用户名: 密码: 验证码:
极化雷达时频分析与目标识别的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着宽带信号理论和技术、极化散射测量技术的发展,具有高分辨成像、全极化测量或极化捷变能力的雷达逐渐成为现代雷达技术发展的主流,从而极大地增强并扩展了雷达的探测功能和应用范围。与现代雷达的宽带、高分辨发展趋势相比,面向窄带、低分辨的经典极化理论越来越显示出其差距和不足。瞬态极化理论体系的建立,为宽带电磁波极化表征、雷达目标宽带极化散射特性刻画提供了有力的理论工具;对于开发目标的极化散射信息、提高宽带极化雷达的探测性能具有重要的意义。
     本文以瞬态极化理论为基础,对电磁波的瞬态极化概念加以拓展和完善,建立了电磁波瞬态极化时频分析基本方法,为在时频域上刻画和分析时变电磁波的瞬态极化特性提供了理论基础和数学工具;然后以电磁波瞬态极化时频变换为工具,刻画和分析了宽带极化雷达目标散射回波在时频域上的瞬态极化特性,提出了两种目标识别方法,取得了良好的目标识别效果。
     具体内容可分为理论研究和应用研究两个方面:
     在理论研究方面,阐释了对时变电磁波作瞬态极化时频分析的必要性及物理涵义,提出了对电磁波瞬态极化时频分布的基本性质要求,然后给出了电磁波瞬态极化短时Fourier变换(简称为瞬态极化STFT)、电磁波瞬态极化Wigner-Ville分布(简称为瞬态极化WVD)、电磁波瞬态极化模糊函数、电磁波一般类瞬态极化时频分布以及电磁波瞬态极化伪Wigner-Ville分布(简称为瞬态极化PWD)的定义,并分别讨论了它们的主要性质,比较了电磁波瞬态极化时频分析方法与常规时频分析方法之间的区别和联系。这些概念和方法构成了电磁波瞬态极化时频分析的基本内容,为随后的目标识别研究提供了理论基础。
     在应用研究方面,提出了基于瞬态极化WVD相关的宽带极化雷达目标识别方法,以充分利用目标后向散射回波中的瞬态极化信息,并且揭示了采用瞬态极化WVD相关方法时的性能改善与目标回波极化散度之间的关系;提出了目标回波瞬态极化时频分布奇异值特征提取与识别的方法,由目标回波瞬态极化时频分布各分量的奇异值组成特征矢量,以BP神经网络作为分类器进行了目标识别实验,结果表明其性能优于常规的时频分析方法。
     本文对极化雷达时频分析与目标识别的研究表明,采用电磁波瞬态极化时频分析方法,不仅可以刻画时变电磁波在时频域上的能量分布情况,而且可以刻画其在时频域上的极化状态分布情况,因而对于时变电磁波的特性描述和信息开发更加完整和全面;将电磁波瞬态极化时频分析方法应用于宽带极化雷达目标识别,可以获得优于采用常规时
    
    国防科技大学研究生院学位论文
    频分析方法时的识别性能,并且识别算法具有更好的抗噪声能力。
     关键词:极化,瞬态极化,时频分析,雷达目标识别,瞬态极化时频分析,瞬态极
    化短时Fourier变换,瞬态极化Wigner-Ville分布,瞬态极化伪Wigner-Ville分布,瞬态
    极化模糊函数,一般类瞬态极化时频分布,瞬态极化WVD相关,瞬态极化时频分布奇
    异值特征
    第H页
With the development of the theory and technology of wide-band signal, and the improvement of polarimetric technology, the radar having ability to get high resolution range profiles and fulfill full polarization measurement or polarization shifting, is becoming the mainstream of modern radars, which improves and extends the detection capability and application domain of radar. Compared with the trend of wide-band and high range resolution in radar technology, the classical polarization theory, which is suitable in narrow-band and low range resolution case, shows its imperfectness and deficiency. The foundation of the theory system of instantaneous polarizaiton(InPol) provides powerful theoretical tools for the representation of electromagnetic(EM) wave's polarization and description of radar target's wide-band polarization scattering characteristic. So it is greatly beneficial to the exploitaion of radar target's polarization scattering imformation and the improvement of wide-band polarimetric radar's detection performance.In this thesis, with the guidance of InPol theory system, the elementary methods of EM wave's InPol time-frequency analysis are presented, which are extension and evolution of the concept of EM wave's instantaneous polarization and provide powerful theoretical tools for the representation and analysis of time-varying EM wave's InPol properties in time-frequency domain. With these methods, the InPol properties of wide-band polarimetric radar target's scattering waves are described and analyzed in time-frequency domain, and two effective target recoginition methods are proposed.The work of this thesis includes research both in theory and in application:In theory, it firstly elucidates the necessity and physical meaning of InPol time-frequency analysis(InPol TFA) of time-varying EM waves, and presents the basic property requirements of InPol time-frequency distribution(InPol TFD). Then, some elementary InPol time-frequency