用户名: 密码: 验证码:
太阳和空间等离子体中两个与波动相关的问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文重点研究了太阳与空间物理中两个与等离子体波动相关的具体问题:基于Cluster卫星观测数据的地磁尾磁场重联过程中低杂波提供的反常电阻的研究和日冕中电流片内冕环协同加热机制的研究。
     磁场重联是空间、天体以及实验室等离子体中的一种快速的释放能量的方式,例如太阳耀斑,日冕物质抛射,磁暴和磁层亚暴,以及托克马克约束装置中的锯齿模不稳定性等。关于磁场重联的研究一直以来就被大家所重视,而其中理想磁流体力学的磁冻结效应的破坏是磁重联理论最关注的中心问题。重联点的磁冻结效应的破坏为磁场重联提供了驱动机制。在这个问题上,反常电阻一直以来备受关注,被认为可以为快速磁重联提供有效的耗散机制。尤其是低杂漂移波不稳定性更被许多学者认为是提供反常电阻的首选。一直以来,不论是理论还是数值模拟都表明出现大的密度梯度和磁场梯度的地方,抗磁电流往往会激发低杂漂移波不稳定性,但是这些梯度一般分布在等离子体电流片的边缘,而真正需要反常电阻来激发磁重联的地方是在磁重联发生的电流片中心。也有一些研究者研究过重联过程中的低杂波以及与其相关的反常电阻,然而,由于他们的观测位置距重联点较远,得到的结果是“负的”,即低杂波提供的反常电阻远不能满足快磁重联所需。
     本文中,我们报道一则由Cluster卫星穿越电流片中心的磁尾重联事例。根据电场在低混杂频率附近能量谱求得相应的反常电阻,并将之与由卫星数据直接求得的重联发生所需的有效电阻进行比较。结果发现在电流片中心,X-点附近,低杂波频率湍流产生的反常电阻可以触发快速磁重联;而在磁场重联的出流区内电流片的中心(B_x=0),得到了与以往工作[Bale et al(2002);Carter et al(2002)]相同的“负的”结果,即低混杂漂移波产生反常电阻远远小于重联发生实际所需电阻。
     第二部分工作主要介绍日冕电流片中冕环的协同加热机制。日冕加热作为太阳物理的挑战性的问题之一,长达几十年来一直困扰着科学家。对于太阳表面(光球层、色球层)温度只有6000度左右的太阳,其外层大气——日冕的温度竟高达百万度,并因此导致巨大的能量以辐射、扩散、传导等形式从日冕流向太空中(在日冕活动区其能流密度高达~10~4Wm~(-2),即使宁静区强度也有3×10~2Wm~(-2))。一定存在一种加热机制使得日冕维持如此高的温度,平衡因为各种耗散机制引起的能量损失。基于此,科学家们提出了各种各样的加热机制。基于足点的运动时间尺度和剪切Alfvén波的特征传播频率的比较,这些加热机制大致可分为:由J·E≈ηJ~2引起的“直流”(DC)欧姆加热(或称焦耳加热)以及等离子体波——粒子相互作用引起的“交流”(AC)波加热两大类。对于在日冕等离子体子中究竟是电流片欧姆加热还是波加热,这一直是许多科学家致力研究的问题。
     但实际上我们认为在日冕电流片中两种加热机制相互关联、相互补充、相互影响的。因此,日冕加热过程问题很可能是一种与磁场拓扑位型紧密相关的协同加热(SyntheticHeating)过程。本文中,我们提出了一个奇异层电流片中欧姆加热和波加热相结合的协同加热机制。我们知道,磁场重联过程中会形成小尺度的奇异的电流片结构(这是日冕电流片加热理论提出的一种主要机制),冕环足点的对流运动也可以在磁分形面产生小尺度的电流片结构,同时这个小尺度的奇异电流片也可以由剪切流导致的Alfvén共振引发。与此同时,在奇异的电流片结构这样非常小的空间尺度上,必须考虑到双流体效应,从而可以激发动力学Alfvén波(Kinetic Alfvén Wave,KAW)。而动力学Alfvén波也是日冕波加热理论提出的一种主要机制。我们大致估算了存在奇异层电流片时两种加热机制的加热功率,可以看出,在小尺度的电流结构中,不仅存在欧姆加热,而且也存在波的加热,二者共同对加热日冕等离子体做出贡献。这样一个加热机制也许可以改善我们对日冕加热问题的理解。
     基于以上,本论文的安排如下,
     第一章,综述了本文课题的研究背景。介绍了基础物理知识,日冕物理,地磁层内磁场重联,以及涉及到的等离子体波动的基本内容;第二章,介绍了地磁尾重联观测问题中所用到的卫星,数据,及数据处理方法;第三章,重点在低杂波频段的湍流提供的反常电阻激发重联的问题研究;第四章,日冕加热问题的研究,在现有理论的基础上,提出电流片中日冕的协同加热,即欧姆加热和KAW波加热两种加热机制共同加热日冕等离子体。最后,我们对整篇论文进行了一个简要的总结。
This dissertation focuses on two important problems related to plasma waves in solar and space plasmas: studies for anomalous resistivity due to lower hybrid frequency turbulence in fast magnetic reconnection in magnetotail based on Cluster satellite data and the synthetic coronal heating mechanism on current sheets.
