用户名: 密码: 验证码:
时间交替采样系统的信号重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子信息技术的快速发展使得各类电子系统的信号工作频率及信号复杂度剧增,作为信号数字化系统基础的高速高精度采样技术,是获取和分析复杂瞬态信号细微特征、进而完成有用信息提取的首要核心技术。受制于芯片技术的滞后,即使最新工艺制成的FLASH模数转换器(ADC),仍然无法满足实际系统实时采样的要求。时间交替采样(Time-Interleaved ADC,TIADC)系统通过多路ADC并行交替的方式对信号进行实时采样,以达到采样率倍增的目的。虽然该系统在速度上较单个ADC具有明显优势,然而各路ADC芯片以及时钟信号之间的差异使各个通道存在通道失配,这类失配通常包括增益失配、直流偏移失配及时钟延迟失配。通道失配的存在使TIADC系统的输出频谱产生失真,降低了系统的采样精度。因此,必须对系统输出进行信号重建,以减小通道失配,使TIADC系统在具有较高采样率的情况下,仍然具有较高的采样精度。
     TIADC系统的信号重建一般包括通道失配的获取,以及通道失配的校准两个过程。其中,前者一般通过测量或估计两种方式进行,后者分为静态的离线及动态的在线两种校准方式。本文以最小二乘(Least Square,LS)法、期望最大化(Expectation-Maximum,EM)算法、插值拟合、多抽样滤波器组等理论和技术为基础,结合本人所参加的总装型号项目“×××宽带高精度数字化仪”的研制工作,研究通道失配的测量、估计以及动态校准。主要的工作及成果如下:
     1.建立了TIADC系统通道采样模型,提出了一种采用最小二乘拟合法的通道失配测量方法。利用最小二乘法和插值滤波器对TIADC系统的输出数据进行处理,导出了TIADC系统通道失配的计算公式。为评估该方法的计算精度和性能,推导了当测试信号中含有谐波失真、采样通道含有量化误差及杂散失真时,通道失配的克拉美劳下限(Cramer-Rao Lower Bound—CRLB),以MonteCarlo仿真对该方法获取的通道失配方差与CRLB进行了分析比较,并进行了400MSPS、12-bit高速数字化仪通道失配的测量实验验证。仿真与实验表明,该方法对通道失配有较高的测量精度,并且其精度受量化误差、通道杂散及谐波失真影响较小,在实际系统中亦可执行有效测量。
     2.为满足TIADC系统通道时钟延迟失配的动态校准的需要,提出了一种采用EM的TIADC系统时钟延迟估计方法。根据TIADC系统输入多音(Multitone)信号时,输入信号频率与时钟延迟失配引起的失真频率的关系,利用DFT变换和EM算法对输出信号进行分组,结合输出失真频谱的表达式获得时钟延迟失配。该算法对TIADC系统通道数量没有限制,运算复杂度低,并且可以实现通道时钟延迟失配的在线估计。仿真及实验表明,对于正弦信号或多音信号,该方法均能实现时钟延迟失配的有效估计。
     3.通道失配动态校准方面,对于增益、直流偏移失配,可通过简单的乘法器和加法器完成校准,本文将研究重点放在了时钟延迟失配的动态校准上。TIADC系统时钟延迟失配的校准问题实为周期非均匀采样的重构问题。通常,重构滤波器的系数获取,需要对以时钟延迟为变量的时变滤波器进行求逆,运算复杂度较高。利用泰勒级数和DFT变换的性质,将时变滤波器的复杂求逆问题线性化,研究了一种采用重构滤波器的校准方法。利用前述估计方法获得时钟延迟的实时更新,无需改变滤波器系数,即可实现时钟延迟失配的自适应校准。
     4.作为对重构滤波器校准方法的补充,将某个通道作为参考通道,在研究通道失配产生的采样点误差的基础上,建立了基于参考通道的校准模型,提出了一种TIADC系统通道失配的参考误差校准法。该方法不需要计算通道失配参数,也不需要滤波器,只需通过数值查表过程,即可实现通道失配的校准。在研究参考误差校准法的校准特点的基础上,针对参考误差校准法中地址覆盖不足的缺陷,进一步研究了改进方法。仿真与实验表明,改进后的参考误差校准法在全频带范围内都可实现TIADC系统通道失配的补偿校准。此外,该方法还可单独用于TIADC系统通道失配的动态校准。
The rapid development of electronics and information technology dramatically increases the operation frequency and complexity of signal in various electronic systems. As the basis of signal digitalization, high speed and accurate sampling technology is the key technique to obtain and analyze tiny characteristics of complex signal in order to distill useful information. Limited by lagged chip technology, even the speed of fastest flash analog to digital converter (ADC) falls far behind the pratical request. The time-interleaved ADC (TIADC) system achieves the multiplication of sampling rate by multiplexing a bank of slow ADCs operating in parallel. Though the sampling rate of TIADC is greatly higher than single ADC, the difference between ADC chips and clock signal in each channel generates the channel mismatches, which include the gain, offset and time mismatch. The channel mismatches produce distortions in the output spectrum of TIADC, and degrade significantly the resolution of the sampling system, which disbennifit the research of specific characteristics of complex transient signal. So the output signal should be properly reconstructed, in order to decrease channel mismatches and guarantee the high accuracy of high speed TIADC.