transforms, such as InPol short-time Fourier transform(InPol STFT), InPol Wigner-Ville distribution(InPol WVD), InPol ambiguity function, Cohen's class InPol time-frequency distribution, and InPol pseudo WVD(InPol PWD), are introduced, and their properties are discussed. The difference and relationship between InPol TFA method and conventional TFA method are also compared. These concepts and methods compose the basic framework of EM wave InPol TFA, which lays theoretical foundation for the following target recognition research.
    
    In application, two wide-band polarimetric radar target recognition methods are proposed. The one is based on InPol WVD correaltion, which can utilize the InPol information of target's return well. The relationship between the improvement of this method's performance and target scattering wave's polarization divergence are demostrated too. The other is based on features formed by singular values of target return's InPol TFD, and selects BP network as target classifier. Recognition results show that the method based on InPol TFD has better performance than the method based on conventional TFD.The studies on TFA and target recognition with polarimetric radar in this thesis indicate that with EM wave InPol TFA method, both the energy and the polarization state distribution in time-frequency domain are described for a time-varying EM wave. That is to say, the characteristic description and information exploitaion of a time-varying EM wave are more complete and comprehensive when using this technology. It is proved that wide-band polarimetric target recognition methods based on InPol TFA can achieve higher correct recognition rates and better antmoise performance than the methods based on conventional TFA.
引文
[1] D. Giuli. Polarization diversity in radars. Proc. of the IEEE, 1986, 74(2): 245~269.
    [2] W. M. Boerner eds. Direct and Inverse Methods in Radar Polarimetry (Proc. of DIMRP'88). Netherlands: Kluwer Academic Publishers, 1992.
    [3] 庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.北京:国防工业出版社,1999.
    [4] 王雪松.宽带极化信息处理的研究[博士学位论文].长沙:国防科技大学电子科学与工程学院,1999.
    [5] 张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [6] [美]L.科恩著,白居宪译.时频分析:理论与应用.西安:西安交通大学出版社,1998.
    [7] P. Loughlin ed. Proc. IEEE(Special Issue on Time-Frequency). 1996, 84(9).
    [8] Boualem Boashash ed. Time-Frequency Signal Analysis: Methods and Application. Melbourne 3205, Australia: Longman Cheshire, 1992.
    [9] V. C. Chen, and H. Ling. Time-Frequency Transforms for Radar Imaging and Signal Analysis. Norwood, MA02062: Artech House, 2002.
    [10] T. Sparr, S. Hamran, and Korsbakken. Estimation and correction of complex target motion effects in inverse synthetic aperture imaging of aircraft. IEEE Intl. Radar Conference, 2000: 457~461.
    [11] L. C. Trintinalia, and H. Ling. Interpretation of scattering phenomenology in slotted waveguide structures via time-frequency processing. IEEE Trans. AP, 1995, 43(11): 1253~1261.
    [12] L.C. Trintinalia, H. Ling. Joint time-frequency ISAR using adaptive processing. IEEE Trans. AP, 1997, 45(2): 221~227.
    [13] V. G. Nebabin. Methods and Techniques of Radar Recognition. Norwood, MA: Artech House, 1995.
    [14] A.W. Rihaczek, and S. J. Hershkowitz. Radar Resolution and Complex-Image Analysis. Norwood, MA: Artech House, 1996.
