用户名: 密码: 验证码:
雷达目标微动特征提取与估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标或目标的组成部分除主体平动之外的振动、转动等小幅运动称为微动,目标微动反映了其精细特征,具有重要的军事价值,在目标探测与识别领域受到广泛关注。本文系统研究了微动目标雷达回波的调制效应,在此基础上提出了微多普勒特征提取的方法,并深入研究了非参数化和基于模型的两大类微动参数估计方法。
     第一章阐述了课题研究背景及意义,归纳了微动的研究现状,从微动目标雷达回波建模、微多普勒分离及特征提取、微动目标成像、基于微多普勒特征的目标识别等方面分析并总结了该领域研究目前采取的主要技术途径及存在的问题,介绍了本文主要研究工作。
     第二章系统研究了微动目标雷达回波调制效应。在分析微动目标姿态变化引起的散射强度变化规律基础上,建立了多成分调幅-调频形式的进动目标雷达回波调制模型,研究了进动目标微多普勒和多普勒谱的调制特性,推导了其与进动参数的定量关系。针对LFM和SF两种典型宽带信号,系统建立了不同雷达参数和微动参数条件下的微动目标一维距离像调制模型,分析了其移位、展宽等调制特性,对微动参数估计和微动目标成像的研究具有重要意义。通过系列暗室测量实验分析了目标特性和雷达信号特性两方面因素对雷达目标微动特性测量的影响。
     第三章研究了目标微多普勒特征提取与进动参数估计方法。针对微动目标回波信号多分量非线性调频的特点,研究了高阶时频分布在微多普勒特征提取中的应用并分析了其性能,该方法具备高时频分辨力、低交叉项、大动态范围的分析性能。针对弹道目标回波微多普勒提取的问题,提出了基于瞬时频率多项式模型的目标平动估计方法,从而实现了微动与平动多普勒谱的分离。针对微动目标回波的循环平稳特性,建立了微动目标回波循环谱密度统计量的模型,提出了基于循环谱密度的微动周期估计方法,该方法具有估计精度高、抗噪性能强的特点。分析了进动目标微多普勒谱图的调制特性以及高阶时频分布估计微多普勒瞬时频率的偏差规律,在此基础上提出了改进的逆约旦变换估计进动角方法,提高了进动角的估计精度。
     第四章研究了基于模型的目标微动参数估计方法。针对微动目标雷达回波具有稀疏性的特点,建立了基于稀疏表示的微动目标参数估计模型,设计了微动目标的原子模型,并分析了字典的相干性。针对微动目标字典相干性强的问题,提出了基于线性变换的字典优化设计方法,该方法在不影响稀疏解性质的前提下,有效减小了字典的相干性。将字典线性变换与稀疏求解算法相结合,设计了基于稀疏表示的目标微动参数估计算法流程,获得了优良的估计性能。针对进动目标回波信号调幅-调频的特点,建立了进动目标回波的时变自回归(TVAR)表示模型,提出了基于TVAR模型的目标微动参数估计方法。
     第五章总结了论文的研究工作和主要创新点,指出需要进一步研究的问题。
The term”micro-motion”is defined as the mechanical vibration or rotation of a target or its components in addition to its bulk translation. The micro-motion status of a target can well reflect its sophisticated features. Therefore, it is of important value in military field, and draws great attentions to the researchers from the areas of target detection and recognition. In this dissertation, we keep our focus and do intensive research works on the topic of radar signature extraction from targets with micro-motions based on the modulation effects of the radar echo on this specific kind of targets.
     We introduce the background and significance of this research topic as well as the related works in Chapter 1. The state of the art is summarized under four aspects: the radar echo modeling of targets with micro-motions; the separation and feature extraction of micro-Doppler; the radar imaging of targets with micro-motions; and the target recognition based on micro-Doppler. We analyze the basic methodologies and techniques commonly used in this area, and point out their main problems. The major scientific contributions of this dissertation are summed up at the end of this chapter as well.
     In Chapter 2, we analyze the modulation effects of micro-motions on the radar echo of targets systematically. The modulation effects and characteristics are investigated according to micro-motions, the scattering structure of the target and radar waveforms. The radar echo model of targets with precession is established. The micro-Doppler and Doppler spectrum of targets with precession are deduced and analyzed. Under the two different conditions of the typical wideband waveform– LFM (Linear Frequency Modulation) signal and SF (Stepped Frequency) signal, we do deduction and analysis on the modulation regularities of the HRRP (high resolution range profile) with different parameters of radar waveforms and micro-motions respectively. The influences of target characteristics and radar waveforms on micro-Doppler are analyzed, including micro-motion pattern, scattering structure, radar frequency, instantaneous bandwidth, Doppler resolution and coherence of echos. The conclusion is verified by a series of experiments conducted both on the simulated and measured data.
