production by a mutant strain Rhizopus sp BTNT-2 [J]. Journal of Basic Microbiology, 2005, 45(4):257-273.
    73. Kamzolova S V, Morgunov I G, Aurich A, et al., Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat [J]. Food Technology and Biotechnology, 2005, 43(2):113-122.
    74. Gulati R, Isar J, Kumar V, et al., Production of a novel alkaline lipase by Fusarium globulosum using neem oil, and its applications [J]. Pure and Applied Chemistry, 2005, 77(1):251-262.
    75. Shimada Y, Sugihara A, Nagao T, et al., Induction of Geotrichum candidum Lipase by Long-Chain Fatty-Acids [J]. Journal of Fermentation and Bioengineering, 1992, 74(2):77-80.
    76. Zhang L Y, Wei D Z, and Tong W Y, Effective inducers for lipase production by Candida rugosa [J]. Annals of Microbiology, 2003, 53(4):499-504.
    77. Lotti M, Monticelli S, Montesinos J L, et al., Physiological control on the expression and secretion of Candida rugosa lipase [J]. Chemistry and Physics of Lipids, 1998, 93(1-2):143-148.
    78. Benjamin S and Pandey A, Optimization of liquid media for lipase production by Candida rugosa [J]. Bioresource Technology, 1996, 55(2):167-170.
    79. Li D, Wang B W, and Tan T W, Production enhancement of Rhizopus arrhizus lipase by feeding oleic acid [J]. Journal of Molecular Catalysis B-Enzymatic, 2006, 43(1-4):40-43.
    80. Gordillo M A, Obradors N, Montesinos J L, et al., Stability studies and effect of the initial oleic acid concentration on lipase production by Candida rugosa [J]. Applied Microbiology and Biotechnology, 1995, 43:38-41.
    81. Szczesna-Antczak M, Antczak T, Piotrowicz-Wasiak M, et al., Relationships between lipases and lipids in mycelia of two Mucor strain [J]. Enzyme and Microbial Technology, 2006, 39:1214-1222.
    82. Wu X Y, Jaaskelainen S, and Linko Y Y, An investigation of crude lipases for hydrolysis, esterification, and transesterification [J]. Enzyme and Microbial Technology, 1996, 19(3):226-231.
    83. Gandolfi R, Gaspari F, Franzetti L, et al., Hydrolytic and synthetic activities of esterases and lipases of non-starter bacteria isolated from cheese surface [J]. Annals of Microbiology, 2000, 50(2):183-189.
    84. Gandolfi R, Marinelli F, Lazzarini A, et al., Cell-bound and extracellular carboxylesterases from Streptomyces: hydrolytic and synthetic activities [J]. Journal of Applied Microbiology, 2000, 89(5):870-875.
    85. Metz B, From pulp to pellets : an engineering study of the morphology of moulds [J]. PhD thesis. Netherland: Delft Technical University, 1976.
    86. Metz B and Kossen N W F, Growth of Molds in Form of Pellets - Literature-Review [J]. Biotechnology and Bioengineering, 1977, 19(6):781-799.
    87. Metz B, Debruijn E W, and Vansuijdam J C, Method for Quantitative Representation of the Morphology of Molds [J]. Biotechnology and Bioengineering, 1981, 23(1):149-162.
    88. Thomas C R, Image analysis : putting filamentous microorganisms in the picture [J]. Trends in Biotechnology, 1992, 10:343-348.
    89. Cox P W, Paul G C, and Thomas C R, Image analysis of the morphology of filamentous micro-organisms [J]. Microbiology-Sgm, 1998, 144:817-827.
    90. Tucker K G, Kelly T, Delgrazia P, et al., Fully-Automatic Measurement of Mycelial Morphology byImage-Analysis [J]. Biotechnology Progress, 1992, 8(4):353-359.
    91. Paul G C and Thomas C R, Characterisation of mycelial morphology using image analysis [J]. Advances in Biochemical Engineering Biotechnology; Relation between morphology and process performances, 1998:1-59.
    92. Olsvik E, Tucker K G, Thomas C R, et al., Correlation of Aspergillus niger Broth Rheological Properties with Biomass Concentration and the Shape of Mycelial Aggregates [J]. Biotechnology and Bioengineering, 1993, 42(9):1046-1052.
    93. Riley G L, Tucker K G, Paul G C, et al., Effect of biomass concentration and mycelial morphology on fermentation broth rheology [J]. Biotechnology and Bioengineering, 2000, 68(2):160-172.
    94. Nielsen J, A Simple Morphologically Structured Model Describing the Growth of Filamentous Microorganisms [J]. Biotechnology and Bioengineering, 1993, 41(7):715-727.
    95. Nielsen J, Modelling the morphology of filamentous microorganisms [J]. Trends in Biotechnology, 1996, 14(11):438-443.
    96. Papagianni M, Fungal morphology and metabolite production in submerged mycelial processes [J]. Biotechnology Advances, 2004, 22(3):189-259.
    97. Papagianni M and Mattey M, Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology [J]. Microbial Cell Factories, 2006, 5:12.
