用户名: 密码: 验证码:
酶法制备S-西酞普兰关键中间体及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西酞普兰对5-羟色胺再摄取的抑制活性主要依赖于S-对映体。S-西酞普兰作为单一对映体药物上市,由于具有低剂量、高疗效等优点,日渐取代消旋西酞普兰,成为最畅销的抗抑郁症药物之一。本文重点研究S-西酞普兰的制备,以西酞普兰关键中间体的拆分为主线,开展了以下四个方面的工作:1.脂肪酶催化转酯化及醇解反应拆分西酞普兰关键中间体,研究拆分过程的动力学并建立模型;2.拆分后底物与产物的分离;3.无效对映体的利用;4.S-西酞普兰的制备及工艺路线放大。
     首先,研究有机相中脂肪酶催化转酯化反应与醇解反应两条途径远程拆分西酞普兰二醇中间体,并分别建立动力学模型。结果表明转酯化反应的拆分效果优于醇解反应。
     研究脂肪酶催化转酯化反应远程拆分西酞普兰二醇中间体及动力学。通过筛选,确定Novozym 435为实验用酶,乙酸乙烯酯为酰基供体,乙腈为溶剂。考察了各种因素的影响以及酶的重复利用,确定较优的反应条件为:二醇浓度60mmol/L,二醇与乙酸乙烯酯比例为1:5,酶浓度为10 mg/mL,摇床转速250 r/min,温度30℃。反应22 h后,e.e._s可以达到99.1%,S-二醇收率为40.4%,酶的半衰期可达364.8 h。研究无溶剂体系(乙酸乙烯酯为溶剂)中酶催化转酯化反应动力学。通过计算Thiele模量及Biot数,确定该反应体系中可忽略内、外扩散的影响。实验表明,二醇的R-,S-对映体均对酶产生抑制,产物抑制及酶的失活可以忽略。因此,该反应符合具有底物竞争性抑制的双底物双产物乒乓-双双反应机制。根据反应机理推导动力学方程,并考虑自酯化反应的影响,分别得到R-,S-二醇乙酸酯的反应速率方程。利用Matlab程序对不同底物浓度的时间-浓度过程曲线进行拟合得到模型参数。模型计算值与实验数据能较好的吻合,误差为12.8%。所得模型可较准确预测底物浓度对反应选择性的影响。
     研究脂肪酶催化醇解反应拆分西酞普兰二醇乙酸酯中间体及其动力学。通过筛选酶、酰基受体及溶剂,确定反应体系为:Novozym 435为实验用酶,异丁醇为酰基受体,溶剂为乙腈与甲基叔丁基醚的混合溶剂(MEBT/MeCN=1:3);考察各种因素对反应的影响,并优化反应条件。研究表明,酶催化醇解反应符合可逆的竞争性底物及产物抑制乒乓-双双反应机理。根据反应机理推导动力学方程,分别得到R-,S-二醇的反应速率方程。对不同底物浓度的时间-浓度过程曲线进行拟合得到模型参数,模型的计算值与实验数据吻合,误差为11.3%。
     其次,通过衍生化-萃取法分离拆分所得到的手性二醇及二醇乙酸酯。选用丁二酸酐作为衍生化试剂对二醇进行衍生化,通过筛选确定了甲苯-水相体系为二醇衍生物和二醇乙酸酯的较佳萃取分离体系。考察水相pH值及二醇乙酸酯浓度对分离的影响,得到较优的萃取条件为:水相pH 8.0,二醇乙酸酯初始浓度为10mmol/L,温度25℃。在此萃取条件下,二醇乙酸酯的分配系数为157.7。以S-二醇(ee值为99.5%)与二醇乙酸酯的混合物为原料,经过三次萃取,可分离得到ee值为98.4%的S-二醇,收率为86.0%。该衍生化-萃取法成本低,易放大,可为其他手性芳香胺醇的分离提供思路。
     第三,结合二次拆分与构型翻转对无效的R-二醇进行利用。将一次拆分后得到的光学纯度较低的二醇乙酸酯水解为二醇后进行二次转酯化拆分。利用动力学模型预测二次拆分过程,并通过实验验证发现控制反应转化率为20.8%,可得到ee值为91.2%的R-二醇乙酸酯。所得的R-二醇乙酸酯在酸性条件下闭环,构型翻转得到ee值为91.0%的S-西酞普兰,收率为98.0%。以ee值为98.2%的S-二醇为原料,在碱性条件下构型保持闭环合成S-西酞普兰,ee值为98.0%,产率为97.8%。
     最后,逐级放大酶催化转酯化反应并研究S-西酞普兰制备总工艺路线的放大。结合动力学模型预测与实验放大,将酶催化转酯化的反应体积逐步放大到1L和14L,实验结果表明酶催化转酯化反应没有明显的放大效应。研究S-西酞普兰制备的总工艺路线并进行小试放大,为工业化生产奠定基础。
Citalopram is a highly selective inhibitor of serotonin(5-HT) reuptake which contains a quaternary chiral center and almost the entire inhibitory activity resides in the S-enantiomer.S-citalporam,the single enantiomer drug with advantage of low dose and high efficacy,is one of the best-selling antidepressant and gradually replace the racemic citalopram.In this dissertation,the enzymatic preparation of citalopram chiral key intermediate was described.The main contents were as follows:1. Lipase-catalyzed remote resolution of citalopram key intermediate and kinetics study; 2.The separation of chiral diol and diol acetate after kinetic resolution;3.The utilization of unwanted R-enantiomer;4.S-citalopram synthesis and scale-up.