    [15] A.W. Rihaczek, and S. J. Hershkowitz. Theory and Practice of Radar Target Identification. Norwood, MA: Artech House, 1996.
    [16] J. R. Huynen. Phenomenological Theory of Radar Target [Ph.D. Dissertation]. Netherlands: Technical University Delft, 1970.
    [17] 黄培康主编.雷达目标特征信号.北京:宇航出版社,1993.
    [18] 杜耀惟,张强,何卫国.雷达目标极化特性及其在反隐身中的应用[专题报告].信息产业部第十四研究所,1996.
    [19] 庄钊文.雷达目标频域极化域目标识别的研究[博士学位论文].北京:北京理工大学电子工程系,1989.
    [20] 何松华.高距离分辨率毫米波雷达目标识别的理论与应用[博士学位论文].长沙:国防科技大学电子技术系,1993.
    [21] 陈曾平.雷达目标结构特征识别的理论与应用[博士学位论文].长沙:国防科技大学电子技术 系,1994.
    [2
    
    [22] 肖顺平.宽带极化雷达目标识别的理论与应用[博士学位论文].长沙:国防科技大学电子技术系,1995.
    [23] 肖怀铁.宽带极化毫米波雷达目标特征信号测量与识别算法研究[博士学位论文].长沙:国防科技大学电子科学与工程学院,2000.
    [24] G. Sinclair. The transmission and reception of elliptically polarized radar waves. Proc. IRE, 1950, 38(2): 148~151.
    [25] E.M. Kennaugh. Polarization Properties of Radar Reflectors [M. Sc. Thesis]. Columbus, OH: Dept. of Electr. Eng., The Ohio State University, 1952.
    [26] J.R. Huynen. Study on Ballistic-Missile Sorting Based on Radar Cross-Section Data. Special Report N0.4, Radar Target Sorting Based on Polarization Signature Analysis. Palo Alto, CA, Lockheed Aircraft Corp., Missiles and Space Division, Rept. LMSD-288216, May 1960.
    [27] R. Efard, M. Cohen, E. S. Sjoberg. Advanced intrapulse polarization agile radar near deployment. Microwave syst., 1984, News-14.
    [28] M.N. Cohen, E. S. Sjoberg. Intrapulse polarization agile radar. Advances in radar techniques, edited by J. Clarke, Peter Peregrinus Ltd., 1985.
    [29] 王被德.近三年来雷达极化研究的进展.现代雷达,1996,18(2):1~14.
    [30] 国家导弹防御系统http://www.les.com.cn/nanjing/part/les/database/wenp/2nd/nmd.htm
    [31] 戴博伟.多极化合成孔径雷达系统与极化信息处理研究[博士学位论文].北京:中国科学院电子学研究所,2000.
    [32] 曾清平,董天临,万山虎.极化雷达的发展动态与极化信息的应用前景.系统工程与电子技术.2003,25(6):669~673.
    [33] 魏克珠,李士根.双模铁氧体器件的发展及应用.现代雷达,2001,23(3):71~74.
    [34] 蒋仁培,魏克珠.微波铁氧体新器件.北京:国防工业出版社,1995.
    [35] 高文斗.自适应捷变极化天线抗干扰技术.系统工程与电子技术,1995,17(10):25~31.
    [36] 郭亨远.自适应极化雷达体制研究[学位论文].武汉:空军雷达学院,2001.
    [37] N. E Chamberlain, E. K. Walton, and F. D. Garber. Radar target identification of aircraft using polarization diverse features. IEEE trans. AES, 1991, 27(1).
    [38] N.A. Stewart. Use of crosspolar returns to enhance target delectability. Advance in radar techniques. edited by J. Clarke, Peregrinus Ltd, 1985.
    [39] M. Fossi, M. Gherardelli, E Girrnino, and D. Giuli, Experimental results of dual-polarization behaviour of ground clutter. Record of CIE 1986 Int'l Conf. on Radar, Nanjing, 1986.
    [40] A.P. Agrawal, D. W. Carnegie, and W. M. Boerner. Evaluation of dual polarization radar scattering matrix of rain backscatterer measurements in the X and Q band. Proc. of ICAP-97, 1987.
    [41] S. Haykin, et al. Effect of polarization on the marine radar detection of icebergs. IEEE Intl. Radar Conference, 1985.