    98. Papagianni M, Mattey M, and Kristiansen B, Hyphal vacuolation and fragmentation in batch and fed-batch culture of Aspergillus niger and its relation to citric acid production [J]. Process Biochemistry, 1999, 35(3-4):359-366.
    99. Tamura S, Park Y, Toriyama M, et al., Change of mycelial morphology in tylosin production by batch culture of Streptomyces fradiae under various shear conditions [J]. Journal of Fermentation and Bioengineering, 1997, 83(6):523-528.
    100. Lopez J L C, Perez J A S, Sevilla J M F, et al., Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus [J]. Journal of Biotechnology, 2005, 116(1):61-77.
    101. Nakashima T, Kyotani S, Izumoto E, et al., Cell-Aggregation as a Trigger for Enhancement of Intracellular Lipase Production by a Rhizopus Species [J]. Journal of Fermentation and Bioengineering, 1990, 70(2):85-89.
    102. Hama S, Tamalampudi S, Fukumizu T, et al., Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production [J]. Journal of Bioscience and Bioengineering, 2006, 101(4):328-333.
    103. Haack M B, Olsson L, Hansen K, et al., Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation [J]. Applied Microbiology and Biotechnology, 2006, 70(4):482-487.
    104. Papagianni M and Moo-Young M, Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects [J]. Process Biochemistry, 2002, 37(11):1271-1278.
    105. Amanullah A, Christensen L H, Hansen K, et al., Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production [J]. Biotechnology and Bioengineering, 2002, 77(7):815-826.
    106. Jin B, van Leeuwen J H, and Patel B, Mycelial morphology and fungal protein production from starchprocessing wastewater in submerged cultures of Aspergillus oryzae [J]. Process Biochemistry, 1999, 34(4):335-340.
    107. El-Enshasy H, Hellmuth K, and Rinas U, Fungal morphology in submerged cultures and its relation to glucose oxidase excretion by recombinant Aspergillus niger [J]. Applied Biochemistry and Biotechnology, 1999, 81(1):1-11.
    108. Spohr A, Carlsen M, Nielsen J, et al., Morphological characterization of recombinant strains of Aspergillus oryzae producing alpha-amylase during batch cultivations [J]. Biotechnology Letters, 1997, 19(3):257-261.
    109. Amanullah A, Blair R, Nienow A W, et al., Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae [J]. Biotechnology and Bioengineering, 1999, 62(4):434-446.
    110. Nakashima T, Kyotani S, Izumoto E, et al., Cell aggregation as a trigger for enhancement of intracellular lipase production by a Rhizopus species [J]. Journal of Fermentation and Bioengineering, 1990, 70:85-89.
    111. Oncul S, Tari C, and Unluturk S, Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor [J]. Biotechnology Progress, 2007, 23(4):836-845.
    112. Papagianni M, Nokes S E, and Filer K, Production of phytase by Aspergillus niger in submerged and solid-state fermentation [J]. Process Biochemistry, 1999, 35:397-402.
    113. Lim J S, Lee J H, Kim J M, et al., Effects of morphology and rheology on neo-fructosyltransferase production by Penicillium citrinum [J]. Biotechnology and Bioprocess Engineering, 2006, 11(2):100-104.
    114. Cox P W and Thomas C R, Classification and Measurement of Fungal Pellets by Automated Image-Analysis [J]. Biotechnology and Bioengineering, 1992, 39(9):945-952.
    115. Grimm L H, Kelly S, Krull R, et al., Morphology and productivity of filamentous fungi [J]. Applied Microbiology and Biotechnology, 2005, 69(4):375-384.
    116. Bornscheuer U T, Enzymes in lipid modification [M]. Wiley-VCH: Weinheim, 2000.
    117. Bloomer S, Adlercreutz P, and Mattiasson B, Triglyceride Interesterification by Lipases .1. Cocoa Butter Equivalents from a Fraction of Palm Oil [J]. Journal of the American Oil Chemists Society, 1990, 67(8):519-524.
    118. Bloomer S, Adlercreutz P, and Mattiasson B, Kilogram-Scale Ester Synthesis of Acyl Donor and Use in Lipase-Catalyzed Interesterifications [J]. Journal of the American Oil Chemists Society, 1992, 69(10):966-973.
    119. Bornscheuer U T, Lipase-Catalyzed Syntheses of Monoacylglycerols [J]. Enzyme and Microbial Technology, 1995, 17(7):578-586.
    120. Schmid U, Bornscheuer U T, Soumanou M M, et al., Highly selective synthesis of 1,3-oleoyl-2-palmitoylglycerol by lipase catalysis [J]. Biotechnology and Bioengineering, 1999, 64(6):678-684.
    121. Iwasaki Y and Yamane T, Enzymatic synthesis of structured lipids [J]. Journal of Molecular Catalysis B-Enzymatic, 2000, 10(1-3):129-140.
    122. Fukuda H, Kondo A, and Noda H, Biodiesel fuel production by transesterification of oils [J]. Journal of Bioscience and Bioengineering, 2001, 92(5):405-416.
    123. Ban K, Kaieda M, Matsumoto T, et al., Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles [J]. Biochemical Engineering Journal, 2001, 8(1):39-43.