     Firstly,the lipase-catalyzed kinetic resolution of citalopram intermediate in organic media and its kinetics was studied.The lipase-catalyzed asymmetric transestereaction was superior to the asymmetric alcoholysis.
     The lipase-catalyzed remote kinetic resolution of diol,a key intermediate of citalopram,in organic media was studied.Through screening,the preferable system for the asymmetric transestereaction was:Novozym 435 as catalyst,acetonitrile as solvent and vinyl acetate as acyl donor.The influence of temperature,rotation speed, enzyme concentration and substrate concentration on the enzymatic resolution was studied.Reusability study of lipase was also carried out.The optimal condition was as following:60 mmol/L diol,the molar ratio of diol to vinyl acetate,1 to 5,10 mg/mL lipase,250 r/min rotation speed and 30℃.After 22h reaction,the yield of S-diol was 40.4%and the e.e._s was 99.1%.The E value of the reaction was 25.3 and the half-life of the lipase was 364.8 h.The kinetic modeling of Novozym 435 catalyzed remote resolution of diol was studied using vinyl acetate as acylating agent in solvent-free system.The substrate inhibition by each enantiomer of diol was proved.Enzyme deactivation and product inhibition were studied and could be negligible.The diffusion limitation was proved to be negligible by the calculation of Thiele module and Biot number.A kinetic model based on ping-pong bi-bi mechanism with competitive substrates using King-Altman method was proposed.The spontaneous transesterification was also considered.The reaction rate equation of both R- and S-diol acetate were derived.The model parameters were successfully simulated by Matlab program using time-concentration curves of different diol concentrations and the simulated values fitted the experimental values well with an average relative error of 12.8%.Furthermore,the developed model was used to investigate the effect of diol concentration on reaction enantioselectivity.
     The lipase-catalyzed asymmetric alcoholysis of diol acetate has been studied. Through screening,the preferable system for the asymmetric reaction was:Novozym 435 as catalyst,isobutyl alcohol as acyl accepter and the mixed solvent(acetonitrile: methyl tert-butyl ether=3:1).The influence of various parameters on the enzymatic resolution was studied and the reaction condition was optimized.A kinetic model based on ping-pong bi-bi mechanism with competitive substrates was proposed.The product inhibition by each enantiomer of diol and substrate inhibition by isobutyl alcohol were also considered.The reaction rate equation of both R- and S- diol were derived.The model parameters were successfully simulated by Matlab program using time-concentration curves of different diol acetate concentrations and the simulated values fitted the experimental values well with an average relative error of 11.3%.
     Secondly,a derivatization-extraction method was developed to separate diol from diol acetate after lipase-catalyzed kinetic resolution.It was found that succinic anhydride was the best derivative agent and water/toluene was the optimal extraction system.The effects of pH and initial diol acetate concentration on the total distribution coefficients of diol acetate were investigated.With the extraction conditions of initial diol acetate concentration of 10 mmol/L,pH 8.0 and 25℃,the total distribution coefficient achieved 157.7.The practical extraction process of the mixture of diol(ee value 99.5%) and diol acetate obtained by lipase-catalyzed reaction was carried out,within three extraction stages,the ee value and the yield of S-diol were 98.4%and 86.0%,respectively.This extraction method with anhydrides derivatization is promising in the separation of aromatic amino-alcohols for its low expense and easy scale up.
     Thirdly,the unwanted R-enantiomer was converted into S-citalopram by cyclic resolution and stereoinversion.The cyclic resolution of the R-diol with low optical purity obtained from the first resolution was carried out by asymmetric transestereaction.Using the kinetic model to predict the reaction process,R-diol acetate with ee value of 91.2%was obtained by controlling the conversion of cyclic resolution under 20.8%.R-diol was stereoinverted to S-citalopram by cyclization in acidic condition with 98.0%yield and ee value of 91.0%.S-citalopram with ee value of 98.0%was obtained by cyclization of S-diol with ee value of 98.2%in alkaline condition and the yield was 97.8%.
     Fourthly,the reaction volume of enzymatic asymmetric transestereaction of diol was scale-uped to 1 L and 14 L,gradually.There was no significant scale-up effect and the kinetic model fitted the result well.Scale-up of S-citalopram synthesis route was carried out for industrial production.