     The violation to the frozen-in condition in ideal magnetohydrodynamics (MHD) is fundamental for magnetic reconnection which is thought decisively important for fast energy release and conversion events in space, astrophysical and laboratory plasmas, such as solar flares, coronal mass ejections, magnetospheric storms and substorms, as well as sawtooth and disruptive instabilities in toroidal confined devices. Magnetic reconnection relies on the dissipation mechanism in a localized narrow zone called "diffusion" region, where the frozen-in condition is broken. Resistivity anomalously generated via the wave-particle interaction is thought to be able to provide sizable dissipation to explain violation of frozen-in condition and the sudden onset of fast magnetic reconnection.
     In this thesis, an intensive spectrum of turbulence peaked at lower-hybrid (LH) frequency near the X-point in a fast magnetic reconnection event is observed by the Cluster spacecraft in the magnetotail. The electric field power density around LH frequency is calculated in the thesis from observed spectrum to measure the resistivity anomalously generated by wave-particle interaction. It is found that, the turbulence at LH frequency induced anomalous resistivity is sufficient to trigger fast reconnection.
     On the other hand, one of the outstanding problems in solar physics is how to understand the multi-million degree temperature of the solar corona, and correspondingly the large energy flux lost from the corona on the order of~10~4Wm~2 in the active, and about 3×10~2 Wm~2 in the quiet regions. Thus, there should be a heating source to maintain the high temperature of the corona and balance the energy loss due to radiation, thermal diffusion and convection, as well as other ways. Based on whether the timescale of the motion of the footpoints is longer or shorter than the shear Alfvén transit time along the loop, the proposed heating mechanisms can be divided into two groups: direct current (DC) and alternating current (AC) heating. The DC heating is the dissipation of the magnetic energy in conventional Joule heating process. On the other hand, the AC heating, or wave heating, is thought to be caused by wave energy dissipation.
     In this dissertation, a synthetic heating model of solar coronal loops combining current sheet and wave heating mechanisms is proposed. The formation of singular current structures such as current sheets can be caused not only by magnetic reconnection and footpoint convection of coronal loops, but also Alfvén resonance induced by shear flows. On the other hand, with the Hall magnetohydrodynamics (MHD) effect, the kinetic Alfvén wave (KAW) can also be excited on such current structures. Therefore a synthetic energy dispassion process of both current and wave heating mechanisms on the current structures may lead to better understanding of the coronal heating problem.
     The contents of this thesis are arranged as follows:
     In Chapter 1, basic theory and physical problem of reconnection, coronal physics, and related plasma waves are introduced briefly; Chapter 2 describes the data from Cluster, and the related analysis methods used in this thesis; Chapter 3 presents the observation of the anomalous resistivity due to lower hybrid frequency turbulence in magnetotail during a reconnection event; In Chapter 4, a synthetic coronal heating model on current sheets is proposed. Then, a brief summary concludes the thesis in the last chapter.
引文
[1]章振大.日冕物理.北京:科学出版社,2000.
    [2]http://www.jrdili.com/Photo/PhotoShow.asp?PhotoID=81.
    [3]Peter H.The nature of the solar transition region.In:Wilson A,ed.From Solar Min to Max:Half a Solar Cycle.America:SOHO ESA Special Publication,2002,508:237.
    [4]林元章.太阳物理导论.北京:科学出版社,1998.
    [5]Gingerich O,Noyes R W,Kalkofen W et al.The harvard-smithsonian reference atmosphere.Sol.Phys.1971,18:347.
    [6]Stix M.The Sun.An Introduction,ⅩⅢ,192 figs.Springer Yerlag Berlin Heidelberg New York.Also Astronomy and Astrophysics Library,P 1989:390.
    [7]Vernazza J E,Avrett E H,Loeser R.Structure of the solar chromosphere ⅲ - models of the euv brightness components of the quiet-sun.Astrophys.J.Suppl.1981,45:635.
    [8]http://www.astron.sh.cn/picbase/solar/img/da/s997tyrm.jpg.
    [9]Hulst van de,H C.The Chromosphere and the Corona,1953:207.
    [10]王水,李罗权.磁场重联.合肥:安徽教育出版社,1999.
    [11]Parker E N.Sweet's mackanism for merging magnetic field in conducting fluids.J.Geophys.Res.1957,62:509.
    [12]Parker E N.Solar flare phenomenon and the theory of reconnection and annihilation of magnetic field,hstrophys.J.Suppl.Ser.1963,8:117
    [13]Sweet P h.The Neutral Point Theory of Solar Flares.In:Lehnert B,ed.Electromagnetic Phenomena in Cosmical Physics.London:Cambridge Unv.Press,1958:123.,
    [14]Yamada M,Levinton F M,Pomphrey Net al.Investigation of magnetic reconnection during a sawtooth crash in a high-temperature tokamak plasma.Phys.Plasmas.1994,1:3269.
    [15]Treumann R A,Baumjohann W.Advanced Space Plasma Physics.London:Imperial College Press,1997.
    [16]Baumjohann W,Treumann R A.Basic Space Plasma Physics.London:Imperial College Press,1996
    [17]Dungey J W.Interplanetary magnetic field and the auroral zone.Phys.Rev.Lett.,1961,6:47.