    124. Watanabe Y, Shimada Y, Sugihara A, et al., Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor [J]. Journal of the American Oil Chemists Society, 2001, 78(7):703-707.
    125. Watanabe Y, Pinsirodom P, Nagao T, et al., Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase [J]. Journal of Molecular Catalysis B-Enzymatic, 2007, 44(3-4):99-105.
    126. Shah S, Sharma S, and Gupta M N, Enzymatic transesterification for biodiesel production [J]. Indian Journal of Biochemistry & Biophysics, 2003, 40(6):392-399.
    127. Shah S and Gupta M N, Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system [J]. Process Biochemistry, 2007, 42(3):409-414.
    128. Hsu A F, Jones K, Marmer W N, et al., Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol-gel [J]. Journal of the American Oil Chemists Society, 2001, 78(6):585-588.
    129. Hsu A F, Jones K, Foglia T A, et al., Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel [J]. Biotechnology and Applied Biochemistry, 2002, 36:181-186.
    130. Xu Y Y, Du W, Liu D H, et al., A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium [J]. Biotechnology Letters, 2003, 25(15):1239-1241.
    131. Du W, Liu D H, Li L L, et al., Mechanism exploration during lipase-mediated methanolysis of renewable oils for biodiesel production in a tert-butanol system [J]. Biotechnology Progress, 2007, 23(5):1087-1090.
    132. Tan T W, Nie K L, and Wang F, Production of biodiesel by immobilized Candida sp lipase at high water content [J]. Applied Biochemistry and Biotechnology, 2006, 128(2):109-116.
    133. Deng L, Tan T W, Wang F, et al., Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp 99-125 [J]. European Journal of Lipid Science and Technology, 2003, 105(12):727-734.
    134. Deng L, Nie K L, Wang F, et al., Studies on production of biodiesel by esterification of fatty acids by a lipase preparation from Candida sp. 99-125 [J]. Chinese Journal of Chemical Engineering, 2005, 13(4):529-534.
    135. Wu H, Zong M H, and Lou W Y, Transesterification of waste oil to biodiesel in solvent free system catalyzed by immobilized lipase [J]. Chinese Journal of Catalysis, 2004, 25(11):903-908.
    136. Chen Z F, Wu H, and Zong M H, Transesterification of waste oil with high acid value to biodiesel catalyzed by immobilized lipase [J]. Chinese Journal of Catalysis, 2006, 27(2):146-150.
    137. Li N W, Wu H, Zong M H, et al., Immobilization of lipase from Penicillium expansum and its application to transesterification of corn oil [J]. Chinese Journal of Catalysis, 2007, 28(4):333-338.
    138. Luo Y, Zheng Y T, Jiang Z B, et al., A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification [J]. AppliedMicrobiology and Biotechnology, 2006, 73(2):349-355.
    139. Su E Z, Zhang M H, Zhang J G, et al., Lipase-catalyzed irreversible transesterification of vegetable oils for fatty acid methyl esters production with dimethyl carbonate as the acyl acceptor [J]. Biochemical Engineering Journal, 2007, 36(2):167-173.
    140. Pinto A C, Guarieiro L L N, Rezende M J C, et al., Biodiesel: An overview [J]. Journal of the Brazilian Chemical Society, 2005, 16(6B):1313-1330.
    141. Nelson L A, Foglia T A, and Marmer W N, Lipase-catalyzed production of biodiesel [J]. Journal of the American Oil Chemists Society, 1996, 73(9):1191-1195.
    142. He Q, Xu Y, Teng Y, et al., Biodiesel Production Catalyzed by Whole-Cell Lipase from Rhizopus chinensis [J]. Chinese journal of catalysis, 2008, 29(1):41-46.
    143. Longo M A and Sanroman M A, Production of food aroma compounds: Microbial and enzymatic methodologies [J]. Food Technology and Biotechnology, 2006, 44(3):335-353.
    144. Iwai M, Okumura S, and Tsujisaka Y, Studies on Lipase .15. Synthesis of Terpene Alcohol Esters by Lipase [J]. Agricultural and Biological Chemistry, 1980, 44(11):2731-2732.
    145. Gillies B, Yamazaki H, and Armstrong D W, Production of Flavor Esters by Immobilized Lipase [J]. Biotechnology Letters, 1987, 9(10):709-714.
    146. Welsh F W, Williams R E, and Dawson K H, Lipase Mediated Synthesis of Low-Molecular-Weight Flavor Esters [J]. Journal of Food Science, 1990, 55(6):1679-1682.
    147. Manjon A, Iborra J L, and Arocas A, Short-Chain Flavor Ester Synthesis by Immobilized Lipase in Organic Media [J]. Biotechnology Letters, 1991, 13(5):339-344.
    148. Abbas H and Comeau L, Aroma synthesis by immobilized lipase from Mucor sp [J]. Enzyme and Microbial Technology, 2003, 32(5):589-595.
    149. Macedo G A, Lozano M M S, and Pastore G M, Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp [J]. Electronic Journal of Biotechnology, 2003, 6(1):72-75.
    150. Melo L, Pastore G M, and Macedo G A, Optimized synthesis of citronellyl flavour esters using free and immobilized lipase from Rhizopus sp [J]. Process Biochemistry, 2005, 40(10):3181-3185.