     The signal reconstruction of TIADC usually was divided into two steps which contain obtaination and calibration of channel mismatches. Obtaination of channel mismatches could be carried out by measurenment or estimation. Calibration of channel mismatches includes two ways—off line static calibration and on line dynamic calibration. The measurement, estimation and dynamic calibration of channel mismatches are demonstrated and analyzed in this thesis. Based on theory and technology such as least square, expectation-maximum algorithm, interpolation fit and hybrid filter bank, uniting the pratical request and research work of project“×××wide band and high accurate digitaizer”, the main works and contributions of this thesis are as follows:
     1. The hybrid filter bank (HFB) model of TIADC was built, and an approach using least square method (LS) to measure the channel mismatches of TIADC was proposed. Applying LS and interpolation filter to process output samples of TIADC, the formulas to measure the channel mismatches were deduced. Meanwhile, the Cramer-Rao Lower Bound (CRLB) was deduced when there were quantization error and spurious distortions in sample channel, in addition to harmonic distortions in the test signal. Accuracy of the method was verified by comparing channel mismatch variances to CRLB in MonteCarlo simulation. The effectiveness and accuracy of this method in actual applications were verified in the measurement of channel mismatches in 400MSPS 12-bit high speed digitizer.
     2. To satisfy the requirement of time mismatch’s realtime calibration, estimation algorithm of time mismatch by expectation-maxmum algorithm (EM) was presented. According to the relationship between frequencies of input and distorted signals caused by time mismatch, DFT and EM were used to subgroup the output signal, and the expression of output spectrum was applied to obtain time mismatch. With no limitations on the channel number of TIADC, the algorithm can be implemented in the background. In the simulation and experiment, it was demonstrated that no matter the input signal was single tone or multi-tone, the algorithm can obtain time mismatch effectively.
     3. To the dynamic calibration of channel mismatches, gain and offset mismatch can be simply calibrated by multiplier and adder, thus emphasis was focused on the dynamic calibration of time mismatch, which equalized to the reconstruction problem of periodic nonuniform sampling. Talor series were used to linearize the complex inversion of time varied filter in traditional reconstruction method to obtain coeffecients of reconstruction filter. In the case that timing mismatch was changed, the timing mismatch was updated by above mentioned calculation algorithm without recalculation of the filter coefficients.
     4. Considering one channel as the reference channel, the calibration model based on reference channel was built, and reference error calibration method was proposed, as a compensation for reconstruction filter calibration method. Without estimating channel mismatches and using filters, the method can efficiently complete dynamic calibration by look-up-table. Aiming at the limitation that the coverage of address is inadequate, an improved sheme method was studied. Finally , simulations and experiments demonstrated that such approach can effectively compensated channel mismatches’calibration in the whole range of input frequency, furthermore, it can also independently be applied to dynamically calibrate the channel mismatches.