    [18]Petschek H E.AAS-NASA Symposium on the Physics of Solar Flares.America:NASA Spec.Publ,1964,SP-50:425.
    [19]Levy R H,Pestchek H E,Siscoe G L.Aerodynamic aspects of the magnetospheric flow,AIAA J.1964,2:2065.
    [20]Vasyliunas V M.Theoretical models of magnetic field line merging,Rev.Geophys.Space Phys.1975,13:303.
    [21] Shi Y, Lee L C. Structure of the reconnection layer at the dayside magnetopause, Planet. Space, Sci. 1990, 38:437.
    [22] Lin Y, Lee L C, Kennel C F. The role of intermediate shocks in magnetic reconnection。 Geophys. Res. Lett. 1992, 19:229.
    [23] Lin Y, Lee L C. Structure of the dayside reconnection layer in resistive MHD and hybrid models. J. Geophys. Res. 1993, 98:3919.
    [24] Lin Y, Lee L C. Structure of reconnection layers in the magnetosphere. Space Sci. Rev. 1994, 65:59.
    [25] Petschek H E. Magnetic field annihilation. In: Hesse W N, ed. Physics of Solar Flares. Washington: NASA SP-50, 1964:425.
    [26] Hughes W J. The magnetopause, magnetotail, and magnetic reconnection, In: Kivelson M G, Russell C T, ed. Introduction to Space Physics. New York: Cambridge University Press, 1995:227.
    [27] Sonnerup B U O¨ . Magnetic-field re-connection in a highly conducting incompressible fluid. J. Plasma Phys. 1970, 4:161.
    [28] Priest E R, Forbes T G. New models for fast steady-state magnetic reconnection. J. Geophys. Res. 1986, 91: 5579.
    [29] Priest E R, Lee L C. Nonlinear magnetic reconnection models with eparatrix jets. J. Plasma Phys. 1990, 44:337.
    [30] Yan M, Lee L C, Priest E R. Magnetic reconnection with large separatrix angles. J. Geophys. Res., 1993, 98:7593.
    [31] Lee L C, Yan M. Structure of field-aligned plasma jets associated with magnetic reconnection. The Physics of Fluids. 1993, 11:3808.
    
    [32] 张贤国. 地球磁层中的磁场重联研究——三维磁重联现象研究初步:(博士学位论文).北京:北京大学, 2007.
    
    [33] Gold T. Motions in the magnetosphere of the Earth。 J. Geophys. Res. 1959, 64:1219.
    [34] Chapman S, Ferraro V C A. A new theory of magnetic storms. Nature. 1930, 126:129.
    [35] Chapman S, Ferraro V C A. A new theory of magnetic storms, Terr. Magn. Atmos. Elect. 1931,36:77.
    [36] Storey L R O. An Investigation of Whistling Atmospherics, Philosophical Transactions of the Royal society of London. Series A. Mathematical and Physical Sciences, 1953, 246:113.
    [37]Van Allen J A. The geomagnetically trapped corpuscular radiation, J. Geophys. Res. 1959, 64:1683.
    [38]Cahill L J, Patel V L. The boundary of the geomagnetic field, Planet. Space Sci. , 1967, 15: 997.
    [39]Parks G K. Physics of Space Plasmas (An Introduction). California:Addison-Wesley Publishing Company, 1991.
    [40] Johnson F S. The gross character of the geomagnetic field in the solar wind. J. Geophys.Res. 1960, 65:3049.
    [41] Maezawa K. Magnetic convection Induced by the Positive and Negative z Components of the Interplanetary magnetic Field: Quantitative Analysis Using Polar Cap Magnetic Records, J. Geophys. Res. 1976, 81:2289.
    [42] Nishida A, Mukai T, Yamamoto T et al. A Unified Model of the Magnetotail Convection in Geomagnetically Quiet and Active Times. J. Geophys. Res. 1998, 103:4409.
    [43] Cowley S W H. Plasma populations in a simple open model magnetosphere. Space Sci. Rev. 1980, 26:217.
    [44] Nishida A. Can random reconnection at the magnetopause produce the low-latitude boundary layer?. Geophys. Res. Lett. 1989, 16:227.
    [45] Lockwood M, Fazakerley A, Opgenoorth H et al. Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to reconnection pulses and FTE signatures. Ann. Geophys. 2001, 19: 1613.
    [46] Lavraud B, Thomsen M F, Lefebvre B et al. Evidence for newly closed magnetoshearth field lines at the dayside magnetopasue under northward IMF. J. Geophys. Res. 2006, 111:A05211.
    [47] Aubrey M P, Russell C T, Kivelson M G. Inward motions of the magnetopause before a substorm. J. Geophys. Res. 1970, 75:7018.
    [48] Sonnerup B U O . Magnetopause structure during the magnetic storm of septemer 24. J. Geophys. Res. 1961, 76:6717.
    [49] Sonnerup B U O . Magnetic field reconnection at the magnetopause: An overview. In : Hones E W, ed. Magnetic Reconnection in Space and Laberatory Plasmas. AGU:Geophysical Monograph, 1984:92.
    [50] Sonnerup B U O , Paschmann G, Papamastorkis I et al. Evidence for magnetic field reconnection at the earth's magnetopause, J. Geophys. Res., 1981, 86:10,049.
    [51] Hones E W, Jr. Plasma flow in the plasma sheet and its relation to substorms. Radio Science. 1973, 8: 979.