    [42] G. Wanielik, D. J. R. Stock. Measured scattering matrix data and o polarimetric CFAR detector, which works on this data. IEEE Intl. Radar Conference, 1990.
    [43] F. E. Nathanson, et al. Radar design principles (2nd Ed.). McGraw Hill, Inc., 1991.
    
    [44] A. L. Pazmany, J. Galloway, and R. E. McIntosh. Dual polarization pulse pair technique for high unambiguous doppler and range measurements of tornadoes with a 95 GHz radar. Proc. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'95:2135~2137.
    [45] V. N. Bringi, V. Chandrasekar, and J. Hubbert. Advanced polarimetric measurements and analysis with the CSU-CHILL weather radar. NTIS-ADA356452.
    [46] 刘华京,蔺万钟.变极化及隐身理论与测试结果分析.雷达与电子对抗在现代战争中的作用论文集,1992.
    [47] 康士峰,葛德彪,罗贤云等.多波段多极化海杂波特性的实验研究.微波学报,2000,16(5):463~468.
    [48] 董庆,郭华东.多波段多极化合成孔径雷达的海洋学应用.地球科学进展,2001,16(1):93~97.
    [49] 金亚秋,陈轶,张巍.雷达卫星SAR与防卫气象卫星SSM/I对渤海海冰的观测研究.地球物理学报.2001.44(2):163~170.
    [50] A.B. Kostinski, W. M. Boerner. On foundations of radar polarimetry. IEEE Trans. AP, 1986, 34(12): 1395~1404.
    [51] E E. Nathanson. Adaptive circular polarization. IEEE Intl. Radar Conference, 1975.
    [52] A.J. Poelman. Virtual polarisation adaptation: A method for increasing the detection capability of a radar system through polarisation-vector processing. Proc. IEE, Pt. F, 1981, 128(5): 261~270.
    [53] A. J. Poelman. Polarisation-vector translation in radar systems. Proc. IEE, Pt. F, 1983, 130(2): 161~165.
    [54] A.J. Poelman, and J. R. F. Guy. Multinotch logic-product polarisation suppression filters: A typical design example and its performance in a rain clutter environment. Proc. IEE, Pt. F, 1984, 131(4): 383~396.
    [55] A.J. Poelman. Nonlinear polarization-vector translation in radar system: A promising concept for real-time polarization -vector signal processing via a single-notch polarization suppression filter. Proc. IEE, pt. F, 1984, 131(5): 451~465.
    [56] M. Fossi, M. Gherardelli, and D. Giuli. Experimental results on dual polarization radar. IEEE Intl. Radar Conference, 1984.
    [57] D. Giuli, M. Fossi, and M. Gherardelli. A technique for adaptive polarization filtering in radars. IEEE Intl. Radar Conference, 1985.
    [58] M. Gherardelli. Adaptive polarization suppression of intentional radar disturbance. Proc. IEE, Pt. F, 1990, 137(6): 407~416.
    [59] D.P. Stapor. Optimal receive antenna polarization in the presence of interference and noise. IEEE Trans. AP, 1995, 43(5): 473~477.
    [60] Qiao Xiaolin, Liu Yongtan. Sequential polarization filtering for ground wave radar. Proc. of CIE Int'l Conf. on Radar, 1991.
    [61] 张国毅.高频地波雷达极化抗干扰技术研究[博士学位论文].哈尔滨:哈尔滨工业大学研究生院,2002.
    [62] 张国毅,刘永坦.高频地波雷达多干扰的极化抑制.电子学报,2001,29(9):1206~1209.
    [63] 王雪松,庄钊文,肖顺平等.极化信号的优化接收理论:完全极化情形.电子学报,1998,26(6): 42~46.
    [6
    
    [64] 王雪松,庄钊文,肖顺平等.极化信号的优化接收理论:部分极化情形.电子科学学刊,1998,20(4):468~473.
    [65] 王雪松,肖顺平,庄钊文等.部分极化情况下SINR极化滤波器性能研究.应用科学学报,1999,17(2):177~182.
    [66] 王雪松,肖顺平,庄钊文等.极化轨道上SINR滤波器的通带性能研究.电子科学学刊,2000,22(1):61~67.