引文
[1] Wikner J. J. Studies on CMOS digital-to-analog converters. Link?ping studies in science and technology, diss. No. 667, Link?ping University, Sweden, April 2001
    [2] D. Porcino and W. Hirt. Ultra-Wide band Radio Technology: Potential and Challenges Ahead. IEEE Communications Magazine, 2003, 41(7):66-74
    [3] L. Yang and G. B. Giannakis. Ultra-Wideband Communications: An Idea Whose Time Has Come. IEEE Signal Processing Magazine, 2004, 21(6):26-54
    [4] W. Tuttlebee. Software Defined Radio: Origins, Drivers, and International Perspectives. John Wiley and Sons, Ltd., 2002
    [5] S. Srikanteswara, J.H. Reed, P. Athanas, and R.Boyle. A soft radio architecture for reconfigurable platforms. IEEE Communications Magazine, 2000, 38(2):140-147
    [6] Tamba, M. A hybrid A/D converter with 120dB SNR and -125dB THD. 2008 International Test Conference:1-9
    [7] Pupalaikis, P.J. An 18 GHz Bandwidth, 60 GS/s Sample Rate Realtime Waveform Digitizing System. 2007 IEEE/MTT-S International Microwave Symposium:195-198
    [8] Oude Alink, M. S., Klumperink, E.A.M., Soer, M.C.M. A 50Mhz-To-1.5Ghz Cross-Correlation CMOS Spectrum Analyzer for Cognitive Radio with 89dB SFDR in 1Mhz RBW. 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum:1-6
    [9] Lowdermilk, W., Harris, F. Wide spectral span Spectrum Analysis with an analog step and dwell translation preprocessor to a high dynamic range FFT based spectrum analyzer. 2009 IEEE AUTOTESTCON:365-368
    [10] H. Neubauer, T. Desel, and H. Hauer. A successive approximation A/D converter with 16 -bit 200 ks/s in 0.6μm CMOS using self calibration and low power techiniques. 2001 International Conference on Electronics, Circuits and Systems:859-862
    [11] Analog Device Inc., Analog Device Product AD7655 Datasheet, available online at http://ww.analog.com
    [12] Y. Geerts, M.S.J. Steyaert, and W. Sansen. A high-performance multi-bit sigma-delta CMOS ADC. IEEE Journal of Solid-State Circuits. 2000, 35(12):1829-1840
    [13] B.H. Leung and S. Sutarja. Multi-bitΣ-? A/D Converter Incorporating A Novel Class of Dynamic Element Matching. IEEE Trans. Circuits Syst. II, 1992, 39(1):35-51
    [14] Jaesik Lee et al. A 5-b 10-GSample/s A/D converter for 10-Gb/s optical receivers. IEEE Journal of Solid-State Circuits, 2004, 39(10):1671-1679
    [15] Y. Akazawa et al. A 400MSPS 8-b flash AD conversion LSI. 1987 Solid-State Circuits Conference. Dig. Tech. Pap, 98-99
    [16] David W. Cline. Noise, Speed, and Power Tradeoffs in Pipeline Analog to Digital Converter. Ph.D. thesis, University of California Berkeley, Nov 1995
    [17] B. Provost and E. Sanchez-Sinencio. A practical self-calibration scheme implementation for pipeline ADC. IEEE Trans. On Instrument and Measurement, 2004, 53(2):448-456
    [18] Analog Device Inc., Analog Device Product AD7641 Datasheet, available online at http://www.analog.com
    [19] Analog Device Inc., Analog Device Product AD7730 Datasheet, available online at http://www.analog.com
    [20] Analog Device Inc., Analog Device Product AD9211 Datasheet, available online at http://www.analog.com
    [21] Analog Device Inc., Analog Device Product AD9445 Datasheet, available online at http://www.analog.com
    [22] Gruget, A., Roger, M. Wide-band multipath A to D converter for cognitive radio applications. 2010 IEEE International Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions:1-4