     The methodology of analysis and extraction of micro-Doppler signatures are deeply studied in Chapter 3. We firstly analyze the performances of the different typical time-frequency distributions in micro-Doppler extraction. As the ballistic targets have both the high-velocity bulk translation and micro-motion characteristics, we propose an approach to estimate the bulk velocity based on a polynomial model of instantaneous frequency. With the support of this approach, the micro-Doppler and Doppler spectrum of the bulk motion can be separated. Then, aiming at the cyclostationary characteristic of the radar echo of targets with micro-motions, an estimation method of the micro-motion cycle based on CSD (Cyclic Spectral Denstiy) is proposed, and its performance is discussed afterwards. According to the characteristics of micro-Doppler on time-frequency distribution images, we estimate the precession angle by utilizing the inverse Radon transformation. While analyzing the bias of the estimation, we propose a method for correcting that of the precession angle.
     We elaborate the super-resolution estimation of micro-motion parameters in Chapter 4. Since the radar echo of targets with micro-motions is sparse, we establish a model based on sparse representation for estimating the micro-motion parameters, design the atom model of targets with micro-motions, and analyze the mutual coherence of the dictionary. For solving the problem of strong mutual coherence of the dictionary, we optimize the dictionary design by applying the theory of linear transformation. The mutual coherence of the dictionary can be effectively reduced with the solution’s sparsity property held. In addition, we develop a sparse-representation-based algorithm for the micro-motion parameters estimation by integrating the dictionary transformation with the sparse solution solvers. The performance of the algorithm is verified as being acceptable by experiments. The radar echo of targets with micro-motions belongs to multi-component AM-FM signal models. Taking this characteristic into account, we propose a time-varying autoregressive (TVAR) representation model of the radar echo of targets with micro-motions. The methods of solving the TVAR model’s parameters are discussed, and the micro-motion parameters are estimated.
     The research work and main innovative contributions of this dissertation are concluded in the final chapter. We not only outlook the work can be done in the next steps, but point out the potential problems and difficulties.
引文
[1] Chen V C, Fayin L, Shen-shyang H, Wechsler H. Micro-doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic systems,2006,42(1): 2~21.
    [2]章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998.
    [3] Theodore A P. Explanation of Why the Sensor in the Exoatmospheric Kill Vehicle (EKV) Cannot Reliably Discriminate Decoys from Warheads. Attachment of Letter to White House Chief of Staff.
    [4] Chen V C, Li F, Ho S, Wechsler H. Analysis of micro-Doppler signatures[C]. IEE Proceedings on Radar, Sonar and Navigation,2003,150(4):271~276.
    [5] Chen V C. Micro-Doppler effect of micro-motion dynamics: A review[C]. SPIE Proceedings on Independent Component Analyses, Wavelets, and Neural Networks, (5102):240~249.
    [6] Chen V C, Ling, H. Time-Frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston: Artech House Press,2002:173~192.
    [7] Zediker M S, Rice R R, Hollister J H. Method for extending range and sensitivity of a fiber optic micro-Doppler ladar system and apparatus therefore[P]. U.S. Patent: 6847817, Dec. 8, 1998.
    [8] Renhorn I, Karlsson C, Letalick D. Coherent laser radar for vibrometry: Robust design and adaptive signal processing[C]. SPIE Proceedings on Applied Laser Radar Technology, 1995,(2472):23~30.
    [9] Chen V C. Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing,2008,2(3):291-300.
    [10] Chen V C, Lin C, Pala W P. Time-varying Doppler analysis of electromagnetic backscattering from rotating object[C]. Shanghai: IEEE Radar Conference,2006:807~812.
    [11] Ling H. Exploitation of microdoppler and multiple scattering phenomena for radar target recognition(Annual report)[R]. Austin: The University of Texas at Austin,2004.
    [12] Ling H. Exploitation of microdoppler and multiple scattering phenomena for radar target recognition(Final report) [R]. Austin: The University of Texas at Austin,2006.
    [13] Boulic R, Thalmann M N, Thalmann D. A global human walking model with real-time kinematic personification[J]. The Visual Computer,1990,6(6):344~358.
    [14] Chen V C. Detection and analysis of human motion by radar[C]. Rome: IEEE Radar Conference,2008:1~4.
    [15] Dorp P, Groen F. Human walking estimation with radar[C]. IEE Proceedings on Radar, Sonar and Navigation,2003,150(5):356~365.
    [16] Thayaparan T. Separation of target rigid body and micro-Doppler effects inISAR/SAR imaging[R]. Ottawa: Defence Research and Development Canada,2006.
    [17] Li J, Ling H. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[C]. IEE Proceedings on Radar, Sonar and Navigation,2003,150(4):284~291.
    [18] Li J. Model-based signal processing for radar imaging of targets with complex motions[D]. Texas: University of Texas at Austin,2002:75~98.
    [19] Rüegg M, Meier E, Nüesch D. Vibration and rotation in millimeter-wave SAR[J]. IEEE Transactions on Geoscience and Remote sensing,2007,45(2): 293~304.
    [20] Rüegg M, Meier E, Nüesch D. Constant motion, acceleration, vibration, and rotation of objects in SAR data[C]. SPIE Proceedings on SAR Image Analysis, and Techniques,2005,5980(5):1~12.