    [67] 王雪松,庄钊文,肖顺平等.SINR极化滤波器通带性能研究.微波学报,2000,16(1):29~37.
    [68] R. D. Chancy, M. C. Burl, and L. M. Novak. On the performance of polarimetric target detection algorithms. IEEE Intl. Radar Conference, 1990: 520~525.
    [69] L. M. Novak, M. B. Sechtin, and M. J. Cardullo. Studies of target detection algorithms that use polarimetric radar data. IEEE Trans. AES, 1989, 25(2): 150~165.
    [70] L. M. Novak, M. C. Burl, and W. W. Irving. Optimal polarimetric processing for enhanced target detection. IEEE Trans. AES, 1993, 29(1): 234~243.
    [71] L. M. Novak, et al. Optimal polarizations for radar detection and recognition of target in clutter. 1993 IEEE National Radar Conference.
    [72] E. Pottier, and J. Saillard. Optimal polarimetric detection of radar target in a slowly fluctuating environment of clutter. IEEE Intl. Radar Conference, 1990:211~216.
    [73] H. R. Park, Y. K. Kwag, and H. Wang. An efficient adaptive polarimetric processor with an embedded CFAR. ETRI Journal, 2003, 25(3): 171~178.
    [74] A.D. Maio. Polarimetric adaptive detection of range-distributed targets. IEEE Trans. SP, 2002, 50(9): 2152~2158.
    [75] D. Pastina. Adaptive polarimetric target detection with coherent radar. IEEE Intl. Radar Conference, 2000: 93~97.
    [76] A. Farina, F. Scannapieco, and F. Vinelli. Target detection and classification with polarimetric high range resolution radar. Proc. of DIMRP'88: 1021~1041.
    [77] D.A. Garren, et al. Full-polarization matched-illumination for target detection and identification. IEEE Trans. AES, 2002, 38(3): 824~835.
    [78] S. Tatarinov, L. Ligthart, and E. Gaevoy. Dynamical polarization contrast of complex radar targets. Proc. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'99: 1387~1389.
    [79] V. Tatarinov, L. Ligthart, and S. Tatarinov. Matrix spectral form of the full polarization-doppler response function. ⅩⅣ International Conference on Microwaves, Radar and Wireless Communication, 2002, vol. 1: 151~154.
    [80] 李永祯,王雪松,肖顺平等.基于非线性积累的高分辨极化目标检测.红外与毫米波学报,2000,19(4):307~312.
    [81] 李永祯,王雪松,李军等.基于Stokes矢量的高分辨极化目标检测.现代雷达,2001,23(1):52~57.
    [82] 李永祯,王雪松,徐振海等.基于强散射点径向积累的高分辨极化目标检测研究.电子学报,2001,29(3):307~310.
    
    [83] 王雪松,李永祯,徐振海等.高分辨雷达信号极化检测研究.电子学报,2000,28(12):15-18.
    [84] 王雪松,徐振海,李永祯等.高分辨雷达目标极化检测仿真实验与结果分析.电子学报,2000,28(12):59~63.
    [85] J.R. Huynen. A new approach to radar cross-section measurements. IRE Internat'l Conv., Rec., Pt. t, vol. x, 1962.
    [86] S.H. Brickel. Some invariant properties of the polarization scattering matrix. Proc. IEEE, 1965.
    [87] B. Y. Foo, and W. M. Boerner. Basic monostatic polarimetric broad band target scattering analysis required for high resolution polarimetric target downrange crossrange imaging of airborne scatterers. Measurement, processing and analysis of radar target signatures, vol. z, OSV-ESL, Sept. 1985.
    [88] W. M. Boerner, et al. A state-of-the-art review in radar polarimetry and its applications in remote sensing. Proc. of the 1989 Int'l symposium on noise and clutter rejection in radars and imaging sensor, Japan.
    [89] W. M. Boerner, and B. Y. Foo. Recent advances of the direct and inverse methods in radar polarimetry: extension of the physical optics inverse scattering theory. Proc. of the 2nd Int'l symposium on antennas and EM theory, 1989, Shanghai.