    [23] Lelandais-Perrault, C., Petrescu, T. Wideband, Bandpass, and Versatile Hybrid Filter Bank A/D Conversion for Software Radio. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56(8):1772-1782
    [24] Petraglia A. and Mitra S. K. High-speed A/D conversion incorporating a QMF bank. IEEE Trans. Instrum. Meas., 1992, 41(3):427-431
    [25] Vaidyanathan P. P. Multirate Systems and Filter Banks, Englewood Cliffs, NJ, Prentice-Hall, 1993
    [26] J. Riikonen et al. A 10-bit 400-MS/s 170mw 4-times interleaved A/D converter in 0.35-μm BiCMOS. 2005 IEEE International Symposium on Circuits and Systems, Vol.5:4622-4625
    [27] K. Poulton et al. A 4Gsamples/s 8b ADC in 0.35μm CMOS. Digest of Technical Papers at 2002 IEEE International Conference Solid-State Circuits, Vol.1:166-167
    [28] K. Poulton et al. A 20-GS/s 8-bit ADC with a 1-MB memory in 0.18μm CMOS. Digest of Technical Papers of 2003 IEEE International Conference on Solid State Cirtuits. Vol.1:318-319
    [29] J. Alfredsson. Design of a parallel A/D converter system on PCB for high-speed sampling and timing error estimation. Master's thesis LiTH-ISYEX-3238-2002, Department of Electrical Engineering, Link opings universitet, Link oping, Sweden, 2002
    [30] Velazquez, S.R., Nguyen, T. Q., Broadstone, S.R. Design of hybrid filter banks for analog/digital conversion. IEEE Transactions on Signal Processing, 1998, 46(4):956-957
    [31] Lowenborg, P., Johansson, H. Two-channel hybrid analog/digital filter banks with alias-free subbands. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, Vol.3:1162-1165
    [32] Song, Z., Lelandais-Perrault. Synthesis of complex subband Hybrid Filter Banks A/D coverters using adaptive filters. 16th IEEE International Conference on Electronic, Circuits, and Systems, 2009:399-402
    [33] Petrescu, T., Oksman, J. Synthesis of hybrid filter banks by global frequency domain least square solving. 2005 IEEE International Symposium on Circuits and Systems, Vol.6:5565-5568
    [34] J. Elbornsson, K. Folkesson, and J.-E. Eklund. Measurement verication of estimation method for time errors in a time-interleaved A/D converter system. 2002 IEEE International Symposium on Circuits and Systems, Vol.3:129-132
    [35] W. C. Black and D. A. Hodges. Time interleaved converter arrays. IEEE Journal of Solid-State Circuits, 1980, 15(6):1022-1029
    [36] B. Yu and W. C. Black. A 900 MS/s 6b interleaved CMOS flash ADC. 2001 IEEE Conference on Custom Integrated Circuits:140-147
    [37] N. Kurosawa, H. Kobayashi, K. Maruyama, H. sugawara, and K. Kobayashi. Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Transactions on Circuits Systems. I, Theory Appl, 2002, 48(3):261-271
    [38] C. Vogel. The impact of combined channel mismatch effects in time-interleaved ADCs. IEEE Transactions on Instrumentation and Measurement, 2005, 54(1):415-427
    [39] A. Petraglia and S. K. Mitra. Analysis of mismatch effects among A/D converters in a time-interleaved waveform digitizer. IEEE Transactions on Instrumentation and Measurement, 40(5):831-835
    [40] Sai-Weng Sin, U.-Fat Chio, Seng-Pan U, R. P. Martins. Statisitical Spectra and Distortion Analysis of Time-Interleaved Sampling Bandwidth Mismatch. IEEE Transactions on Circuitsand Systems, II: Express Briefts, 2008, 55(7):648-652
    [41] Manar El-Chammas, Boris Murmann. General Analysis on the Impact of Phase-Skew in Time-Interleaved ADCs. IEEE Transactions on Circuits and Systems, I: Regular Papers, 2009, 56 (5):902-910