    151. De B K, Chatterjee T, and Bhattacharyya D K, Synthesis of geranyl and citronellyl esters of coconut oil fatty acids through alcoholysis by Rhizomucor miehei lipase catalysis [J]. Journal of the American Oil Chemists Society, 1999, 76(12):1501-1504.
    152. Laboret F and Perraud R, Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry [J]. Applied Biochemistry and Biotechnology, 1999, 82(3):185-198.
    153. Krishna S H, Manohar B, Divakar S, et al., Lipase-catalyzed synthesis of isoamyl butyrate: Optimization by response surface methodology [J]. Journal of the American Oil Chemists Society, 1999, 76(12):1483-1488.
    154. Krishna S H, Divakar S, Prapulla S G, et al., Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei [J]. Journal of Biotechnology, 2001, 87(3):193-201.
    155. Romero M D, Calvo L, Alba C, et al., Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane [J]. Enzyme and Microbial Technology, 2005, 37(1):42-48.
    156. Chowdary G V and Prapulla S G, Enzymatic synthesis of ethyl hexanoate by transesterification [J]. International Journal of Food Science and Technology, 2003, 38(2):127-133.
    157. Oguntimein G B, Anderson W A, and Mooyoung M, Synthesis of Geraniol Esters in A Solvent-Free System Catalyzed by Candida antarctica Lipase [J]. Biotechnology Letters, 1995, 17(1):77-82.
    158. Cavaille-Lefebvre D and Combes D, Lipase synthesis of short-chain flavour thioesters in solvent-free medium [J]. Biocatalysis and Biotransformation, 1997, 15(4):265-279.
    159. Chatterjee T and Bhattacharyya D K, Synthesis of terpene esters by an immobilized lipase in a solvent-free system [J]. Biotechnology Letters, 1998, 20(9):865-868.
    160. Belafi-Bako K, Badr A K, Nemestothy N, et al., Kinetics of ethyl acetate formation by lipase in organic solvent and solvent-free system [J]. Chemical Papers-Chemicke Zvesti, 2003, 57(4):278-281.
    161. Srivastava S, Modak J, and Madras G, Enzymatic synthesis of flavors in supercritical carbon dioxide [J]. Industrial & Engineering Chemistry Research, 2002, 41(8):1940-1945.
    162. Chen S T and Fang J M, Preparation of optically active tertiary alcohols by enzymatic methods. Application to the synthesis of drugs and natural products [J]. Journal of Organic Chemistry, 1997, 62(13):4349-4357.
    163. Gao X G, Cao S G, Yang H, et al., Enzymatic resolution of (R,S)-2-octanol catalyzed by lipase from Pseudomonas species, in Enzyme Engineering Xiii., [M]. New York Acad Sciences: New York. 1996: 689-696.
    164. Wang Z, Li Z Q, Yu D H, et al., Resolution of 2-octanol via lipase-catalyzed enantioselective acetylation in organic solvents [J]. Chemical Research in Chinese Universities, 2004, 20(5):575-578.
    165. Shi X A, Zong M H, and Guo Y H, Enantioselectivity of lipase-catalyzed esterification and transesterification for resolution of (R,S)-2-octanol in nonaoueous media [J]. Abstracts of Papers of the American Chemical Society, 2005, 229:U550-U550.
    166. Ducret A, Pepin P, Trani M, et al., Lipase-catalyzed selective esterification of ibuprofen, in Enzyme Engineering Xiii. [M]. New York Acad Sciences: New York. 1996: 747-751.
    167. Henke E, Schuster S, Yang H, et al., Lipase-catalyzed resolution of ibuprofen [J]. Monatshefte Fur Chemie, 2000, 131(6):633-638.
    168. Chen J C and Tsai S W, Enantioselective synthesis of (S)-ibuprofen ester prodrug in cyclohexane by Candida rugosa lipase immobilized on accurel MP1000 [J]. Biotechnology Progress, 2000, 16(6):986-992.
    169. Tsai S W, Tsai C S, and Chang C S, Lipase-catalyzed synthesis of (S)-naproxen ester prodrug by transesterification in organic solvents [J]. Applied Biochemistry and Biotechnology, 1999, 80(3):205-219.
    170. Tsai S W, Liu B Y, and Chang C S, Enhancement of (S)-Naproxen ester productivity from racemic Naproxen by lipase in organic solvents [J]. Journal of Chemical Technology and Biotechnology, 1996, 65(2):156-162.
    171. Schoemaker H E, Mink D, and Wubbolts M G, Dispelling the mythsbiocatalysis in industrial synthesis [J]. Science, 2003, 299(5613):1694-1697.
    172. Leon R, Fernandes P, Pinheiro H M, et al., Whole-cell biocatalysis in organic media [J]. Enzyme and Microbial Technology, 1998, 23(7-8):483-500.
    173. Ishige T, Honda K, and Shimizu S, Whole organism biocatalysis [J]. Curr. Opin. Chem. Biol., 2005, 9(2):174-180.
    174. Xu Y, Wang D, Mu X Q, et al., Efficient esterification of sorbitan oleate by lipase in a solvent-free system [J]. Journal of the American Oil Chemists Society, 2003, 80(7):647-651.