    [90] W. L. Cameron, and L. K. Lenng. Feature motivated polarization scattering matrix decomposition. IEEE Int'l Conf. On Radar, 1990.
    [91] S.R. Cloude, and E. Pottier. A review of target decomposition theorems in radar polarimetry. IEEE GRS, 1996, 34(2): 498~517.
    [92] C.M.H. Unal, and L. P. Ligthart. Decomposition theorems applied to random and stationary radar targets. Progress in electromagnetics research, 1998, PIER 18: 45~66.
    [93] S.R. Cloude, E. Pottier. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. GRS, 1997, 35(1): 68~78.
    [94] Ya-Qiu Jin, and Fei Chen. Polarimetric scattering indexes and information entropy of the SAR imagery for surface monitoring. IEEE Trans. GRS, 2002, 40(11): 2502~2506.
    [95] M. Hellmann, E. Krogager. Comparison of decompositions for Pol-SAR image interpretation. IEEE Proc. IGARSS, 2000: 1313~1315.
    [96] J.J. Van Zyl. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. GRS, 1989, 27(1): 36~45.
    [97] Yunhan Dong, Bruce C. Forster, and Catherine Ticehurst. A new decomposition of radar polarization signatures. IEEE Trans. GRS, 1998, 36(3): 933~939.
    [98] Yeliz Akyildiz. Scattering center model for SAR imagery. SPIE Proc., 1999, Vol. 3869: 76~85.
    [99] Firooz Sadjadi, etc. New experiments in the use of radar polarimetry for improving target recognition performance. SPIE Proc., 1997, Vol. 3069: 368~374.
    [100] Firooz Sadjadi, etc. Improved target classification using optimum polarimetric SAR signatures. IEEE Trans AES, 38(1): 38-49.
    [101] L.M. Novak, and S. D. Halversen. Effects of polarization and resolution on SAR ATR. IEEE Trans. AES, 1997, 33(1): 102~116.
    [102] A.J. Bennett, etc. The use of high resolution polarimetric SAR for automatic target recognition. SPIE Proc., 2002, Vol. 4727: 146~153.
    [1
    
    [103] N. F. Chamberlain, E. K. Walton, and E D. Garber. Radar target identitication of aircraft using polarization diverse features. IEEE Trans. AES, 1991, 27(1).
    [104] Xiao Huaitie, etc. A new target recognition method based on high range resolution polarimetric radar. SPIE, 2001, vol. 4554: 41-45.
    [105] 李莹,任勇,山秀明.基于目标分解的极化雷达飞机识别方法.清华大学学报,2001,No.7:32~35.
    [106] 邹红星,周小波,李衍达.时频分析:回溯与前瞻.电子学报,2000,28(9):78~84.
    [107] 胡昌华,周涛,夏启兵等.基于MATLAB的系统分析与设计—时频分析.西安:西安电子科技大学出版社,2002.
    [108] 王根原,保铮,孙晓兵.基于匀加速多普勒频率模型的ISAR成像.电子学报,1997,25(6):58~61
    [109] 杨正龙,方大纲.基于时频分析的带腔体雷达目标弱信号检测.南京理工大学学报,2002,26(3):330~333.
    [110] 姬红兵,唐亮,谢维信.基于时间-距离-多普勒像的编队目标架次检测.系统工程与电子技术,2001,23(5):62~64.
    [111] 王蕴红,刘国岁,李玺等.基于短时傅里叶变换及奇异值特征提取的目标识别方法.信号处理,1998,14(2):123~127.
    [112] 鲜明,庄钊文,郭桂蓉等.基于时频分析的飞机目标识别.国防科技大学学报,1997,19(3):7~11.
    [113] 徐振海,王雪松,肖顺平等.基于(TVAR)时变自回归模型的HRR回波建模及目标识别.信号处理,2001,17(4):313~317.
    [114] V.C. Chen, and H. Ling. Joint time-frequency analysis for radar signal and image processing. IEEE Signal Processing Magazine, March 1999:81~93.
    [115] V. C. Chen, and W. J. Miceli. Time-varying spectral analysis for radar imaging of maneuvering targets. Proc. IEE, Pt. F, 1998, 145(5): 262~268.