    [42] K. Y. Kim, N. Kusayanagi, and A. A. Abidi. A 10-b, 100-MS/s CMOS A/D converter. IEEE Journal on Solid-State Circuits, 1997, 32(3):302-311
    [43] M.G.Wong and M.L. Designing receiver front ends from system specifications. RF Design, 1998
    [44] Y. Jenq. Digital spectra of nonuniformly sampled signals: a robust sampling time offset estimation algorithm for ultra high-speed waveform digitizers using interleaving. IEEE Transactions on Instrumentation and Measurement, 1990, 39(1):71-75
    [45] V. Divi and G. Wornell. Scalable blind calibration of timing skew in high-resolution time-interleaved ADCs. 2006 IEEE International Symposium on Circuits and Systems.Vol.1:3390-3393
    [46] Y. Jenq. Digital spectra of nonuniformly sampled signals: fundamentals and high speed waveform digitizers. IEEE Transactions on Instrument Measurement, 37(2):245-251
    [47] K. Poulton, R. Neff, A. Muto,W. Liu, A. Burstein, and M. Heshami.A 4 GSample/s 8b ADC in 0.35μm CMOS. 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol.1:166–457
    [48] K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R.Jewett, J. Pernillo, C. Tan, and A. Montijo. A 20 GS/s 8b ADC with a 1 MB memory in 0.18μm CMOS. 2003 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Vol.1:318-319
    [49] C. S. G. Conroy, D. W. Clind, and P. R. Gray. An 8-b 85-MS/s parallel pipeline A/D converter in 1μm CMOS. IEEE Journal on Solid-State Circuits, 1993, 28(4):447-454
    [50] D. Fu, K. C. Dyer, S. H. Lewis, and P. J. Hurst. A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE Journal on Solid-State Circuits, 1998, 33(12):1904-1911
    [51] R. S. Prendergast, B. C. Levy, and P. J. Hurst. Reconstruction of bandlimited periodic nonuniformly sampled signals through multirate filter banks. IEEE Transactions on Circuits System I, 2004, 51(8):1612-1622
    [52] H. Johansson and P. Lowenborg. Reconstruction of nonuniformly sampled bandlimited signals by means of digital fractional delay filters. IEEE Transactions on Signal Processing, 2002,50(11):2757-2767
    [53] Y. C. Eldar and A. V. Oppenheim. Filterbank reconstruction of bandlimited signals from nonuniform and generalized samples. IEEE Transactions on Signal Processing,2000, 48(10):2864-2875
    [54] H. Jin and K. F. Lee. A digital-background calibration technique for minimizing timing-error effects in time-interleaved ADCs. IEEE Transactions on Circuits Syst. II, Analog Digital Signal Processing, 2000, 47(7):603-613
    [55] S. M. Jamal, D. Fu, N. C. J. Chang, P. J. Hurst, and S. H. Lewis. A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration. IEEE J. Solid-State Circuits, 2002, SC-37 (12):1618-1627
    [56] W.Namgoong. Finite-length synthesis filters for non-uniformly time-interleaved analog-to-digital converter. 2002 IEEE International Symposium on Circuits and Systems, vol. 4:815-818
    [57] J. M. D. Pereira, P. M. B. S. Girao, and A. M. C. Serra. An FFT-based method to evaluate and compensate gain and offset errors of interleaved ADC systems. IEEE Transactions on Instrument and Measurement, 2004, 53(2):423-430
    [58]刘进军,吕幼新,王洪.并行ADC采集系统的时间误差测量与校正.电子科技大学学报.2005, 34(6):736-738
    [59]印茂伟,唐斌,向利.基于循环自相关的TIADC通道失配校正.微计算机信息.2009, 25(16):124-125
    [60]潘卉青,田书林.一种噪声情况下多通道时间延迟误差估计方法.仪器仪表学报.2008, 29(4):252-255
    [61] M. Unser. Splines-a perfect fit for signal and image processing. IEEE Signal Processing Magazine, 1999, 11(3):22-38
    [62] A. Papoulis. Signal Analysis, McGraw-Hill, 1977