    175. Jin L, Xu Y, and Cao G Q, Biosynthesis of oleyl oleate by whole-cell lipase from Rhizopus chinensis [J]. Chinese Journal of Catalysis, 2006, 27(7):611-614.
    176. Molinari F, Marianelli G, and Aragozzini F, Production of Flavor Esters by Rhizopus oryzae [J]. Applied Microbiology and Biotechnology, 1995, 43(6):967-973.
    177. Candolfi R, Gualandris R, Zanchi C, et al., Resolution of (RS)-2-phenylpropanoic acid by enantioselective esterification with dry microbial cells in organic solvent [J]. Tetrahedron-Asymmetry, 2001, 12(3):501-504.
    178. Gandolfi R, Converti A, Pirozzi D, et al., Efficient and selective microbial esterification with dry mycelium of Rhizopus oryzae [J]. Journal of Biotechnology, 2001, 92(1):21-26.
    179. Romano D, Ferrario V, Molinari F, et al., Kinetic resolution of (R, S)-1,2-O-isopropylideneglycerol by esterification with dry mycelia of moulds [J]. Journal of Molecular Catalysis B-Enzymatic, 2006, 41(3-4):71-74.
    180. Molinari F, Gandolfi R, Converti A, et al., Mycelium-bound carboxylesterase from Aspergillus oryzae: an efficient catalyst for acetylation in organic solvent [J]. Enzyme and Microbial Technology, 2000, 27(8):626-630.
    181. Converti A, Del Borghi A, Gandolfi R, et al., Simplified kinetics and thermodynamics of geraniol acetylation by lyophilized cells of Aspergillus oryzae [J]. Enzyme and Microbial Technology, 2002, 30(2):216-223.
    182. Converti A, Gandolfi R, Zilli M, et al., Synthesis of ethyl phenylacetate by lyophilized mycelium of Aspergillus oryzae [J]. Applied Microbiology and Biotechnology, 2005, 67(5):637-640.
    183. Spizzo P, Basso A, Ebert C, et al., Resolution of (R,S)-flurbiprofen catalysed by dry mycelia in organic solvent [J]. Tetrahedron, 2007, 63(45):11005-11010.
    184. Long K, Ghazali H M, Ariff A, et al., Acidolysis of several vegetable oils by mycelium-bound lipase of Aspergillus flavus link [J]. Journal of the American Oil Chemists Society, 1997, 74(9):1121-1128.
    185. Kaieda M, Nagayoshi M, Hama S, et al., Enantioselective transesterification using immobilized Aspergillus oryzae overexpressing lipase [J]. Applied Microbiology and Biotechnology, 2004, 65(3):301-305.
    186. Tamalampudi S, Talukder M M R, Hama S, et al., Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing lipase-encoding gene from Candida antarctica [J]. Applied Microbiology and Biotechnology, 2007, 75:387-395.
    187. Molinari F, Villa R, and Aragozzini F, Production of geranyl acetate and other acetates by direct esterification catalyzed by mycelium of Rhizopus delemar in organic solvent [J]. Biotechnology Letters, 1998, 20(1):41-44.
    188. Romano A, Gandolfi R, Molinari F, et al., Esterification of phenylacetic and 2-phenylpropionic acids by mycelium-bound carboxylesterases [J]. Enzyme and Microbial Technology, 2005, 36(4):432-438.
    189. Ban K, Hama S, Nishizuka K, et al., Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production [J]. Journal of Molecular Catalysis B-Enzymatic, 2002, 17(3-5):157-165.
    190. Razak C N A, Musani R, and Basri M, Characterization of membrane-bound lipase from a thermophilic Rhizopus oryzae isolated from palm oil mill effluent [J]. Journal of the American Oil Chemists Society, 1999, 76(2):171-174.
    191. Converti A, Del Borghi A, Gandolfi R, et al., Reactivity and stability of mycelium-bound carboxylesterase from Aspergillus oryzae [J]. Biotechnology and Bioengineering, 2002, 77(2):232-237.
    192. Long K, Ghazali H M, Ariff A, et al., Mycelium-bound lipase from a locally isolated strain of Aspergillus flavus link: Pattern and factors involved in its production [J]. Journal of Chemical Technology and Biotechnology, 1996, 67(2):157-163.
    193. Liew M Y B, Ghazali H M, Long K, et al., Production and transesterification activity of mycelium-bound lipase from Rhizomucor miehei [J]. Asia-Pacific Journal of Molecular Biology and Biotechnology, 2000, 8(1):57-66.
    194. Loo J L, Lai O M, Long K, et al., Fatty acid preference of mycelium-bound lipase from a locally isolated strain of Geotrichum candidum [J]. World Journal of Microbiology & Biotechnology, 2007, 23:1771-1778.
    195. de Maria P D, Martinez-Alzamora F, Moreno S P, et al., Heptyl oleate synthesis as useful tool to discriminate between lipases, proteases and other hydrolases in crude preparations [J]. Enzyme and Microbial Technology, 2002, 31(3):283-288.