    [52] Hones E W, Jr. Substorm processes in the magnetotail - Comments on 'On hot tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail' by L. A. Frank, K. L. Ackerson, and R. P. Lepping. J. Geophys. Res. 1977, 82:5633.
    [53] Russell C T, McPherron R L. The Magnetotail and Substorms. Space Sci. Rev. 1973, 15:205.
    [54] Nishida A, Nagayama N. Synoptic survey of the neutral line in the magnetotail during the substorm expansion phase. J. Geophys. Res. 1973, 78:3782.
    [55] Nagai T, Fujimoto M, Saito Y et al. Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations. J. Geophys. Res. 1998, 103: 4419.
    [56] Shiokawa K, Baumjohann W, Haerendel G. Breaking of high-speed flows in the nearearth tail. Geophys. Res. Lett. 1997, 1:1179.
    [57] Shiokawa K, Baumjohann W, Haerendel G et al. High-speed ion flow, substorm current wedge, and multiple Pi 2 pulsations. J. Geophys. Res. 1998, 103:4491.
    [58] Birn J, Hesse M, Haerendel G et al. Flow braking and the substorm current wedge. J. Geophys. Res. 1999, 104, 19:895.
    
    [59] Baumjohann W. Modes of convection in the magnetotail. Phys. Plasmas. 2002, 9:3665.
    [60] Hones E W, Jr. Transient phenomena in the magnetotail and their relation to substorms. Space Sci. Rev. 1979, 23:393.
    [61] Deng X H, Matsumoto H. Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves. Nature. 2001, 410(29):557.
    [62] (?)ieroset M, Phan T D, Fujimoto M et al. Lepping, In situ detection of collisionless reonnection in the Earth's magnetotail. Nature. 2001, 412: 414.
    [63] Harris E G. On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento. 1962, 23:115.
    [64] Cowley, S W H. A qualitative study of the reconnection between the earth's magnetic field and an interplanetary field of arbitrary orientation. Radio Science. 1973, 8(11): 903.
    [65] Greene J M. Geometrical properties of three-dimensional reconnecting magnetic fields with nulls. J. Geophys. Res. 1988, 93:8583.
    [66] Lau Y T, Finn J M. Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 1990, 350: 672.
    [67] Wang X G, Bhattacharjee A. A three-dimensional reconnection model of the magnetosphere: Geometry and kinematic. J. Geophys. Res. 1996, 101:2641.
    
    [68]Greene J M. Locating three-dimensional roots by a bisection method. J. Comp. Phys. 1992, 98(2): 194.
    [69] Zhao H, Wang J X, Zhang J et al. A new method of identifying 3D null points in solar vector magnetic fields, Chin. J. Astron. Astrophys., 2005, 5:443.
    [70] Zirin H. Astrophysics of the Sun, Cambridge Univ. Press, Cambridge, 1988
    [71] Xiao C J, Wang X G, Pu Z Y et al. In situ Evidence for the Structure of the Magnetic Null in a 3D Reconnection Event in the Earth's Magnetotail, Nature Physics, 2006, 2(7):478.
    [72] Priest E, Forbes T. Magnetic reconnection-MHD Theory and Applications. Cambridge: Cambridge Unversity Press, 2000.
    [73] Dorelli J C, Bhattacharjee A, Raeder J. Separator reconnection at Earth's dayside magnetopause under generic northward interplanetary magnetic field conditions. J. Geophys. Res. 2007,112: A02202.
    [74] 王晓钢, 北京大学等离子体波动讲义, 2008
    [75] Wang Z X, Wang X G, Ren L W et al. Effect of negative ions on dust-acoustic soliton in a dusty plasma. Physics Letters A. 2005,339: 96.
    [76] Ren L W, Wang Z X, Liu Y et al. Effect of thermionic emission on dust-acoustic solitons in a dust-electron plasma, Chin. Phys. Lett., 2007,24: 767.
    [77]Ren L W, Wang Z X, Wang X G et al. The dust acoustic solitary waves in dusty plasmas: Effects of ultraviolet irradiation, 2006, Plasma Phys., 13: 082306.
    [78] Escoubet C P, Fehringer M, Goldstein M. The Cluster mission, Ann. Geophys., 2001,19: 1197.
    [79] Dunlop M W, Balogh A, Southwood D J et al. Configurational sensitivity of multipoint magnetic field measurements. In:Space Plasma Physics Investigation by Cluster and Regatta, ESA. Paris: ESA SP-306, 1990:23.
    [80] Robert P, Roux A, Coeur-Joly O. Validity of the Estimate of the Current Density Along Cluster Orbit with Simulated Magnetic Data. In: Glassmeier K H, Motschmann U, Schmidt ed. Proceedings of the Cluster Workshops, Data Analysis Tools and Physical Measurements and Mission-Oriented Theory. Paris: ESA SP, 1995:229.
    [81] Mottez F, Chanteur G. Surface crossing by a group of satellites: A theoretical study. J. Geophys. Res. 1994, 99:13,499.
    [82] Paschmann G, Daly P W, Analysis Mehtods for Multi-Spacecraft Data, ISSI scientific report SR-001, ESA publication devision, 1998.
    [83] Tsyganenko N A, Stern D P. Modeling the global magnetic field of the large-scale Birkeland current system. J. Geophys. Res. 1996, 101:27,187.