引文
[1]童晓欣,童萼塘.抗抑郁药历史与研究进展[J].医药导报,2009,28:135-139.
    [2]李朋云,董文心.抗抑郁药物的研究概况[J].中国医药工业杂志,2006,37:779-782.
    [3]于振云.抗抑郁药物的生产发展与市场前景[J].医药化工,2005,13:20-27.
    [4]张建忠.国外抗抑郁药物的进展及其国产化现状[J].上海医药.2003,24:270-273.
    [5]李爱军.系列新型抗抑郁剂设计合成及生物活性评价[D].天津大学,天津,2006,1-6.
    [6]张均田.抑郁症的发病机制及药物的研究现状:神经药理学研究进展[M].北京:人民卫生出版社,2002,30-37.
    [7]Spinks D,Spinks G.Serotonin reuptake inhibition:an update on current research strategies[J].Curr.Med.Chem.,2002,9:799-810.
    [8]Pal P,Valeria K.Trends in the development of new antidepressants:is there a light at the end of the tunnel?[J].Curr.Med.Chem.,2004,11:925-943.
    [9]Yadid G,Zangen A,Dmitrochenko A,et al.Screening for new antidepressants with fast onset and long-lasting action[J].Dev.Res.,2000,50:392-399.
    [10]Joubert AF,Sanchez C,Larsen F.Citalopram.Hum.Psychopharm[J].Clin.2000,15:439-451.
    [11]杜瑜,李焕德.抗抑郁新药西酞普兰的药代动力学[J].中国临床药理学杂志.2005,96:307-310.
    [12]Connie S,Klaus P,Bogeso,Bjarke E,et al.Claus Braestrup.Escitalopram versus citalopram:the surprising role of the R-enantiomer[J].Psychopharmacology,2004,174:163-176.
    [13]Connie S.The pharmacology of citalopram enantiomers:The antagonism by R-Citalopram on the effect of S-Citalopram[J].Basic Clin.Pharmacol.Toxicol.,2006,99:91-95.
    [14]Top 200 brand drugs by units in 2007.Drug Topics,February 18,2008.http://drugtopics.modernmedicine.com/drugtopics/Top200Drugs/ArticleStandard/article/detail/491194.
    [15]张春文,孙维宁,韩建国.西酞普兰合成工艺的研究进展[J].化学工程师.2008, 159:30-33.
    [16]余红霞,郭峰.西酞普兰合成路线图解[J].中国医药工业杂志.2003,34:535-536.
    [17]Malik A,Palandocken H.Process for the preparation of citalopram [P].WO03029236,2003
    [18]Nandkumar C.Process for the manufacture of citalopram hydrobromide from 5-bromophthalide[P].US20040077870,2004
    [19]Talasila S R,Nekkanti S R,Processses for the preparation of escitalopram and precursor[P].WO2004065375,2004
    [20]Petersen H,Bogeso KP,Sommer M B.Method for the preparation of citalopram [P].US:6291689,2001-09-18.
    [21]Dallasta L,Casazza U,Petersen H.Method for the preparation of citalopram[P].WO 0023431,2000
    [22]Greenwood,Alan,Kenneth,et al.Process for the preparation of citalopram[P].WO:0166536,2001
    [23]Kumar N,Nayyar S,Gup M.Processes for the preparation of citalopram and its intermediate 5-aminophthalide[P].WO:200610355,2006
    [24]Petersen H,Rock M H,Svane H.Method for the p reparation of citalopram[P].WO:2000013648,2000
    [25]Petersen H.Method for the p reparation of citalopram[P].WO9819513,1998
    [26]Maier N M,Franco P,Lindner W.Speparation of enantiomers:needs,challenges,perspectives[J].J.Chrommatogr.A.,2001,906:3-33.
    [27]Sheldon R A.Industrial synthesis of optically active compounds[J].Chem.Ind.,1990,121:212-217.
    [28]王军.手性拆分膜的制备及性能研究[D].清华大学,北京,2006,4-7.
    [29]Bech S M,Nielsen O,Petersen H,et al.Preparation of escitalopram useful as an antidepressant drug involves liquid chromatographic separation of enantiomers of chiral citalopram with a chiral stationary phase[P].WO 006449A1,2003.
    [30]Bech S M.Method for the preparation of escitalopram[P].WO0300649,2003.
    [31]Humble R E,Christensen T V.Process for the preparation of racemic citalopram and/or S-or R-citalopram by separation of a mixture of R-and S-citalopram[P].WO03000672,2003.
    [32]梅汝南,郭殿武,王树龙.西酞普兰中间晶体碱[P].CN 1629153,2005.
    [33]TSE,Hoi,Lun,Allan.Process and intermediates for preparing escitalopram[P].WO03087081,2003.