    [63] S. Huang and B. C. Levy. Adaptive blind calibration of timing offset and gain mismatch for two-channel time-interleaved A/D converters. IEEE Transactions on Circuits Syst. I, Reg. Papers, 2006, 53(6):1278-1288
    [64] S. Huang and B. C. Levy. Blind calibration of timing offsets for four channel time-interleaved A/D converters. IEEE Transactions on Circuits Syst. I, Reg. Papers, 2007, Vol. 54(4):863-876
    [65] Patrik Satarzadeh, Bernard C. Levy, Paul J. Hurst. Adaptive Semiblind Calibration of Bandwidth Mismatch for Two-Channel Time-interleaved ADCs. IEEE Transactions on Circuitsand Systems—I: Regular Papers, 2009, 56(9):2075-2088
    [66]印茂伟. 400MHz 12-bit TIADC电路设计与误差校正.电子技术应用.2008, 34(12):64-66.
    [67]张喆,林茂六,徐清华. 50GHz宽带采样电路相位误差及其不确定度的精确鲁棒估计.中国科学, E辑:信息科学.2007, 37(8): 1099-1106
    [68] V. Divi and G. Wornell. Signal recovery in time-interleaved analog-to-digital converters. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol.2:593-596
    [69] J. Elbornsson, F. Gustafsson, and J.–E. Eklund. Blind adaptive equalization of mismatch errors in time-interleaeved A/D converter system. IEEE Transactions on Circuits and Systems, 2004, 51(1):151-158
    [70] S. Jamal, D. Fu, M. Singh, P. Hurst, and S. Lewis. Calibration of sample-time error in a two-channel time-interleaved analog-to-digital converter. IEEE Transactions on Circuits and Systems, 2004, 51(1):130-139
    [71] P. Marziliano and M. Vetterli. Reconstruction of irregularly sampled discrete-time bandlimited signal with unknown sampling locations. IEEE Transactions on Signal Processing, 2000, 48(12):3462-3471
    [72] M. Seo, M. J. W. Rodwell, and U. Madhow. Blind correction of gain and timing mismatches for a two-channel time-interleaved analog-to-digital converter. 2005 Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers. Vol.1:1121-1125
    [73] M. Seo, M. J. W. Rodwell, and U. Madhow. Blind correction of gain and timing mismatches for a two-channel time-interleaved analog-to-digital converter: experimental verification. 2006 IEEE International Symposium on Circuits and Systems, Vol.1:3394-3397
    [74] T. Strohmer and J. Xu. Fast algorithms for blind calibration in time-interleaved analog-to-digital converters. 2007 IEEE International Conference on Acousitics, Speech and Signal Processing,Vol.3:1225-1228
    [75] C. Vogel. A frequency domain method for blind identification of timing mismatches in time-interleaved ADCs. 2006 24th Norchip Conference: 45-48
    [76] J. Yen. On nonuniform sampling of bandwidth-limited signals. IRE Transactions On Circuit Theory, 1956, 3:251-257
    [77] F. Marvasti, M. Analoui, and M. Gamshadzahi. Recovery of signals from nonuniform samples using iterative methods. IEEE Transactions On Signal Processing, 1991, 39(4):872–877
    [78] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine. Splitting the unit delay-tools for fractional delay filter design. IEEE Signal Processing Magzine, 1996, 13:30-60
    [79] T.Strohmer and J. Tanner. Fast reconstruction algorithms for periodic nonuniform sampling with applications to time-interleaved ADCs. 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, 3:881-884
    [80] V. Divi and G. Wornell. Bandlimited signal reconstruction from noisy periodic nonuniform samples in time-interleaved adcs. IEEE International Conference on A coustics, Speech and Signal Processing:3721-3724
    [81]解本钊,林茂六.非均匀采样信号重构算法.电测与仪表. 2007, 44(6):1-4
    [82]陈顺阳,张东坡,杨小牛.基于信号重构的并行ADC定时误差校准.数据采集与处理. 2006, 21(2):149-153