    [84] Pu Z Y, Zong Q G, Xiao C J et al. Multiple Flux Rope Events At The High-Latitude magnetopause: Cluster/Rapid Observation On Junuary 26, 2001.Surveys in Geophys. 2003,24.
    [85] Khurana K K, Keplo E L, Kivelson M G et al. Accurate determination of magnetic field gradients from four-point vector measurements—Ⅱ: use of nutral constraints on vector data obtained from four spinning spacescraft. IEEE Trans. On Magnetics. 1996, 32(5) :5193.
    [86] Robert P, Dunlop M W, Roux A et al, Accuracy of Current Density Determination, Analysis Methods for Multi-Spacecraft Data G¨otz Paschmann and Patrick W. Daly (Eds.). ISSI Scientific Report SR-001 (Electronic edition 1.1).1998:2000
    [87] Chanteur G. Mottez F. Geometrical tools for Cluster data analysis. International Conf. "Spatio-Temporal Analysis for Resolving plasma Turbulence (START) " , Paris, France, Aussois, 1993: 341ESA WPP-047.
    
    [88] 张筑生,微分拓扑讲义. 北京:北京大学出版社,1996.
    
    [89] Scoubet C P, Schmidt R, Goldstein M L. Cluster - Science and Mission Overview. In: Escoubet C P, Russell C T, Schmidt R, The Cluster and Phoenix Missions, Dordrecht: Kluwer Acad. Publishers, 1997.
    [90] Torrence C, Compo G P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 1998, 79: 61.
    
    [91] 李世雄, 高等数学研究(Studies in College Mathematics) , 小波变换及其应用 2002, 5:43.
    [92] Santolik O, Parrot M, Lefeuvre F. Singular value decomposition methods for wave propagation analysis. Radio Sci. 2003, 38:1.
    [93] Vaivads A, Khotyaintsev Yu, Andre M et al. Plasma Waves Near Reconnection Sites, in Geospace Electromagnetic Waves and Radiation (Lecture Notes in Physics), 2006
    [94] Andr'e M, Vaivads A, Buchert S C et al. Thin electron-scale layers at the magnetopause. Geophys. Res. Lett. 2004, 31:3803.
    [95] Vaivads A, Andr'e M, Buchert S C et al. Cluster observations of lower hybrid turbulence within thin layers at the magnetopause. Geophys. Res. Lett. 2004, 31:3804.
    [96] Wei X H et al. Cluster observations of waves in the whistler frequency range associated with magnetic re-connection in the Earth's magnetotail. J. Geophys. Res. 2007, 112(A10):A10225.
    [97] Khotyaintsev Y, Vaivads A, Ogawa Y et al. Cluster observations of high-frequency waves in the exterior cusp. Annales Geophysicae. 2004, 22:2403.
    [98] Deng X H, Matsumoto H, Kojima H et al. Geotail encounter with reconnection diffusion region in the Earth's magnetotail: Evidence of multiple X lines collisionless reconnection?. J. Geophys. Res. 2004, 109(A7):5206.
    
    [99] Giovanelli R G. A Theory of Chromospheric Flares. Nature. 1946, 158: 81.
    [100] Parker E N. Topological Dissipation and Small-Scale Fields in Turbulent Gases. Astrophysical Journal. 1972, 174:499.
    [101] Coppi B, Laval G, Pellat R. Dynamics of Geomagnetic Tail. Phys. Rev. Lett. 1966, 16: 1207
    [102] Drake J F, Lee Y C. Kinetic-Theory of Tearing Instabilities. Phys. Fluids. 1977, 20:1341.
    [103] Wesson J A, Edwards A W, Granetz R S. Spontaneous M = 1 Instability in the Jet Sawtooth Collapse. Nuclear Fusion. 1991, 31:111.
    [104] Ottaviani M, Porcelli F. Nonlinear Collisionless Magnetic Reconnection. Phys. Rev. Lett. 1993, 71:3802.
    [105] Zakharov L, Rogers B, Migliuolo S. The theory of the early nonlinear stage of m=1 reconnection in tokamaks. Phys. Fluids B. 1993, 5:2498.
    [106] Wang X G, Bhattacharjee A. Nonlinear dynamics of the m = 1 Instability and fast sawtooth collapse in high-temperature plasmas. Phys. Rev. Lett. 1993, 70:1627
    [107] Wang X G, Bhattacharjee A. Nonlinear dynamics of the m=1 kink-tearing instability in a modified magnetohydrodynamic model. Phys. Plasmas. 1995, 2: 171.
    [108] Shay M A, Drake J F, Denton R E et al. Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res. 1998, 103:9165..
    [109] Birn J et al. Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge, J. Geophys. Res.2001, 106:3715
    [110] Wang X G, Bhattacharjee A, Ma Z W. Scaling of collisionless forced reconnection. Phys. Rev. Lett. 2001, 87:265003.
    [111] Dorelli J C. Effects of Hall electric fields on the saturation of forced antiparallel magnetic field merging. Phys. Plasmas. 2003, 10:3309.
    [112] Zenitani S, Hoshino M. The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys J. 2001, 562:L63.