    [21] Barber B C. Imaging the rotor blades of hovering helicopters with SAR[C]. Rome: IEEE Radar Conference,2008:1~6.
    [22] Thayaparan T, Abrol S, Riseborough E. Analysis of radar micro-Doppler signatures from experimental helicopter and human data[J]. IEE Proceedings on Radar, Sonar and Navigation,2007,1 (4):289~299.
    [23] Thayaparan T, Abrol S, Qian S. Micro-Doppler analysis of rotating targets in SAR[R]. Ottawa: Defence Research and Development Canada,2005.
    [24] Thayaparan T, Abrol S, Riseborough E. Micro-Doppler feature extraction of experimental helicopter data using wavelet and time-frequency analysis[C]. International Conference on Radar Systems,2004.
    [25] Thayaparan T, Abrol S, Riseborough E. Micro-Doppler radar signatures for intelligent target recognition[R]. Ottawa: Defence Research and Development Canada,2004.
    [26] Cai C, Liu W, Fu J S, Lu L. Empirical mode decomposition of micro-Doppler signature[C]. IEEE International Radar Conference, 2005:895~899.
    [27] Lai C, Ruan Q, Narayanan R M. Hilbert-Huang Transform (HHT) processing of through-wall noise radar data for human activity characterization[C]. IEEE Workshop on Signal Processing Applications for Public Security and Forensics, 2007:1~6.
    [28] Stankovic L, Djurovic I, Thayaparan T. Separation of target rigid body and micro-Doppler effects in ISAR imaging[J]. IEEE Transactions on Geoscience and Remote sensing,2006,42(4):1496~1506.
    [29] Luo Y, Chi L, Zhang Q. A novel method for extraction of micro-Doppler signal[C]. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,2007.
    [30] Baker B D. TMR processing procedures for GSRS spin and attitude measurements[R]. AD:074947,1979.
    [31] Nunn E C. The US army white sands missile range development of targetmotion resolution[C]. Record of IEEE Electronics and Aerospace Systems Conventions, VA, USA, 1980: 346-352.
    [32]单荣光.目标运动分辨与轨迹运动补偿[J].现代雷达,1989,(4):26~35.
    [33]陈建文,李士国.基于目标运动分辨技术提取导弹目标运动特征[J].现代雷达, 2003,25(6):5~7.
    [34] Steudel F. Process for phase-derived range measurements[P]. U.S. Patent: 7046190, May.16,2006.
    [35] Jaenisch H. Discrimination via Phased Derived Range[R]. USA: Missile Defense Agency Small Business Innovation Research Program, 2002.
    [36] Camp W W, Mayhan J T, O’Donnell R M. Wideband radar for ballistic missile defense and range-Doppler imaging of satellites[J]. The Lincoln Laboratory Journal, 2000, 12(2):267~280.
    [37] Nagel D, Purchla M. Correlation of ISAR and high range resolution signals of helicopters with modelled data[C]. Berlin: International Radar Symposium, 2005.
    [38] Qian S E, Chen D. ISAR feature extraction from targets with non-rigid body motion[C]. Orlando: SPIE Proceedings on Radar Sensor Technology, 2001, (4374):1~9.
    [39] Hagelen M, Wahlen A, Brehm T. ISAR imaging of flying helicopters at millimeter-wave frequencies[C]. Amsterdam: Proceedings of The First European Radar Conference( EURAD), 2004:265~268.
    [40] Zhang Q, Yeo S, Tan H S. Imaging of a Moving Target with Rotating Parts based on the Hough Transform. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):291~299.
    [41] Bai X, Xing M, Zhou F, et al. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3514~3523.
    [42] Xing M D , Lei J, Bao Z. A method of ISAR ship imaging based on pendulum model[C]. Berlin: Proceedings of the International Radar Symposium, 2005.
    [43]曹敏.空间目标ISAR成像技术研究[D].长沙:国防科技大学,2008:61~81.
    [44] Thayaparan T, Lampropoulos G, Wong S K. Distortion in the inverse Synthetic Aperture Radar (ISAR) images of a target with time-varying perturbed motion[C]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4):221~227.
    [45] Sparr T. ISAR-radar imaging of targets with complicated motion[C]. Singapore: Proceedings of International Conference on Image Processing, 2004:5~8.
    [46] Wong S K, Riseborough E, Duff G. An analysis of ISAR image distortion based on the phase modulation effect[J]. EURASIP Journal on Applied Signal Processing, 2006, 2006(11): 1~16.
    [47] Boutros J, Barrie G. Ultra-wideband Synthetic Aperture Radar imaging -- effect of off-track motion on resolution[R]. Ottawa: Defence Research and Development Canada,2003.
    [48] Yau D, Berry P E, Haywood B. Eigenspace-based motion compensation for ISAR target imaging[J]. EURASIP Journal on Applied Signal Processing, 2006, 2006(11):1~9.