    196. Pencreach G and Baratti J C, Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: A simple test for the determination of lipase activity in organic media [J]. Enzyme and Microbial Technology, 1996, 18(6):417-422.
    197. Jachmanian I, Schulte E, and Mukherjee K D, Substrate selectivity in esterification of less common fatty acids catalysed by lipases from different sources [J]. Applied Microbiology and Biotechnology, 1996, 44(5):563-567.
    198. Kamat S, Beckman E J, and Russell A J, Role of Diffusion in Nonaqueous Enzymology .1. Theory [J]. Enzyme and Microbial Technology, 1992, 14(4):265-271.
    199. Zhang T Z, Yang L R, and Zhu Z Q, Determination of internal diffusion limitation and its macroscopic kinetics of the transesterification of CPB alcohol catalyzed by immobilized lipase in organic media [J]. Enzyme and Microbial Technology, 2005, 36(2-3):203-209.
    200.虞龙and张宁,离子注入微生物诱变育种的研究与应用进展[J].微生物学杂志, 2005, 25(2):80-83.
    201.梁彦龙,王运吉, and张苓花,高产植酸酶酵母Candida Krusei WZ2001的等离子束诱变选育[J].大连轻工业学院学报, 2002, 21(4):255-258.
    202.谈重芳,吴健,史贤明, et al.,布洛芬立体拆分菌株的筛选与离子束诱变选育[J].中国抗生素杂志, 2003, 28(3):141-143.
    203.古绍彬,葛春梅,汪青宏, et al.,产L-乳酸米根霉PW352特性及低能离子注入诱变高产菌株研究[J].工业微生物, 2004, 34(1):12-16.
    204. Liu J, Liu M, Wang J, et al., Enhancement of the Gibberella zeae growth inhibitory lipopeptides from a Bacillus subtilis mutant by ion beam implantation [J]. Applied Microbiology and Biotechnology,2005, 69(2):223-228.
    205. Li S C, Yao J M, and Yu Z L, Studies on mutation breeding of high-yielding xylanase strains by low-energy ion beam implantation [J]. Plasma Science & Technology, 2007, 9(2):248-251.
    206.李市场,离子束注入木聚糖酶产生菌(Aspergillus niger)的诱变选育[D].博士论文.合肥:中国科学院等离子体物理研究所, 2005.
    207.谈重芳,布洛芬立体拆分菌株的离子束诱变选育及酶学特性研究[D].博士论文.郑州:郑州大学, 2005.
    208.王雁萍,离子束诱变环糊精葡萄糖基转移酶高产菌株选育[D].博士论文.郑州:郑州大学, 2005.
    209. Ozer D and Elibol M, Effects of some factors on lipase production by Rhizopus arrhizus [J]. Journal of Food Science and Technology-Mysore, 2000, 37(6):661-664.
    210. Liu C H, Lu W B, and Chang J S, Optimizing lipase production of Burkholderia sp by response surface methodology [J]. Process Biochemistry, 2006, 41(9):1940-1944.
    211. Shieh C J, Liao H F, and Lee C C, Optimization of lipase-catalyzed biodiesel by response surface methodology [J]. Bioresource Technology, 2003, 88(2):103-106.
    212. Cobb B D and Clarkson J M, A Simple Procedure for Optimizing the Polymerase Chain-Reaction (Pcr) Using Modified Taguchi Methods [J]. Nucleic Acids Research, 1994, 22(18):3801-3805.
    213. Rao R S, Prakasham R S, Prasad K K, et al., Xylitol production by Candida sp.: parameter optimization using Taguchi approach [J]. Process Biochemistry, 2004, 39(8):951-956.
    214. Mohan S V, Rao N C, Prasad K K, et al., Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: Process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology [J]. Biotechnology and Bioengineering, 2005, 90(6):732-745.
    215. Sabbaghian E S and Roostaazad R, Application of the Taguchi method to optimize the process conditions in the production of lipase by Pseudomonas aeroginosa B-3556 [J]. Iranian Journal of Science and Technology Transaction B-Engineering, 2005, 29(B5):475-482.
    216. Prasad K K, Mohan S V, Rao R S, et al., Laccase production by Pleurotus ostreatus 1804: Optimization of submerged culture conditions by Taguchi DOE methodology [J]. Biochemical Engineering Journal, 2005, 24(1):17-26.
    217. Prakasham R S, Rao C S, Rao R S, et al., Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology [J]. Applied Biochemistry and Biotechnology, 2005, 120(2):133-144.
    218.李永红,离子束的生物效应及诱变机理研究进展[J].河南农业大学学报, 2002, 36(2):159-163.
    219. Tang M L and Yu Z L, Bioeffects of low energy ion beam implantation: DNA damage, mutation and gene transfer [J]. Plasma Science & Technology, 2007, 9(4):513-518.
    220.颜兴和,提高华根霉Rhizopus chinensis脂肪酶酶促催化酯合成能力的研究[D].硕士论文.无锡:江南大学, 2004.
    221. Ciafardini G, Zullo B A, and Tride A, Lipase production by yeasts from extra virgin olive oil [J]. Food Microbiology, 2006, 23(1):60-67.