    [116] Junfei Li, and Hao Ling. ISAR feature extraction from targets with non-rigid body motion using adaptive chirplet representation. IEEE Antennas and Propagation Society Intl. Symposium, 2002: 294~297.
    [117] M.A. Rogriguez, and Luis Vergara. CFAR detector in non-gaussian noise. Proc. of the LASTED Intl. Conference Signal Processing and Communications, Spain, 1998:451~454.
    [118] Kyung-Tae Kim, In-Sik Choi, and Hyo-Tae Kim. Efficient radar target classification using adaptive joint time-frequency processing. IEEE Trans. AP, 2000, 48(12): 1789~1801.
    [119] Yu Shi, Xian-Da Zhang. Gabor-atom networks based radar target identification. 5th International Conference on Signal Processing Proceedings, Beijing, China, 2000:1980~1983.
    [120] Wil Otaguro, Alex Lovett, and Chyau Shen. Microdoppler: NonCooperative Target Classfication/Identification. Naval Air Systems Command, OMB No. 0704-0188, 2000.
    [121] V. C. Chen, F. Li, etc. Analysis of micro-Doppler signatures. Proc. IEE, Pt. F, 2003, 150(4): 271~276.
    
    [122] T. Sparr, and B. Krane. Micro-Doppler analysis of vibrating targets in SAR. Proc. IEE, Pt. F, 2003, 150(4): 277~283.
    [123] Patrick Flandrin. A Time-Frequency Formulation of Optimum Detection. IEEE Trans. ASSP, 1988, 36(9): 1377~1384.
    [124] 林茂庸,柯有安.雷达信号理论.北京:国防工业出版社,1984.
    [125] 张直中.雷达信号的选择与处理.北京:国防工业出版社,1979.
    [126] Hsueh-Jyh Li, and Sheng-Hui Yang. Using range profiles as feature vectors to identify aerospace objects. IEEE Trans. AP, 1993, 41(3): 261~268.
    [127] Scott Hudson, and Demetri Psaltis. Correlation filters for aircraft identification from radar range profiles. IEEE Trans. AES, 1993, 29(3): 741~748.
    [128] Hsueh-Jyh Li, Yung-Deh Wang, and Long-Huai Wang. Match score properties between range profiles of high-resolution radar targets. IEEE Trans. AP, 1996, 44(4): 444~452.
    [129] Steven P. Jacobs, and Joseph A. O'Sullivan. Automatic target recognition using sequences of high resolution radar range-profiles, IEEE Trans. AES, 2000, 36(2): 364~381.
    [130] R. G. Kouyoumjian. The geometrical theory of diffraction and its applications. In: Numerical and Asymptotic Techniques in Electromagnetics. R. Mittra(ed.), New York: Springer-Verlag, 1975.
    [131] M.W. Roth. Survey of neural network technology for automatic target recognition. IEEE Trans. NN, 1990. 1(1): 28~43.
    [132] 何松华,郭桂蓉,郭修煌.FMCW毫米波雷达高分辨率目标距离像及其处理.系统工程与电子技术,1991(10):33-38.
    [133] 姜卫东,庄钊文,陈曾平.基于一维距离像的目标识别方法.现代雷达,1999,21(2):18~22.
    [134] 阮颖铮等.雷达截面与隐身技术.北京:国防工业出版社,1998.
    [135] [前苏联]图契科夫主编,马清海等译.飞行器的雷达特性.信息获取预处理技术交流中心,1988.
    [136] 廖学军.基于高分辨距离像的雷达目标识别[博士学位论文].西安:西安电子科技大学,1999.
    [137] 冯瑞林.基于时频分析的目标回波识别方法研究[硕士学位论文].西安:西北工业大学,2001.
    [138] 范建,李孝昌.奇异值特征抽取目标识别方法.系统工程与电子技术,1993,3.
    [139] 张贤达.信号处理中的线性代数.北京:科学出版社,1997.
    [140] 边肇祺等.模式识别.北京:清华大学出版社,1988.
    [141] 孙即祥等.现代模式识别.长沙:国防科学技术大学出版社,2002.
    [142] 许东,吴铮.基于MATLAB6.x的系统分析与设计—神经网络.西安:西安电子科技大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700