    [49] Thomas G, Flores B C. Time-varying filters for ISAR motion compensation[C]. San Diego: SPIE Proceedings on Radar Processing Technology and Applications,1998: 174~185.
    [50] Son J S, Flores B C. Stepped-frequency ISAR motion compensation using maximum likelihood phase gradient[C]. Orlando: SPIE Proceedings on Algorithms for Synthetic Aperture Radar Imagery, 2002:252~263.
    [51] Shan R G, Ren Q S, Li S G. ISAR trajectory motion compensation[C]. Orlando: SPIE Proceedings on Hybrid Image and Signal Processing , 1990:56~61.
    [52] Chen V C, Lipps R. 3-D Time/Frequency-Range-Doppler signatures for SAR imaging of ground moving targets[C]. Oslo: RTO SET Symposium on Target Identification and Recognition using RF systems, 2004.
    [53] Chen V C, Lipps R, Bottoms M. Advanced synthetic aperture radar imaging and feature analysis[R]. Washington D.C.: Naval Research Laboratory,2005:22-29.
    [54] Chen V C. Joint time-frequency analysis for radar signal and imaging[C]. Barcelona: IEEE International Symposium on Geoscience and Remote Sensing, 2007:5166~5169.
    [55] Chen V C, Miceli W J. Time-varying spectral analysis for radar imaging of manoeuvring targets[C]. IEE Proceedings on Radar, Sonar and Navigation,1998,145 (5):262~268.
    [56] Chen V C. Applications of rotational time-frequency transforms to radar imaging of moving targets[C]. Orlando: SPIE Proceedings on Wavelet and Independent Component Analysis Applications, 2002, (4738): 241~251.
    [57] Thayaparan T, Lampropoulos G. A new approach in time-frequency analysis with applications to experimental high range resolution radar data[R]. Ottawa: Defence Research and Development Canada,2003.
    [58] Thayaparan T, Lampropoulos G, Wong S K. Applications of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured radar data[C]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4):213~220.
    [59] Huang S, Lerner R M, Parker K J. On estimating the amplitude of harmonic vibration from the Doppler spectrum of reflected signals[J]. Acoustical Society of America,1990,88(6):2702~2712.
    [60] Yamakoshi Y, Sato J, Sato T. Ultrasonic imaging of internal vibration of soft tissue under forced vibration[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency control, 1990,37(2):45~53.
    [61] Bell M R, Grubbs R A. JEM modeling and measurement for radar targetidentification[J]. IEEE Transactions on Aerospace and Electronic systems, 1993,29(1):73~87.
    [62]金文彬.弹道导弹运动估计及特征提取[D].长沙:国防科技大学,2003: 12~15.
    [63]胡杰民,付耀文,黎湘.空间锥体目标进动周期估计[J].电子与信息学报,2008,30(12):2849~2852.
    [64]魏玺章,姚辉伟,丁小峰,黎湘.变区间分组检验相乘积累进动周期估计[J].电子学报,2010,38(1):135~140.
    [65] Le-Tien T, Talhami H, Nguyen D T. An application of the wavelet transform for the echo signal from a rotating object[C]. IEEE Proceedings on Digital Signal Processing Applications,1996:587~592.
    [66] Chen V C. Analysis of radar micro-Doppler signature with time-frequency transform[C]. Pocono Manor: Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing,2000:463~466.
    [67] Chen V C, Lipps. Time-frequency signatures of micro-Doppler phenomenon for feature extraction[C]. Proceedings of SPIE,2000,(4056):220~226.
    [68] Sparr T, Krane B. Micro-Doppler analysis of vibrating targets in SAR[C]. IEE Proceedings on Radar, Sonar and Navigation,2003,150(4):277~283.
    [69] Setlur P, Amin M, Ahmad F. Urban target classifications using time-frequency micro-Doppler signatures[C]. Sharjah: The 9th International Symposium on Signal Processing and its applications,2007:1~4.
    [70] Cirillo L A. Narrowband array signal processing using time-frequency distributions[D]. Darmstadt: Darmstadt University of Technology,2007.
    [71] Marple S L, Marino C, Strange S. Large dynamic range time-frequency signal analysis with application to helicopter Doppler radar data[C]. SPIE proceedings on Advanced Signal Processing Algorithms, Architectures, and Implements,2003,(5205):139~145.
    [72] Marple S L. Sharpening and bandwidth extrapolation techniques for radar micro-Doppler feature extraction[C]. Proceedings of the International Radar Conference,2003:166~170.
    [73] Ram S S, Ling H. Analysis of microDopplers from human gait using reassigned joint time-frequency transform[J]. IEEE Electronics letters,2007,43(23).
    [74] Ram S S, Li Y, Lin A. Doppler-based detection and tracking of humans in indoor environments[J]. Journal of the Franklin Institue, 2008,(345):679~699.
    [75] Stankovic L, Djurovic I, Thayaparan T. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments[J]. Journal of the Franklin Institue, 2008,1(3):1~23.