    [113] BesshoN, Bhattacharjee A. Collisionless reconnection in an electron-positron plasma. Phys. Rev. Lett. 2005, 95:245001
    [114] Bessho N, Bhattacharjee A. Fast collisionless reconnection in electron -positron plasmas. Phys. Plasmas. 2007,14:056503,.
    [115] Daughton W, Karimabadi H. Collisionless magnetic reconnection in large-scale electron-positron plasmas. Phys. Plasmas. 2007, 14:072303.
    [116] Cai H J, Lee L C. The generalized Ohm's law in collisionless magnetic reconnection. Phys. Plasmas. 1997, 4:509.
    [117] Scudder J D, Mozer F S, Maynard N C et al. Fingerprints of collisionless reconnection at the separator, I, Ambipolar-Hall signatures. J. Geophys. Res. 2002, 107:1294.
    [118] Ishizawa A, Horiuchi R. Suppression of hall-term effects by gyroviscous cancellation in steady collisionless magnetic reconnection. Phys. Rev. Lett. 2005, 95:045003.
    [119] Huba J D, Gladd N T, Papadopoulos K. Lower-Hybrid-Drift Instability as a Source of Anomalous Resistivity for Magnetic-Field Line Reconnection. Geophys. Res. Lett. 1977, 4:125.
    [120] Sato T, Hayashi T. Externally Driven Magnetic Reconnection and a Powerful Magnetic Energy Converter. Phys. Fluids. 1979, 22:1189.
    [121] Krall N A, Liewer P C. Low-Frequency Instabilities in Magnetic Pulses. Physical Review A. 4: 2094.
    [122] Tanaka M, Sato T. Simulations on lower hybrid drift instability and anomalous resistivity in the magnetic neutral sheet. J. Geophys. Res. 1981, 86: 5541.
    [123] Winske D. Current-Driven Microinstabilities in a Neutral Sheet. Phys. Fluids. 1981, 24:1069.
    [124] Yoon P H, Lui A T Y. Anomalous resistivity by fluctuation in the lower-hybrid frequency range. J. Geophys. Res. 2007,112:A06207.
    [125] Daughton W. Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet. Phys. Plasmas. 2003,10:3103
    [126] Ji H T, Terry S, Yamada M et al. Electromagnetic fluctuations during fast reconnection in a laboratory plasma. Phys. Rev. Lett. 2004, 92:115001.
    [127] Silin I, Buchner J, Vaivads A. Anomalous resistivity due to nonlinear lower-hybrid drift waves. Phys. Plasmas. 2005, 12:062902.
    [128] Cattell C A, Mozer F S. Experimental Determination of the Dominant Wave Mode in the Active Near-Earth Magnetotail. Geophys. Res. Lett. 1986,13(3):221-224.
    [129] Cattell C J, Wygant F S, Mozer T et al. ISEE 1 and Geotail Observations of Low-Frequency Waves at the Magnetopause. J. Geophys. Res. 1995, 100(A7): 11823-11829.
    [130] Ozaki M, Sato T, Horiuchi R. Electromagnetic instability and anomalous resistivity in a magnetic neutral sheet. Phys. Plasmas. 1996 ,3:2265
    [131] Horiuchi R, Sato T. Three-dimensional particle simulation of plasma instabilities and collisionless reconnection in a current sheet. Phys. Plasmas. 1999,6:4565.
    [132] Lapenta G, Brackbil J U. Nonlinear evolution of the lower hybrid drift instability: Current sheet thinning and kinking. Phys. Plasmas. 2002,9:1544.
    [133] Davidson R C, Gladd N T, Wu C S et al. Effects of Finite Plasma Beta on Lower-Hybrid-Drift Instability. Phys. Fluids. 1977, 20:301.
    [134] Bale S D, Mozer F S, Phan T. Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause. Geophys. Res. Lett. 2002, 29:2180.
    [135] Carter T A et al. Measurement of lower-hybrid drift turbulence in a reconnecting current sheet. Phys. Rev. Lett. 2002, 88:015001.
    [136] Escoubet C P, Schmidt R& Goldstein M L. The Cluster and Phoenix Missions , In:Escoubet C P et al.ed. Kluwer Academic, Dordrecht, 1997:399-473
    [137] Xiao C J, Wang X G, Pu Z Y et al. Satellite observations of separator-line geometry of three-dimensional magnetic reconnection. Nature. Phys. 2007a ,3:609.
    [138] Runov A et al. Current sheet structure near magnetic X-line observed by Cluster. Geophys. Res. Lett. 2003, 30:1579.
    [139] Wilber M et al. Cluster observations of velocity space-restricted ion distributions near the plasma sheet. Geophys. Res. Lett. 2004, 31: L24802.
    [140]Cattell C et al.Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations.J.Geophys.Res.2005,110:AO1211.
    [141]Wygant J R,et al.Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region.J.Geophys.Res.2005,110:A09206.
    [142]Imada S,et al.,Energetic electron acceleration in the downstream reconnection outflow region,J.Geophys.Res.,2007,112:A03202.
    [143]He J S,et al.,A magnetic null geometry reconstructed from Cluster spacecraft observations,J.Geophys.Res.,2008,113:A05205.
    [145]Chert L J.et al.Observation of energetic electrons within magnetic islands.Nature Phys.2008,4:19
    [146]Balogh A.et al.The Cluster Magnetic Field Investigation:overview of in-flight performance and initial results.Ann.Geophys.2001,19:1207.