    222. Kwon D Y and Rhee J S, A Simple and Rapid Colorimetric Method for Determination of Free Fatty-Acids for Lipase Assay [J]. Journal of the American Oil Chemists Society, 1986, 63(1):89-92.
    223. LaemmLi U K, Cleavage of Structural Proteins During Assembly of Head of Bacteriophage-T4 [J].Nature, 1970, 227(5259):680-&.
    224. Smith P K, Krohn R I, Hermanson G T, et al., Measurement of Protein Using Bicinchoninic Acid [J]. Analytical Biochemistry, 1985, 150(1):76-85.
    225.颜兴和and徐岩,华根霉脂肪酶有机相合成酶活的研究[J].工业微生物, 2005, 35(2):24-28.
    226. Obradors N, Montesinos J L, Valero F, et al., Effects of Different Fatty-Acids in Lipase Production by Candida-Rugosa [J]. Biotechnology Letters, 1993, 15(4):357-360.
    227. Athenstaedt K and Daum G, The life cycle of neutral lipids: synthesis, storage and degradation [J]. Cellular and Molecular Life Sciences, 2006, 63(12):1355-1369.
    228. Li D, Wang B, and Tan T, Production enhancement of Rhizopus arrhizus lipase by feeding oleic acid [J]. Journal of Molecular Catalysis B: Enzymatic, 2006, 43:40-43.
    229. Li C Y, Cheng C Y, and Chen T L, Fed-batch production of lipase by Acinetobacter radioresistens using Tween 80 as the carbon source [J]. Biochemical Engineering Journal, 2004, 19(1):25-31.
    230.阮振华,王栋, and徐岩,华根霉胞内脂肪酶同功酶酶学性质研究[J].微生物学通报, 2007, 34(6):1042-1046.
    231. Rapp P, Production, Regulation, and Some Properties of Lipase Activity from Fusarium-Oxysporum F Sp Vasinfectum [J]. Enzyme and Microbial Technology, 1995, 17(9):832-838.
    232. Macris J B, Kourentzi E, and Hatzinikolaou D G, Studies on localization and regulation of lipase production by Aspergillus niger [J]. Process Biochemistry, 1996, 31(8):807-812.
    233. Dong W, Yan X, and Yun T, Synthetic activity enhancement of membrane-bound lipase from Rhizopus chinensis by pretreatment with isooctane [J]. Bioprocess Biosystem Engineering, 2007, 30:147-155.
    234. Matsumoto T, Takahashi S, Ueda M, et al., Preparation of high activity yeast whole cell bioctalysts by optimization of intracellular production of recombinant Rhizopus oryzae lipase [J]. Journal of Molecular Catalysis B-Enzymatic, 2002, 17(3-5):143-149.
    235. Hama S, Yamaji H, Kaieda M, et al., Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production [J]. Biochemical Engineering Journal, 2004, 21(2):155-160.
    236. Molinari F, Gandolfi R, and Aragozzini F, Microbial catalyzed esterification of primary and secondary alcohols in organic solvent [J]. Biotechnology Techniques, 1996, 10(2):103-108.
    237. Molinari F, Bertolini C, Aragozzini F, et al., Selective acylation of monosaccharides using microbial cells [J]. Biocatalysis and Biotransformation, 1999, 17(2):95-102.
    238. Yan J Y and Yan Y J, Optimization for producing cell-bound lipase from Geotrichum sp and synthesis of methyl oleate in microaqueous solvent [J]. Applied Microbiology and Biotechnology, 2008, 78(3):431-439.
    239. Wang D, Yan X, and Yun T, Synthetic activity enhancement of membrane-bound lipase from Rhizopus chinensis by pretreatment with isooctane [J]. Bioprocess Biosystem Engineering, 2007, 30:147-155.
    240. Peberdy J F, Protein Secretion in Filamentous Fungi-Trying to Understand a Highly Productive Black-Box [J]. Trends in Biotechnology, 1994, 12(2):50-57.
    241. Mitschka P, Simple Conversion of Brookfield Rvt Readings into Viscosity Functions [J]. Rheologica Acta, 1982, 21(2):207-209.
    242. Nielsen J, Johansen C L, Jacobsen M, et al., Pellet Formation and Fragmentation in Submerged Cultures of Penicillium chrysogenum and Its Relation to Penicillin Production [J]. BiotechnologyProgress, 1995, 11(1):93-98.
    243. Tucker K G and Thomas C R, Mycelial morphology: the effect of spore inoculum level [J]. Biotechnology Letters, 1992, 14:1071-1074.
    244. Kelly S, Grimm L H, Hengstler J, et al., Agitation effects on submerged growth and product formation of Aspergillus niger [J]. Bioprocess and Biosystems Engineering, 2004, 26(5):315-323.
    245. Heydarian S M, Mirjalili N, and Ison A P, Effect of shear on morphology and erythromycin production in Saccharopolyspora erythraea fermentations [J]. Bioprocess Engineering, 1999, 21(1):31-39.
    246. Du L X, Jia S J, and Lu F P, Morphological changes of Rhizopus chinesis 12 in submerged culture and its relationship with antibiotic production [J]. Process Biochemistry, 2003, 38(12):1643-1646.