    [76] Thayaparan T, Stankovic L, Djurovic I. Target detection and feature extraction in indoor and outdoor environments using micro-Doppler analysis[R]. Ottawa: DefenceResearch and Development Canada,2008.
    [77]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].长沙:国防科技大学,2009:94~120.
    [78] Ghaleb A, Vignaud L, Nicolas J M. Micro-Doppler analysis of wheels and pedestrians in ISAR imaging[J]. IET Signal Processing, 2008,2(3)301~311.
    [79] Ghaleb A, Vignaud L, Nicolas J M. Fine micro-Doppler analysis in ISAR imaging[C]. Barcelona: IEEE International Symposium on Geoscience and Remote Sensing, 2007:574~577.
    [80] Setlur P, Amin M, Ahmad F. Analysis of micro-Doppler signals using linear FM basis decomposition[C]. SPIE Proceedings on Radar Sensor Technology,2006, (6210):1~11.
    [81] Setlur P, Amin M, Ahmad F. Indoor imaging of targets enduring simple harmonic using Doppler radars[C]. IEEE International Symposium on Signal Processing and Information Technology,2005:141~146.
    [82] Setlur P, Amin M, Thayaparan T. Micro-Doppler signal estimation for vibrating and rotating targets[C]. Proceedings of the 8th International Symposium on Signal Processing and Its Applications,2005,(2):639~642.
    [83] Setlur P, Amin M, Ahmad F. Optimal and suboptimal micro-Doppler estimation schemes using carrier diverse Doppler radars[C]. Taipei: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009:3265~3268.
    [84] Dong W, Li Y. Radar target recognition based on micro-Doppler effect[J]. Optoelectronics Letters,2008,4(6):456~459.
    [85] Otero M. Application of a continuous wave radar for human gait recognition[C]. SPIE Proceedings on Signal Processing, Sensor Fusion, and Target Recognition,2005,(5809):538~548.
    [86] Lei J. Pattern recognition based on time-frequency distributions of radar micro-Doppler dynamics[C]. The 6th International Conference on Software Engineering, Artifical Intelligence, Networking and Parallel/Distributed Computing, 2005:14~18.
    [87] Kim Y, Ling H. Human activity classification based on micro-Doppler signatures using an artificical neural network[C]. San Diego: IEEE International Symposium on Antennas and Propagation Society,2008:1~4.
    [88] Kim Y, Ling H. Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote sensing,2009,47(5): 1328~1337.
    [89] Nanzer J A, Rogers R L. Bayesian classification of humans and vehicles using micro-Doppler signals from a scanning-beam radar[J]. IEEE Microwave and Wireless Components Letters,2009,19(5):338~340.
    [90] Lei J, Lu C. Target classification based on micro-Doppler signatures[C]. IEEEInternational Radar Conference,2005:179~183.
    [91] Yang Y, Lei J, Zhang W. Target classification and pattern recognition using micro-Doppler radar signatures[C]. IEEE Proceedings of 7th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,2006.
    [92] Chen V C. Spatial and temporal independent component analysis of micro-Doppler features[C]. IEEE International Radar Conference,2005:348~353.
    [93] Anderson M G. Design of multiple frequency continuous wave radar harware and micro-Doppler based detection and classification algorithms[D]. Texas: University of Texas at Austin,2008.
    [94] Smith G E, Woodbridge Karl, Baker C J. Micro-Doppler signature classification[C]. Shanghai: IEEE International Radar Conference,2006:1~4.
    [95] Smith G E, Woodbridge Karl, Baker C J. Template based micro-Doppler signature classification[C]. Manchester: Proceedings of the 3rd European Radar Conference,2006:158~161.
    [96] Lovett A, Shen C, Otaguro W. Microdoppler: non-cooperative target classification/identification[R]. Maryland: AD420040,Naval Air Warfare Center Aircraft Division, 2004.
    [97] Gschwendtner A B, Keicher W E. Development of coherent laser radar at Lincoln Laboratory[J]. Lincoln Laboratory Jouranl, 2000,12(2):383~396.
    [98] Kulpa K. Continuous wave radars-monostatic, multistatic and network[M]. Springer Netherlands,2006:215~242.
    [99] Geisheimer J L, Greneker E F, Marshall W S. A high-resolution Doppler model of human gait[C]. SPIE Proceedings on Radar Sensor Technology and Data Visualization,2002,(4744):8~18.
    [100] Geisheimer J L, Marshall W S, Greneker E F. A continuous-wave (CW) radar for gait analysis[C]. Pacific Grove: The 35th Asilomar Conference on Signals, Systems and Computers,2001,(1):834~838.
    [101] Otero M. Application of a continuous wave radar for human gait recognition[C]. SPIE Proceedings on Signal Processing, Sensor Fusion, and Target Recognition,2005,(5809):538~548.
    [102] Lin A, Ling H. Through-wall measurements of a Doppler and direction-of-arrival(DDOA) radar for tracking indoor movers[C]. IEEE International Symposium on Antennas and Propagation Society,2005: 322~325.