    [34]Talasila S R,Nekkanti S R,Processses for the preparation of escitalopram and precursor[P].WO2004065375,2004.
    [35]Klaus P B,Jens P.Pharmaceutically useful(+)-1-(3-dimethylaminopropyl)-1-(4'-fluorophenyl)-1.3-dihydrosoben-zofuran-5-carbonitrile and non-toxic acid addition salts thereof[P].US 4943590,1990.
    [36]Elati C R,Kolla N,Vankawala P J,Gangula S.et al.Substrate modification approach to achieve efficient resolution:didesmethylcitalopram:A key intermediate for escitalopram[J].Org.Process Res.Dev.,2007.11:289-292.
    [37]Solares LF,Brieva R,Quiros M.et al.Enzymatic resolution of a quaternary stereogenic centre as the key step in the synthesis of(S)-(+)-citalopram[J].Tetrahedron:Asymmetry,2004 15:341-345.
    [38]Giovanni C,Silvia R,Marco T,et al.Chemo-enzymatic process for preparation of escitalopram.US 2007/0238887 A1
    [39]Zaks A,Klibanov A M.Enzymatic catalysis in organic media at 100℃[J].Science,1984,224:1249-1256.
    [40]彭立凤.有机介质中脂肪酶催化反应在有机合成中的应用[J].生物工程进展,1999,19:61-68.
    [41]熊健.化学-酶法合成(S)-α-氰基苄醇乙酸酯及其动力学研究[D].浙江大学,杭州,2007,5-6.
    [42]Jaeger K E,Eggert T.Lipases for biotechnology[J].Curr.Opin.Biotechnol.,2002,13:390-397.
    [43]Caner H,Groner E,Levy L.Trends in the development of chiral drugs[J].Drug Discovery Today,2004,9:105-110.
    [44]孙志浩主编.生物催化工艺学[M].北京:化学工业出版社,2005,182-185.
    [45]May O,Nguyen P T,Arnold F H.Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine[J].Nature Biotechnol.,2000,18:317-320.
    [46]Cirino P C,Arnold F H.Protein engineering of oxygenases for biocatalysis[J].Curr.Opin.Chem.Biol.,2002,6:130-135.
    [47]Reetz M T.Directed evolution of selective enzymes and hybrid catalysts[J].Tetrahedron,2002,58:6595-6602.
    [48]Bornscheuer U T,Pohl M.Improved biocatalysts by directed evolution and rational protein design[J].Curr.Opin.Chem.Biol.,2000;5:137-143.
    [49]Choa A R,Yooa S K,Kima E J.Cloning,sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1[J].FEMS Microbiol.Lett.,2006,186:235-238.
    [50]Retz M L,Zonta A,Schimossek K,et al.Creation of enantioselective bioeatalysts for organic chemistry by in vitro evolution[J].Angew.Chem.Int.Ed.,1997,36:2830-2839.
    [51]Rotticci D,Rotticci-Mulder J C,Denman S,et al.Improved enantioselectivity of a lipase by rational protein engineering[J].Chem.Biol.Chem.,2001,2:766-770.
    [52]Magnusson A,Hult K,Holmquist M.Creation of an enantioselective hydrolase by engineered substrate assisted catalysis[J].J.Am.Chem.Soc.,2001,123:4354-4355.
    [53]Magnusson A O,Rotticci-Mulder J C,Alberto S,et al.Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B[J].Chem.Biol.Chem.,2005,6:1051-1056.
    [54]Horsman G P,Liu A M F,Henke E,et al.Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl 3-bromo-2-methylpropionate and ethyl 3-phenylbutyrate[J].Chem.Eur.J.,2003,9:1933-1939.
    [55]Berglund P.Controlling lipase enantioselectivity for organic synthesis[J].Biomol.Eng.,2001,18:13-22.
    [56]郭诤,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂.2003,28:6-12.
    [57]Villeneuve P,Muderhwa J M,Graille J,et al.Customizing lipases for biocatalysis:a survey of chemical,physical and molecular biological approaches[J].J.Mol.Catal.B:Enzym.,2000,9:113-120.
    [58]Cesar M,Jose M,Gloria F L,et al.Improvement of enzyme activity,stability and selectivity via immobilization techniques[J].Enzyme Microb.Technol.,200740:1451-1463.
    [59]Schrag J D,Yunge L I,Shan W U,et al.A Ser-His-Glu triad form the catalytic site of th lipase from Geotrichum Caladium[J].Nature.1991,351:761-765.
    [60]Kawauguchi Y,Honda H,Taniguchi-Morimura J,et al.The condon CUG is read as serinein an asporogenic yeast Candida Cylindracea[J].Nature.1989,341:164-170.
    [61]Overbeeke P L A,Govardhan C,Khalaf N,et al.Influence of lid conformation on lipase enantioselectivity[J].J.Mol.Catal.B:Enzym.,2000,10:385-393.