    [147]Reme H et al.First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry(CIS) experiment..Ann.Geophys.2001,19:1303.
    [148]Kistler L M et al.Contribution of nonadiabatic ions to the cross-tail current in an 0+ dominated thin current sheet.J.Geophys.Res.2005,A06:11.
    [149]Gustafsson G,et al.,The electric field and wave experiment for the cluster mission,Space Science Reviews 1997,79:137.
    [149]Pedersen A,et al.,Four-point high time resolution information on electron densities by the electric field experiments(EFW) on cluster,Ann.Geophys.,2001,19:1483.
    [150]Dunlop M W,Balogh A,Southwood D J et al.Configurational sensitivity of multipoint magnetic field measurements,in Proceedings of the International Workshop on Space Plasma Physics Investigations by Cluster and Regatta,ESA SP- 306,pp.23- 28,Eur.Space Agency,Paris,1990.
    [151]Treumann R A.Origin of resistivity in reconnection.Earth Planets and Space.2001,53:453.
    [152]Xiao C J,et al.A Cluster measurement of fast magnetic reconnection in the magnetotai.Geophys.Res.Lett.2007b,34:1.
    [153]罗庆宇.太阳日冕波动加热机制研究:(博士学位论文).北京:中国科学院空间科学与应用研究中心,2003.
    [154]宋礼庭,卢先河.关于动力学Alfven波的色散与朗道阻尼.地球物理学报.1999,42:2.
    [155]Hasegawa A.Particle acceleration by MHD surface wave and formation the aurora,J.Geophys.Res.1976,81:5083.
    [156] M. Aschwanden et al. (LMSAL), TRACE, NASA
    
    [157] Parker E N. The dissipation of inhomogeneous magnetic fields and the problem of coronae. Ⅰ. Dislocation and flattening of flux tubes. Astrophys. J. 1981, 244:631.
    [158] Parker E N. Magnetic neutral sheets in evolving fields. Ⅱ. Formation of the solar corona. Astrophys. J. 1983,264:642.
    [159] Sturrock P A, Uchida Y. Coronal heating by stochastic magnetic pumping. Astrophys. J. 1981, 246:331
    [160] Van Ballegooijen A A. Cascade of magnetic energy as a mechanism of coronal heating. Astrophys. J. 1986, 311:1001.
    [161] Gómez D O, Ferro Fontan C. Coronal heating by selective decay of MHD turbulence. Solar Phys. 1988,116:33.
    [162] Mikic Z, Schnack D D, van Hoven G. Creation of current filaments in the solar corona. Astrophys. J. 1989, 338:1148.
    [163] Bhattacharjee A, Wang X. Current sheet formation and rapid reconnection in the corona. Astrophys. J. 1991, 372:321.
    [164] Wang X, Bhattacharjee A. Forced reconnetion, current sheet and coronal heating. Astrophys. J. 1992, 401:371.
    [165] Wang X, Bhattacharjee A. Current Sheets and Reconnection Driven by Footpoint Motion in 2-Dimensional Coronal Loops with X-Type Neutral Lines. Astrophys. J. 1994, 420:415.
    [166] Heyvaerts J, Priest E R. A SELF-CONSISTENT TURBULENT MODEL FOR SOLAR CORONAL HEATING. Astrophys. J. 1992, 390:297.
    [167] Longcope D W, Sudan R N. EVOLUTION AND STATISTICS OF CURRENT SHEETS IN CORONAL MAGNETIC LOOPS. Astrophys. J. 1994, 437:491.
    [168] Priest E R, Parnell C E, Martin S F. A CONVERGING FLUX MODEL OF AN X-RAY BRIGHT POINT AND AN ASSOCIATED CANCELING MAGNETIC FEATURE. Astrophys. J. 1994, 427:459.
    [169] Priest E R, Longcope D W, Heyvaerts J. Coronal heating at separators and separatrices. Astrophys. J. 2005, 624:1057.
    [170] Ma Z W, Ng C S, Wang X G et al. DYNAMICS OF CURRENT SHEET FORMATION AND RECONNECTION IN 2-DIMENSIONAL CORONAL LOOPS. Phys. Plasmas. 1995, 2:3184.
    [171] Galsgaard K, Nordlund A. Heating and activity of the solar corona . 1. Boundary shearing of an initially homogeneous magnetic field. J. Geophys. Res. 1996, 101:13445.
    [172] Hendrix D L, van Hoven G, Mikic Z et al. The viability of ohmic dissipation as a coronal heating source. Astrophys. J. 1996, 470:1192.
    [173] Gómez D O, Dmitruk P A, Milano L J. Recent theoretical results on coronal heating. Sol. Phys. 2000, 195:299.
    [174] Buchner J, Nikutowski, Otto A. in Proc. SOHO 15 Workshop, Coronal Heating, ed. R. W. , 2004.
    [175] Gudiksen B, Nordlund A. An ab initio approach to solar coronal loops. Astrophys. J. 2005, 618:1020.
    [176] Ng C S, Bhattacharjee A. 2008, A constrained tectonics model for coronal heating. Astrophys. J. 675,899.
    
    [177] Tomczyk S. Alfven waves in the solar corona. Science. 2007, 317:1192.
    [178] Klimchuk J A. On solving the coronal heating problem. Sol. Phys. 2006, 234:41.