    [103] Lin A. A low-complexity radar for human tracking[D]. Texas:University of Texas at Austin,2006.
    [104] Anderson M G, Rogers R L. Micro-Doppler analysis of multiple frequency continuous wave radar signatures[C]. SPIE Proceedings on Radar Sensor Technology,2007,(6547):1~10.
    [105] Setlur P, Amin M G, Ahmad F. Experiments on through-the-wall motion detection and ranging[C]. SPIE Proceedings on Sensors, and Command, Control, Communications, and Intelligence Technologies for Homeland Security and Homeland Defense,2007,(6538):1~10.
    [106] Yang Y, Zhang W, Lu C. Classify human motions using micro-Doppler radar[C]. SPIE Proceedings on Biometric Technology for Human Identification,2008,(6944):1~10.
    [107] Tan R, Bender R. Analysis of Doppler measurements of people[C]. SPIE Proceedings on Targets and Backgrounds: Characterization and Representation,2006,(6239):1~10.
    [108] Kealey P G, Jahangir M. Advances in Doppler recognition for ground moving target indication[C]. SPIE Proceedings on Automatic Target Recognition,2006,(6234):1~11.
    [109] Zhang Z, Pouliquen P, Waxman A. Acoustic micro-Doppler gait signatures of humans and animals[C]. Baltimore: The 41st Annual Conference on Information Sciences and Systems,2007:627~630.
    [110] Zhang Z, Pouliquen P, Waxman A. Acoustic micro-Doppler radar for human gait imaging[J]. Journal of the Acoustical Society of America Express Letters,2007,121(3):110~113.
    [111] Zhang Z, Andreou A G. Human identification experiments using acoustic micro-Doppler signatures[C]. IEEE Proceedings of the Argentine School of Micro-Nanoelectronics, Technology and Applications,2008:81~86.
    [112] Stove A G, Sykes S R. A Doppler-based automatic target classifier for a battlefield surveillance radar[C]. Edinburgh: IEEE Proceedings of International Radar Conference, 2002:419~423.
    [113] Holzrichter J F. S-band radar micro-Doppler signatures for BMD discrimination[R]. USA Missile Defense Agency Small Business Innovation Research Program, 2004.
    [114]刘暾,赵钧.空间飞行器动力学[M].哈尔滨:哈尔滨工业大学出版社,2003:180~184.
    [115]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005:86~92.
    [116]孙真真.基于光学区雷达目标二维像的目标散射特征提取的理论及方法研究[D].长沙:国防科技大学,2001:73~80.
    [117]阮颖铮,田军.飞行器翼身结合部的散射特性分析[J].航空学报, 1992,13(11):642~646.
    [118]保铮,刑孟道,王彤.雷达目标成像技术[M].北京:电子工业出版社,2005:24~29.
    [119]徐泳.步进频率信号应用研究[D].南京:南京电子技术研究所,2005.
    [120]任丽香,龙腾,远海鹏. HPRF脉冲多普勒频率步进雷达信号处理与参数估计[J].电子学报,2007,35(9):1630~1636.
    [121]张贤达.非平稳信号分析与处理[M].北京:国防工业出版社,1999:12~20.
    [122]王飞行. PD/HRR兼容新体制雷达关键技术研究[D].长沙:国防科技大学,2009.
    [123] Sejdic E, Djurovic I, Jiang J. Time-frequency feature representation using energy concentration: an overview of recent advances[J]. Digital Signal Processing,2009,(19):153~183.
    [124] Boashash B, Ristich B. Polynomial Wigner-Ville distributions and time-varying higher-order spectra[C]. Victoria: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis,1992:31~34.
    [125] Boashash B, O’Shea P. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra[J]. IEEE Transactions on signal processing, 1994,42(1):216~220.
    [126] Boashash B, Ristic B. Time-varying higher order spectra[C]. Pacific Grove: The 25th Asilomar Conference on Signals, Systems and Computers,1991,(1): 393~397.
    [127] Boashash B, O’Shea P. Time-varying higher order spectra[J]. SPIE Advanced Signal Processing Algorithms, Architectures, and Implementations, 1991,(1566):98~108.
    [128] Boashash B, Frazer G. Time-varying higher-order spectra, generalized Wigner-Ville distribution and the analysis of underwater acoustic data[C]. San Francisco: IEEE International Conference on Acoustics, Speech, and Signal Processing,1992,(5):193~196.
    [129] Boashash B, Ristic B. Time-varying polyspectra and reduced Wigner-Ville trispectrum[J]. SPIE 1992,(1770):268~279.
    [130] Valeau V, Valiere J C, Mellet C. Instantaneous frequency tracking of a sinusoidally frequency-modulated signal with low modulation index: application to laser measurements in acoustics[J]. Elsevier Signal Processing, 2004,(84):1147~1165.
    [131] Stankovic L. A multitime definition of the Wigner higher order distribution: L-Wigner distribution[J]. IEEE Signal Processing Letters, 1994,1(7):106~109.