    [62]Zaida C,Gloria F L,Roberto F L,et al.Enhancement of Novozym-435 catalytic properties by physical or chemical modification[J].Process Biochem.2009,44:226-231.
    [63]Ueji S,Ueda A,Tanaka H,et al.Chemical modification of lipases with various hydrophobic groups improves their enantioselectivity in hydrolytic reactions[J].Biotechnol.Lett.2003,25:83-87.
    [64]Gu Q M,Sih C.Improving the enantioselectivity of the Candida cylindracea lipase via chemical modification[J].Biocatal.,1992,6:115-126.
    [65]Overbeeke P L A,Koops B C,Verheij H M,et al.Activity and enantioselectivity of modified lipases in organic solvents[J].Biocatal.Biotransform.,2000,18:59-70.
    [66]Cao L.Immobilised enzymes:science or art?[J].Curr.Opin.Chem.Biol.,2005,9:217-263.
    [67]曹黎明,陈欢林.酶的定向固定化方法及其对酶生物活性的影响.中国生物工程杂志[J].2003,23:22-29.
    [68]Palomo J M,Segura R L,Mateo C,et al.Synthesis of enantiomerically pure glycidol via a fully enantioselective lipase-catalyzed resolution[J].Tetrahedron:Asymmetry,2005,16:869-874.
    [69]Palomo J M,Segura R L,Fuentes M,et al.Unusual enzymatic resolution of (±)-glycidyl-butyrate for the production of(S)-glycidyl derivatives[J].Enzyme.Microb.Technol.,2006,38:429-435.
    [70]Li L,Li Q,Li F,et al.Arthrobacter sp.lipase immobilization for improvement in stability and enantioselectivity[J].Appl.Microbiol.Biotechnol.,2006,73:598-606.
    [71]Chaubey A,Parshad R,Koul S,et al.Enantioselectivity modulation through immobilization of Arthrobacter sp.lipase:kinetic resolution of fluoxetine intermediate[J].J.Mol.Catal B:Enzym.,2006,42:39-48.
    [72]Nakamura Y,Matsumoto T,Nomoto F,et al.Enhancement of activity of lipase-displaying yeast cells and their application to optical resolution of (R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate[J].Biotechnol.Prog.,2006,22:998-1002.
    [73]Sabbani S,Hedenstrbm E,Nordin O.The enantioselectivity of Candida rugosa lipase is influenced by the particle size of the immobilising support material[J].J.Mol.Catal B:Enzym.,2006,42:1-9.
    [74]Palomo J M,Segura R L,Fernandez-Lorente G,et al.Glutaraldehyde modification of lipases adsorbed on aminated supports:a simple way to improve their behaviour as enantioselective biocatalyst[J].Enzyme.Microb.Technol.,2007,40:704-712.
    [75]许建和,杨立荣,孙志浩.迅速发展的不对称生物催化技术[J].生物加工过程.2005.3:1-6.
    [76]Wang Y,Li Q,Zhang Z,et al.Solvent effects on the enantioselectivity of the thermophilic lipase QLM in the resolution of(R,S)-2-octanol and(R,S)-2-pentanol[J].J.Mol.Catal.B:Enzym.,2009,56:146-150.
    [77]Li C,Wang P,Zhao D,et al.Enantioselective enzymatic hydrolysis of racemic glycidyl butyrate by lipase from Bacillus subtilis with improved catalytic properties[J].J.Mol.Catal.B:Enzym.,2008,55:152-156.
    [78]Mohile S S,Potdar Ma K,Harjani J R,et al.Ionic liquids:efficient additives for Candida rugosa lipase-catalysed enantio selective hydrolysis of butyl 2-(4-chlorophenoxy)-propionate[J].J.Mol.Catal.B:Enzym.,2004,30(56):185-188.
    [79]辛嘉英,赵永杰,石彦国.水饱和离子液体中脂肪酶催化萘普生甲酯对映选择性水解[J].催化学报,2005,26:118-122.
    [80]Leonard V,Fransson L,Lamare S,et al.A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity towards pentan-2-ol[J].Chembiochem.,2007,8(6):662-667.
    [81]张玉彬.生物催化的手性合成[M].北京:化学工业出版社,2001,146.
    [82]Carrea G,Riva S,Properties and synthetic applications of enzymes in organic solvents[J].Angew.Chem.Int.Ed.,2000,39:2226-2254.
    [83]Carrea G,Riva S.Properties and synthetic applications of enzymes in organic solvents[J].Angew.Chem.Biol.,2004,39:2226.
    [84]Nyhlen J,Martin-Matute B,et al.Influence of delta-functional groups on the enantiorecognition of secondary alcohols by Candida antarctica lipase B[J].Chembiochem.,2008,12:1968-1974.
    [85]孙立水,高强,李荣勋.酯酶和脂肪酶对映选择性的改进技术[J].化工技术与开发.2008,137:32-35.