    247. Bocking S P, Wiebe M G, Robson G D, et al., Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity [J]. Biotechnology and Bioengineering, 1999, 65(6):638-648.
    248. Olsvisk E S and Kristiansen B, Rheology of filamentous fermentations [J]. Biotechnology Advances, 1994, 12(1-39).
    249. Cui Y Q, vanderLans R, and Luyben K, Effect of agitation intensities on fungal morphology of submerged fermentation [J]. Biotechnology and Bioengineering, 1997, 55(5):715-726.
    250. El-Enshasy H, Kleine J, and Rinas U, Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger [J]. Process Biochemistry, 2006, 41(10):2103-2112.
    251. Hille A, Neu T R, Hempel D C, et al., Oxygen profiles and biomass distribution in biopellets of Aspergillus niger [J]. Biotechnology and Bioengineering, 2005, 92(5):614-623.
    252. Gomez R, Schnabel I, and Garrido J, Pellet growth and citric acid yield of Aspergillus niger 110 [J]. Enzyme and Microbial Technology, 1988, 10:188-191.
    253. Blanch H W and Bhavaraju S M, Bioengineering Report Non-Newtonian Fermentation Broths - Rheology and Mass-Transfer [J]. Biotechnology and Bioengineering, 1976, 18(6):745-790.
    254. Gogus N, Tari C, Oncu S, et al., Relationship between morphology, rheology and polygalacturonase production by Aspergillus sojae ATCC 20235 in submerged cultures [J]. Biochemical Engineering Journal, 2006, 32(3):171-178.
    255. Sinha J, Bae J T, Park J P, et al., Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers [J]. Applied Microbiology and Biotechnology, 2001, 56(1-2):88-92.
    256. Viniegra-Gonzalez G and Favela-Torres E, Why solid-state fermentation seems to be resistant to catabolite repression [J]. Food Technology and Biotechnology, 2006, 44:397-406.
    257. Hemmersdorfer H, Leuchtenberger A, Wardsack C, et al., Influence of culture conditions on mycelial structure and polygalactorunidase synthesis of Aspergillus niger [J]. Journal of Basic Microbiology, 1987, 27:309-315.
    258. Oda M, Kaieda M, Hama S, et al., Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production [J]. Biochemical Engineering Journal, 2005, 23(1):45-51.
    259. Nakashima T, Fukuda H, Nojima Y, et al., Intracellular Lipase Production by Rhizopus chinensis Using Biomass Support Particles in a Circulating Bed Fermenter [J]. Journal of Fermentation andBioengineering, 1989, 68(1):19-24.
    260. Ellaiah P, Prabhakar T, Ramakrishna B, et al., Production of lipase by immobilized cells of Aspergillus niger [J]. Process Biochemistry, 2004, 39(5):525-528.
    261. Adamczak M and Bednarski W, Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles [J]. Process Biochemistry, 2004, 39:1347-1361.
    262. Kim M J and Cho H, Pseudomonas Lipases as Catalysts in Organic-Synthesis Specificity of Lipoprotein-Lipase [J]. Journal of the Chemical Society-Chemical Communications, 1992(19):1411-1413.
    263. Gandhi N N, Sawant S B, and Joshi J B, Specificity of a Lipase in Ester Synthesis - Effect of Alcohol [J]. Biotechnology Progress, 1995, 11(3):282-287.
    264. Janssen A E M, Vaidya A M, and Halling P J, Substrate specificity and kinetics of Candida rugosa lipase in organic media [J]. Enzyme and Microbial Technology, 1996, 18(5):340-346.
    265. Haas M J, Joerger R D, King G, et al., The use of rational mutagenesis to modify the chain length specificity of a Rhizopus delemar lipase. Enzyme Engineering Xiii, [M]. New York Acad Sciences: New York, 1996, 799:115-128.
    266. Shimada Y, Sugihara A, Nakano H, et al., Fatty acid specificity of Rhizopus delemar lipase in acidolysis [J]. Journal of Fermentation and Bioengineering, 1997, 83(4):321-327.
    267. Bezbradica D, Mijin D, Siler-Marinkovic S, et al., The effect of substrate polarity on the lipase-catalyzed synthesis of aroma esters in solvent-free systems [J]. Journal of Molecular Catalysis B-Enzymatic, 2007, 45(3-4):97-101.
    268. Bezbradica D, Karalazic I, Ognjanovic N, et al., Studies on the specificity of Candida rugosa lipase catalyzed esterification reactions in organic media [J]. Journal of the Serbian Chemical Society, 2006, 71(1):31-41.
    269. Peter F and Preda G, Characterisation of pancreatic lipase substrate specificity in organic reaction media by a kinetic method [J]. Journal of Molecular Catalysis B Enzymatic, 2002(19-20):467-472.
    270. Sandoval G, Condoret J S, Monsan P, et al., Esterification by immobilized lipase in solvent-free media: Kinetic and thermodynamic arguments [J]. Biotechnology and Bioengineering, 2002, 78(3):313-320.
    271. Foresti M L and Ferreira M L, Frequent analytical/experimental problems in lipase-mediated synthesis in solvent-free systems and how to avoid them [J]. Analytical and Bioanalytical Chemistry, 2005, 381(7):1408-1425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700