    [132] Stankovic L. L-class of time-frequency distribution[J]. IEEE Signal Processing Letters, 1996,3(1):22~25.
    [133] Stankovic L, Stankovic S. An analysis of instantaneous frequency representation using time-frequency distributions—generalized Wigner distribution[J]. IEEE Transactions on Signal Processing, 1995,43(2):549~552.
    [134] Stankovic L. A time-frequency distribution concentrated along the instantaneous frequency[J]. IEEE Signal Processing Letters, 1996,3(3):86~91.
    [135] Stankovic L. S-class of time-frequency distributions[C]. IEE Proceedings on Vis. Image Signal Process.,1997,144(2):57~64.
    [136] Stankovic S, Stankovic L. Introducing time-frequency distribution with a‘complex-time’argument[J]. IEE Electronics Letters, 1996,32(14):1265~1267.
    [137] Stankovic L. Time-frequency distributions with complex argument[J]. IEEE Transcations on Signal Processing, 2002, 50(3):475~486.
    [138] Stankovic S, Zaric N, Orovic I. General form of time-frequency distribution with complex-lag argument[J]. IEEE Electronics Letters, 2008,44(11).
    [139] Cornu C, Stankovic S, Ioana C. Generalized representation of phase derivatives for regular signals[J]. IEEE Transactions on Signal Processing,2007,55(10):4831~4838.
    [140] Gottin B, Ioana C, Stankovic S. On the concept of time-frequency distributions based on complex-lag moments[C]. Lausanne: The 16th European Signal Processing Conference,2008:17~21.
    [141] Gottin B, Orovic I, Ioana C. Signal characterization using generalized“time-phase derivatives”reprentation[C]. Taipei: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009:3001~3004.
    [142] Stankovic L. A method for time-frequency analysis[J]. IEEE Transactions on Signal Processing, 1994,42(1):225~229.
    [143] Stankovic L. A method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-Wigner distribution[J]. IEEE Transcations on Signal Processing, 1995, 43(5):1262~1268.
    [144] Stankovic L. On the realization of the Polynomial Wigner-Ville distribution for multicomponent signals[J]. IEEE Transcations on Signal Processing, 1998, 5(7):157~159.
    [145] Gini F, Giannakis G B. Hybrid FM-Polynomial phase signal modeling: parameter estimation and Cramer-Rao bounds[J]. IEEE Transcations on Signal Processing, 1999, 47(2):363~377.
    [146]冯德军.弹道中段目标雷达识别与评估研究[D].长沙:国防科技大学,2006:63~68.
    [147] Gardner W A, Napolitano A, Paura L. Cyclostationarity: half a century of research[J]. Elsevier Signal Processing, 2006, (86):639~697.
    [148] Antoni J. Cyclostationary by examples[J]. Elsevier Mechanical Systems and Signal Processing, 2009,(23):987~1036.
    [149]黄春琳.基于循环平稳特性的低截获概率信号的截获技术研究[D].长沙:国防科技大学,2001.
    [150] Toft P. The Radon transform theory and implementation[D]. Lyngby: Technical University of Denmark, 1996:95~105.
    [151] Wong K M, Jin Q. Estimation of the time-varying frequency of a signal: the Cramer-Rao bound and the application of Wigner distribution[J]. IEEE Transactions onAcoustics, Speech and Signal Processing, 1990,38(3):519~536.
    [152] Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate [J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 2(6):708~715.
    [153] Wood J C, Barry D T. Linear signal synthesis using the Radon-Wigner transform [J]. IEEE Transactions on Signal Processing, 1994, 42(8):2105~2111.
    [154] Barbarossa S. Analysis of multi-component LFM signals by combined Wigner-Hough transform [J]. IEEE Transactions on Signal Processing, 1995, 43(6):1511~1515.
    [155] Almeida L B. The fractional Fourier transform and time frequency representation [J]. IEEE Transactions on Signal Processing, 1994, 42 (11): 3084~3091.
    [156] Xia X G. Discrete chirp-Fourier transform and its application to chirp rate estimation[J]. IEEE Transactions on Signal Processing,2000,48 (11):3122~3133.
    [157] Peleg S, Porat B. Estimation and classification of polynomial-phase signals[J]. IEEE Transactions on Information Theory, 1991, 37(2): 423~430.
    [158] Li Y X, Xiao X C. Recursive filtering Radon-ambiguity transform algorithm for detecting multi-LFM signals [J]. Journal of Electronics in China, 2003, 20(3):161~166.
    [159]李文臣.高速机动目标雷达信号参数估计与成像处理[D].长沙:国防科技大学,2009:40~48.
    [160] Mallat S. A wavelet tour of signal processing—the sparse way(3rd Edition)[M]. Burlington: Academic Press, 2009.
    [161] Wright J, Yang A Y, Ganesh A. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210~227.
    [162] Kopriva I, Jeric I. Multi-component analysis: blind extraction of pure components mass spectra using sparse component analysis[J]. Journal of Mass Spectrometry,2009,44(9):1378~1388.