    [86]Adamczak.M,Krishna,S H.Strategies for improving enzymes for efficient biocatalysis[J].Food Technol.Biotechnol.,2004,42:251-264.
    [87]Gupta M N,Roy I.Enzymes in organic media-Forms,functions and applications[J].Eur.J.Biochem.,2004,271:2575-2583.
    [88]Davis B G.Chemical modification of biocatalysts[J].Curr.Opin.Biotechnol.2003:14:379-386.
    [89]Dodson G,Verma C S.Protein flexibility:its role in structure and mechanism revealed by molecular simulations[J].Cell.Mol.Life Sci.,2006,63:207-219.
    [90]Kazlauskas R J.Molecular modeling and biocatalysis:explanations,predictions,limitations,and opportunities[J].Curr.Opin.Chem.Biol.,2000,4:81-88.
    [91]Karjiban R A,Rahman M B A,Basri M,et al.Molecular Dynamics Study of the Structure,Flexibility and Dynamics of Thermostable L1 Lipase at High Temperatures[J].Protein Journal,2009,28:14-23.
    [92]Gotor-Fernandez V,Brieva R,Gotor V.Lipases:Useful biocatalysts for the preparation of pharmaceuticals.J.Mol.Catal.B:Enzym.,2006.40(3):111-120.
    [93]Solares L F,Diaz M,Rosario B,et al.Enzymatic resolution of new carbonate intermediates for the synthesis of(S)-(+)-zopiclone[J].Tetrahedron:Asymmetry,2002,13(23):2577-2582.
    [94]周翠玲,王利群,谢惠君.帕罗西汀的临床应用进展[J].中国新药与临床杂志,2003,22(1):53-57.
    [95]Gonzalo G,Diaz M,Rosario B,et al.Enzymatic alkoxycarbonylation reactions on the intermediate in the synthesis of(-)-paroxetine,trans-N-benzyloxycarbonyl-4-(4'-fluorophenyl)-3-hydroxymethyl-piperidine[J].Tetrahedron:Asymmetry,2003.14(12):1725-1731.
    [96]Gonzalo G,Diaz M,Rosario B,et al.Anhydrides as acylating agents in the enzymatic resolution of an intermediate of(-)-paroxetine[J].J.Org.Chem.,2003.68(8):3333-3336.
    [97]国效峰,赵靖平,陈晋东.度洛西汀:一种新型抗抑郁药[J].中国新药与临床杂志,2006,25(7):552-554.
    [98]艾建国,晋展.抗抑郁药Duloxetine Hydrochloride[J].药学进展,2003,27(3):188-189.
    [99]闵茗,刘燕,高哲石.抗抑郁药度洛西汀的临床应用[J].世界临床药物,2006,27(11):682-686.
    [100]Liu H L,Hoff B H,Anthonsen T.Chemo-enzymatic synthesis of the antidepressant duloxetine and its enantiomer[J].Chirality,2000,12:26-29.
    [101]Kamal A,Ramesh Khanna G B,Ramu R.Chemoenzymatic synthesis of both enantiomers of fluoxetine,tomoxetine and nisoxetine:lipase-catalyzed resolution of 3-aryl-3-hydroxypropanenitriles[J].Tetrahedron:Asymmetry,2002,13:2039-2051.
    [102]Jake L,Stymiest V B,Rosalind M,et al.A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity[J].Nature,2008,456(7223):778-783.
    [103]Karl B,Hansen.How to beat an alcohol problem[J].Nature,2008,456(7223):711-712.
    [104]Robert K,Pablo D M,Uwe T.Enzymatic Synthesis of Optically Active Tertiary Alcohols:Expanding the Biocatalysis Toolbox[J].ChemBioChem.,2008,9:491-498.
    [105]Hellstr H,Steinreiber A,Mayer S F,et al.Bacterial epoxide hydrolase-catalyzed resolution of a 2,2-disubstituted oxirane:optimization and upscaling[J].Biotechnol.Lett.,2001,23,169-173.
    [106]Purkarthofer T,Skranc W,Schuster C,et al.Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry[J].Appl.Microbiol. Biotechnol.,2007,76:309-320.
    [107]Mihovilovic M D,Leisch HG,Mereiter K.Microwave-mediated intramolecular Diels-Alder cyclization of biodihydroxylated benzoic acid derivatives[J].Tetrahedron Lett.,2004,45:7087-7096.
    [108]Hari Krishna S,Persson M,Bornscheuer U T.Enantioselective transesterification of a tertiary alcohol by lipase A from Candida Antarctica[J].Tetrahedron:Asymmetry,2002,13:2693-2696.
    [109]Coope F,Main B G.Biocatalytic resolution of a tertiary quinuclidinol ester using Pig liver esterase[J].Tetrahedron:Asymmetry,1995,6:1393-1398.