    [179] Ulrich R K. Observations of magnetohydrodynamic oscillations in the solar atmosphere with properties of Alfven waves. Astrophys. J. 1996, 465:436.
    [180] Heyvaerts J, Priest E R. Coronal heating by phase-mixed shear Alfven waves. A&A, 1983, 117:220
    [181] Davila J M. Heating of the solar corona by the resonant absorption of Alfven waves. Astrophys. J. 1987, 317:514.
    [182] Tu C Y, Pu Z, Wei F. The power spectrum of interplanetary Alfvenic fluctuations Derivation of the governing equation and its solution. J. Geophys. Res. 1984, 8: 162.
    [183] Tu C Y. A Solar Wind with the Power Spectrum of Alfvenicic Fluctuations. Solar Phys. 1987, 109:149
    [184] Ng C S, Bhattacharjee A. Interaction of Shear-Alfven Wave Packets: Implication for Weak Magnetohydrodynamic Turbulence in Astrophysical Plasmas. Astrophys. J. 1996, 465:845-854.
    [185] Bhattacharjee A, Ng C S. Random Scattering and Anisotropic Turbulence of Shear Alfven Wave Packets. Astrophys. J. 2001,548: 318.
    [186] Hasegawa A, Chen L. Kinetic processes in plasma heating by resonant mode conversion of Alfven wave. Phys. Fluids. 1976, 19:1924.
    [187] Lysak R L, Carlson C W. Theory of auroral zone PiB pulsation spectra. Geophy. Res. Lett. 1988, 8:269
    
    [188] Hollweg J V. Kinetic Alfven wave revisited. J. Geophys. Res. 1999, 104:14811.
    [189] Goetz C K. Planet. Space Sci. 1984, 32,1387.
    [190] Lysak R L, Dum C T. ics of magnetosphere-ionosphere coupling including turbulent transport. J. Geophys. Res. 1983, 88:365.
    [191] Lysak R L, Carlson C W. The effect of microscopic turbulence on magnetosphere-ionosphere coupling. Geophy. Res. Lett. 1981, 8:269.
    [192] Wahlund J E. On ion-acoustic turbulence and the nonlinear evolution of kinetic Alfv en waves in aurora. Geophys. Res. Lett. 1994, 21:1831.
    [193] Louarn P, et al. Observation of kinetic Alfven waves by the Freja spacecraft, Geophys. Res. Lett. 1994,21:1847.
    [194] Johnson Jay R, Cheng C Z. Stochastic ion heating at the magnetopause due to kinetic Alfven waves. Geophys. Res. Lett.. 2001, 28:4421.
    [195] Vointenko Y, Goossens M. Cross-field heating of coronal ions by low-frequency kinetic Alfven waves. Astrophys. J. 2004, 528:509.
    [196] Wang X G, Yang H A, Jin S P. Scalings of steady state. Hall magnetohydrodynamic reconnection in highbeta plasmas. Phys. Plasma. 2006, 13:060702.
    [197] Wang X, Bhattacharjee A, Ma Z W. Collisionless reconnection: Effects of Hall current and electron pressure gradient. J. Geophys. Res. 2000, 102:27633.
    [198] Rogers B N, Denton R E, Drake J F et al. Role of Dispersive Waves in Collisionless Magnetic Reconnection. Phys. Rev. Lett. 2001, 87:195004.
    [199] Finn J M, Lou Y T. Magnetohydrodynamic equilibria in the vicinity of an X-type neutral line specified by footpoint shear. Phys. Fluids B-Plasma Phys. 1991, 3:2675.
    [200] Longcope D W, Cowley S C. Current sheet formation along three. dimensional magnetic separators. Phys. Plasmas. 1996, 3:2885.
    [201] Wang X, Bhattacharjee A, Ma Z W et al. Structure and dynamics of current sheets at Alfvén resonances in a differentially rotating Plasma. Phys. Plasma. 1998, 5:2291.
    [202] Van Ballegooijen A A. Electric currents in the solar corona and the existence of magnetostatic equilibrium. Astrophys. J. 1985, 298:421.
    [203] Antiochos S K. The magnetic topology of solar eruptions. Astrophys. J. 1998, 502, 181.
    [204] Filippov B. Observation of a 3D magnetic null point in the solar corona. Sol. Phys. 1999,185:297.
    
    [205] Browning P K. Plasma Phys. Controlled Fusion, 1991,33:539.
    [206] Katsukawa Y, Tsuneta S. Multi-Wavelength Observations of Coronal Structure and Dynamics . in COSPAR Colloq. Ser. 13, (edit by P. C. M. Martens & D. auffman)(Dordrecht: Elsevier), p61, 2003.
    [207] Hazeltine R B, Hsu C T, Morrison P J. Hamiltonian four-field model for nonlinear tokamak dynamics. Phys. Fluids. 1987, 30:3204.
    [208] Wu D J, Fang C. Two-fluid motion of plasma in Alfven waves and the heating of solar coronal loops. Astrophys. J. 1999, 511:958.
    [209]Ionson J A. Resonant absorption of Alfvenic surface waves and the heating of solar coronal loops. Astrophys. J. 1978, 226: 650.
    [210]Shukla P K, Bingham R, McKenzie J F et al. Solar Phys., 1999,186:61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700