    [163] Kover H, Luk C, Warp E. Sparse component analysis on EEG data[R]. Helen Wills Neuroscience Institude of UC Berkeley,2006.
    [164] Georgiev P, Theis F, Cichocki A. Blind source separation and sparse component analysis of overcomplete mixtures[C]. Proceeding of ICASSP, 2004:493~496.
    [165] Li Y, Cichocki A, Amari S. Sparse component analysis for blind source separation with less sensor than sources[C]. Nara: 4th International Symposium on Independent Component Analysis and Blind Signal Separation,2003:89~94.
    [166] Zweig G. Super-resolution Fourier transforms by optimization, and ISAR imaging[C]. IEE Proceedings on Radar, Sonar and Navigation,2003,150(4):247~252.
    [167] Baraniuk R, Steeghs P. Compressive radar imaging[C]. Waltham: IEEE RadarConference,2007.
    [168] Wang Z, Wang W. Fast and adaptive method for SAR superresolution imaging based on point scattering model and optimal basis selection[J]. IEEE Transactions on Imaging Processing,2009,18(7):1477~1486.
    [169] Cheng P, Jiang Y, Xu R. A novel ISAR imaging algorithm for maneuvering targets based on sparse signal representation[C]. Dalian:Proceedings of the 6th World Congress on Intelligent Control and Automation,2006:10126~10129.
    [170] Malioutov D M, Cetin M, Willsky A S. Optimal sparse representation in general overcomplete bases[C]. IEEE ICASSP,2004:793~796.
    [171] Bruckstein A M, Elad M, Zibulevsky M. On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations[J]. IEEE Transactions on Information Theory,2008,54(11):4813~4820.
    [172] Chen K. Matrix preconditioning techniques and applications[M]. Cambridge: Cambridge University Press,2005.
    [173]吴建平.稀疏线性代数方程组迭代法中的预处理技术研究[D].长沙:国防科技大学,2003.
    [174] Tropp J A. Complex Equiangular Tight Frames[C]. San Diego: SPIE Proceedings on Finite Dimensional Frames, Time-Frequency Analysis, and Applications, 2005,(5914):1~11.
    [175] Tropp J A. Designing structured tight frames via an alternating projection method[J]. IEEE Transactions on Information Theory,2005,51(1):188~208.
    [176] Horn R A, Johnson C R(杨奇译).矩阵分析[M].天津:天津大学出版社,1989:260~261.
    [177]魏木生.广义最小二乘问题的理论和计算[M].北京:科学出版社,2006:94~96.
    [178] Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing,2007,55(12):5695~5702.
    [179] Duarte-Carvajalino J M, Sapiro G. Simultaneous sensing matrix and sparsifying dictionary optimization[J]. IEEE Transactions on Image Processing,2009,18(7):1395~1408.
    [180] Tropp J A, Gilbert A C, Strauss M J. Algorithms for simultaneous sparse approximation partⅠ: greedy pursuit[J]. Elsevier Signal Processing, 2006,86(3):572~588.
    [181] Tropp J A. Algorithms for simultaneous sparse approximation partⅡ: convex relaxation[J]. Elsevier Signal Processing, 2006,86(3):589~602.
    [182] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007,53(12):4655~4666.
    [183] Donoho D L, Tsaig Y, Drori I. Sparse solution of underdetermined linearequations by Stagewise Orthogonal Matching Pursuit[R]. Technical Report of Department of Statistics, Standford University,2006.
    [184] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,4(2):310~316..
    [185] Chen S S. Basis pursuit[D]. Stanford University,1995.
    [186] Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete Fourier information. IEEE Transactions on Information Theory, 2006,52(2):489~509.
    [187] Figueiredo M, Nowak R, Wright S. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4): 586~598.
    [188] Gilbert A, Strauss M, Tropp J. One sketch for all: Fast algorithms for compressed sensing. San Diego: Proceedings of 39th ACM Symposium Theory of Computing, 2007.
    [189] Needell D, Tropp J A. Cosamp: Iterative signal recovery from incomplete and inaccurate samples[J]. Elsevier Journal of Applied and Computational Harmonic Analysis,2009,26(3):301~321.
    [190] Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing,2009,57(1):289~301.
    [191] Yaghoobi M, Daudet L, Davies M E. Parametric dictionary design for sparse coding[J]. IEEE Transactions on Signal Processing, 2009,57(12):4800~4810.
    [192] Mukhopadhyay S, Sircar P. Parametric modeling of non-stationary signals: A unified approach[J]. Elsevier Signal Processing,1997,(60):135~152.
    [193] Pachori R B, Sircar P. Modeling of time varying AR process using nonlinear energy operator[C]. Proceedings of the 8th International Symposium on Signal Processing and Its Applications,2005:643~646.
    [194] Zielinski J S, Bouaynaya N, Schonfeld D. Time-dependent ARMA modeling of genomic sequences[C]. Oklahoma: The 5th MCBIOS Conference,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700