    [110]Holt J,Arends I W C E.Minnaard A J,et al.Hydrolase-catalysed preparation of chiral α,α-disubstituted cyanohydrin acetates[J].Adv.Synth.Catal.,2007,349:1341-1344.
    [111]Alper I,Cihangir T,Dogan O.Kinetic resolution of primary alcohols having remote stereogenic centers:lipase mediated kinetic resolution of (±)-3-chloro-3-arylpropanols[J].Tetrahedron:Asymmetry,2006,17:1561-1567,
    [112]Angoli M,Barilli A,Lesma G,et al.Remote stereocenter discrimination in the enzymatic resolution of piperidine-2-ethanol,short enantioselective synthesis of sedamine and allosedamine[J].J.Org.Chem.2003,68:9525-9527.
    [113]Petersen H,Rock M H,Peterson H.Preparation of citalopram by reaction of a halo-derivative with a cyanide source in the presence of a nickel catalyst[P].WO0011926.2000.
    [114]Klibanov,A M.Why are enzymes less active in organic solvents than in water?[J].Trends Biotechnol.,1997,15:97-103.
    [115]杜伟,宗敏华,凌均建.反应介质对酶选择性的影响[J].工业微生物,2000,30:58-64.
    [116]Sakai T.'Low-temperature method' for a dramatic improvement in enantioselectivity in lipase-catalyzed reactions[J].Tetrahedron:Asymmetry,2004,15:2749-2776.
    [117]Rizzi M,Stylos P,Riek A,et al.A kinetic study of immobilized lipase catalysing the synthesis of isoamyl acetate by transesterification in n-hexane[J]. Enzyme Microb.Technol.,1992,14:709-719.
    [118]颜思旭,蔡红玉主编.酶催化动力学原理与方法.厦门:厦门大学出版社,1987.
    [119]King E L,Altman C.A Schematic method of deriving the rate laws of enzyme-catalyzed reactions.J.Phys.Chem.,1956,60:1375-1378.
    [120]P.C.恩格尔著,孙冠文译.酶动力学.北京:科学出版社,1981.
    [121]Cleland W W.The kinetics of enzyme-catalyzed reactions with two or more substrates or products.Ⅰ.Nomenclature and rate equations[J].Biochim.Biophys.Acta.,1963,67:104-113.
    [122]Martinelle M,Hult K.Kinetics of acyl transfer reactions in organic media catalyzed by Candida antarctica lipase B[J].Biochim.Biophys.Acta.,1995:1251191-197.
    [123]章亭洲.S-乙酸-α-氰基-3-苯氧基苄酯的生物合成及其反应动力学[D].浙江大学,杭州,2001,77-79.
    [124]Li X F,Zong M H,Wu H,et al.Markedly improving Novozym 435-mediated regioselective acylation of 1-beta-D-arabinofuranosylcytosine by using co-solvent mixtures as the reaction media[J].J.Biotechnol.,2006,124:552-560.
    [125]Wu J,Zong M H,Wu H,et al.Efficient enzymatic regioselective benzoylation of 5-fluorouridine catalysed by Novozym 435[J].J.Chem.Technol.Biotechnol..2008,83:814-820
    [126]Bedell B A,MozhaevV V,Clark D S,et al.Testing for Diffusion Llimitations in salt-activated enzyme catalysts operating in organic solvents[J].Biotech.Bioeng.,1998,58:654-657.
    [127]Crank J.Mathematics of Diffusion,Oxford:Clarendon Press,1975,2~(nd) edition,89-96
    [128]Zhang T Z,Yang L R,Zhu Z Q.Determination of internal diffusion limitation and its macroscopic kinetics of the transesterification of CPB alcohol catalyzed by immobilized lipase in organic media[J].Enzyme Microb.Technol..2005,36:203-209.
    [129]戚以政,汪叔雄主编.生化反应动力学与反应器(第二版)[M].北京:化学工业出版社,1999,76-100.
    [130]Berendsen W R,Lapin A.Investigations of reaction kinetics for immobilized enzymes-Identification of parameters in the presence of diffusion limitation[J].Biotechnol.Progr..2006,22:1305-1312.
    [131]Ha J,Engler C R,Lee S J.Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads[J].Biotechnol.Bioeng.,2008,100:698-706.
    [132]Blanch H W,Clark D S.Biochemical engineering[M].New York:Marcel Dekker,Inc 1996.137-139.
    [133]Segel I H.Enzyme kinetics—behavior and analysis of rapid equilibrium and steady state enzyme systems[M].New York:John Wiley & Sons Inc,1993.957
    [134]Degueilcastaing M,Dejeso B,Drouillard S,et al.Enzymatic reactions in organic synthesis.2.Ester interchange of vinyl esters[J].Tetrahedron.Lett.,1987,28:953-954
    [135]Chulalaksananukul W,Condoret J S,Combes D.Geranyl acetate synthesis by lipase-catalyzed transesterification in supercritical carbon-dioxide[J].Enzyme.Microb.Technol.,1993,15:691-696.