    [83] H. Johansson, P. Lowenborg, and K. Vengattaramane. Least-squares and minimax design of polynomial impulse response fir filters for reconstruction of two-periodic nonuniformly sampled signals. IEEE Transactions On Circuits and Systems I: Regular Papers, 2007, 54(4):877-888
    [84] John Browning. Approximating signals from nonuniform continuous time samples at unknown locations. IEEE Transactions on Signal Processing, 2007, 55(4):1549-1554
    [85] K. Hadidi, G. C. Temes, and K. W. Martin. Error analysis and digital correction algorithms for pipelined A/D converters. 1990 IEEE International Symposium on Circuits and Systems, 3: 1709-1712
    [86] B. Provost and E. Sanchez-Sinencio. A practical self-calibration scheme implementation for pipeline ADC. IEEE Transactions on Instrument and measurement, 2004, 53(2):448-456
    [87] B. Razavi. Principles of Data Conversion System Design. New York, Wiley Interscience, 1995.
    [88] Peter H?ndel, Mikael Skoglund, Mikael Pettersson. A Calibration Scheme for Imperfect Quantizers. IEEE Transactions on Instrument and measurement, 2000, 49(5):1063-1068
    [89] Robert H. Walden. Analog-to-Digital Converter Survey and Analysis. IEEE Journal on selected areas in communications, 1999, 17(4):539-550
    [90] M. Gustavsson and N. N. Tan. A global passive sampling technique for high-speed switched-capacitor time-interleaved ADCs. IEEE Transactions on Circuits and Systems I: Analog and Digital Signal Processing, 2000, 47(9):821-831
    [91] K. Poulton, J. J. Corcoran, and T. Hornak. A 1-GHz 6-bit ADC system. IEEE J. Solid-State Circuits, 1987, 22(6):962-970
    [92] G. Golub. Some modified matrix eigenvalue problems. Society for Industrial and Applied Mathematics Review. 1973, 15:318-344
    [93] G. Golub, C. Van Loan. An analysis of the total least squares problem. Society for Industrial and Applied Mathematics Journal on Numerical Analysis. 1980, 17:883-893
    [94] Ivan Markovsky, Sabine Van Huffel. Overview of of total least-squares methods. Signal Processing. 2007, 87(10):2283-2302
    [95] G. Andria, M. Savino, and A. Trotta. Windows and interpolation algorithms to improve electrical measurement accuracy. IEEE Transactions on Instrument and measurement. 1987,38(4):856-863
    [96] B. Widrow, I . Kollar, and M.-C. Liu. Statistical theory of quantization. IEEE Transactions on Instrument and measurement. 1990, 39(1):71-75
    [97] Rik Pintelon, Johan Schoukens. An Improved Sine-Wave Fitting Procedure for Characterizing Data Acquisition Channels. 1996, 45(2):588-593
    [98] M. Feder and E. Weinstein. Parameter estimation of superimposed signals using the EM algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(4):477-489
    [99] N. M. Laird, A. P. Dempster, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 1977:1-38
    [100] IEEE Standard for digitizing waveform recorders. 1994
    [101] IEEE Standard for terminology and test methods for analog-to-digital converters. 2000
    [102] Jan-Erik Eklund, Fredrik Gustafsson. Digital offset compensation of time-interleaved ADC using random chopper sampling. 2000 IEEE International Symposium on Circuits and Systems. Vol.3:447-450
    [103] H. L. Van Trees, Detection Estimation and Modulation Theory, Part I. New York: Wiley, 1968
    [104] Steven M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory, Vol.1. Prentice Hall, 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700