    [136]Ghanem A.Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds[J].Tetrahedron,2007,631:721-1754.
    [137]Ghanem A,Aboul-Enein H Y.Lipase-mediated chiral resolution of racemates in organic solvents[J].Tetrahedron-Asymmetry 2004,15:3331-3351.
    [138]Enzo S,Silvana C,Pierangela C.Lipase-catalyzed deacylation by alcoholysis:A selective,useful transesterification reaction[J].Curr.Org.Chem.,2006,10:1095-1123.
    [139]Zhang J,Wu J P,Yang L R.The kinetic study on lipase-catalyzed asymmetric alcoholysis of alpha-cyano-benzyl acetate in organic media[J].J.Mol.Catal.B:Enzym.,2004,31:67-72.
    [140]吴坚平,王龙根,杨立荣.有机相中α-氰基-3-苯氧基苄醇乙酯的酶促不对称醇解反应[J].有机化学,2004,24:937-942.
    [141]杨立荣,罗积杏,吴坚平,唐世平.有机相中α-氰基-3-苯氧基苄醇乙酯的酶促醇解反应[J].有机化学,2003,23:1260-1263,
    [142]Vosmann K,Wiege B,Weitkamp P,et al.Preparation of lipophilic alkyl-(hydroxy)-benzoates by solvent-free lipase-catalyzed esterification and transesterification[J].Appl.Microbiol.Biotechnol.,2008,80:29-36.
    [143]Micaelo N M,Soares C M.Modeling hydration mechanisms of enzymes in nonpolar and polar organic solvents[J].Febs.Journal.,2007,274:2424-2436.
    [144]张健.有机相酶催化不对称醇解反应拆分α-氰基苄醇乙酯及其动力学研究[硕士论文].浙江大学,杭州,2005,41-43.
    [145]Daniel R,Yazbeck,Carlos A,et al.Challenges in the development of an efficient enzymatic process in the pharmaceutical industry[J].Tetrahedron:Asymmetry,2004,15:2757-2763.
    [146]Limeres F,Garcia R,Bayod M,et al.Enzymatic resolution of(+/-)-6-(5-chloropyridin-2-yl)-7-vinyloxy-carbonyloxy-6,7-dihydro[5H]pyrrolo[3,4-β]pyrazin-5-one[J].Tetrahedron:Asymmetry,1997,8:995-997.
    [147]Lars O.Method for the separation of intermediates which may be used for the preparation of escitalopram[P].WO2005077891,2005
    [148]Kim S J,Chun Yj.Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction[J].Sep.Sci.Technol.,2005,40:2095-2015.
    [149]Ince E,Kirbaslar S I.Liquid-Liquid equilibria of water-ethanol dibasic esters mixture(dimethyl adipate- dimethyl glutarate -dimethyl succinate) ternary system[J].Sep.Sci.Technol.,2004,39:3151-3162.
    [150]Shioji K,Ueno Y,Kurauchi Y,et al.Lipase-catalyzed kinetic resolution of P-chiral phosphorus compounds:enantiopreference of Pseudomonas lipase and Candida antarctica lipase[J].Tetrahedron Lett.,200,42:6569-6571.
    [151]Johnson C R,Xu Y,Nicolaou K C,et al.Enzymatic resolution of a key stereochemical intermediate for the synthesis of(-)-taxol[J].Tetrahedron Lett.1995,36:3291-3294.
    [152]白国义,张晨芳,陈立功,张月成.手性化合物的非目标对映体转化.现代化工[J].2007,27:66-69.
    [153]Helene P.Dynamic kinetic resolution[J].Tetrahedron,2003,59:8291-8327.
    [154]Pamies O,B(a|¨)ckvall J E.Chemoenzymatic dynamic kinetic resolution[J].Trends Biotechnol.,2004,22:130-135.
    [155]Kim M J,Ahn Y,Park J.Dynamic kinetic resolution and asymmetric transformations by enzymes coupled with metal catalysis[J].Curr.Opin.Biotechnol.,2002,13:578-587.
    [156]程能林主编.溶剂手册(第二版)[M].北京:化学工业出版社,1994,34-36
    [157]Xiong J,Wu J P,Xu G,et al.Separation of the mixture of mandelonitrile and mandelonitrile acetate by solvent extraction[J].Sep.Sci.Technol.,2007,42:379-388.
    [158]Xu H N,He C H.Separation and purification of puerarin with solvent extraction[J].Sep.Purif.Technol.,2007,56:397-400.
    [159]Eksangsri T,Habaki H,Kawasaki J.Extraction of compactin(ML-236B):equilibrium distribution in water-ethyl acetate system[J].Chem.Eng.Proce.,2004,43:1203-1210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700