用户名: 密码: 验证码:
耦合腔行波管注波互作用非线性理论与CAD技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耦合腔行波管以其输出功率大、增益高、散热效果好等特性,而广泛应用于电子对抗、雷达和通信等领域。依靠传统的经验设计方法很难综合性地进一步提高耦合腔行波管的功率、带宽、增益、效率以及非线性特性等性能,因此,高精度的耦合腔行波管CAD(Computer Aided Design)软件就成为改进设计、提高性能的主要手段。研究耦合腔行波管注波互作用过程是发展CAD软件的基础。因此,深入研究耦合腔行波管注波互作用过程的基础理论,对快速实现耦合腔行波管的结构优化设计,提升管子的输出功率,拓展管子的工作带宽以及改善稳定性等一系列性能都具有重要的意义。
     本论文的研究工作主要围绕耦合腔行波管注波互作用基础理论和CAD技术实现而展开,主要的工作内容和创新点包括以下几个方面:
     1.针对耦合腔行波管高频慢波结构的特性,介绍Curnow和MKK两种常用的等效电路模型。这两个电路都能对耦合腔行波管慢波结构进行很好的等效。文中详细推导了这两个等效电路模型的色散公式、总阻抗公式和特性阻抗公式。根据色散公式以及等效电路特点,针对每个等效电路模型,提出两种计算等效结构参量的方法。使用三个不同频段的耦合腔高频结构,从色散和总阻抗方面,对提出的两个电路的两种等效电路参量的计算方法进行了比较。
     2.数值研究了耦合腔高频慢波结构的色散和阻抗特性。从耦合腔结构冷腔场的解析计算公式出发,结合有限元仿真软件HFSS,研究了耦合腔慢波结构中的场的分布情况,包括轴向场和径向场。研究了耦合腔高频结构中的总阻抗以及总阻抗与耦合阻抗之间的关系。从而为耦合腔行波管注-波互作用过程的模拟提供理论依据。
     3.分别推导了Curnow和MKK两个等效电路模型的计算矩阵,包括考虑反向波的级联计算矩阵和只考虑前向波的单腔计算矩阵。这些矩阵都可用于互作用过程的模拟计算。与级联计算矩阵相比,单腔计算矩阵中包含的元素少,因此,它的计算速度会更快。在等效电路中用损耗电阻来表示衰减,而耦合腔中的衰减通常都是以dB形式给出的。在级联计算矩阵中,采用牛顿迭代方法,建立了衰减量与等效电路中的损耗电阻的联系,避免了使用复杂的解析公式计算等效损耗电阻的不准确问题。在单腔计算矩阵中,由于只考虑前向波的传播情况,因此,可以通过直接对等效电路模型的端口电压进行衰减以实现对信号进行衰减,从而有效避开了衰减量与等效电路中损耗电阻之间的转换计算问题。
     4.推导了一维和三维的运动方程、相位方程、场方程和源电流的计算方程。建立了一维和三维的耦合腔行波管注波互作用理论。以美国休斯公司的卫星通信用行波管961HA管子为例,用建立的一维和三维的耦合腔行波管互作用理论进行模拟计算。并将计算结果与实验值进行了比较,模拟结果与实验值基本吻合。由于本理论也可虑考虑反向波情况,因此,本论文所建立的耦合腔注波互作用理论,可以对驱动振荡进行模拟计算。以961HA管子的结构参数为例,对驱动振荡进行了模拟研究。并探讨使用衰减来抑制驱动振荡,以提高耦合腔行波管的最大输出功率。
     5.结合Curnow等效电路模型,研究了休斯型耦合腔行波管高频结构,提出一种优化这种高频结构的方法,以提高管子的输出功率。并以961HA管子为例,结合编写的一维耦合腔行波管注-波互作用代码对这种优化方法进行验证。结果表明,采用这种优化方法,得到的新结构确实提高了输出功率。通过研究休斯型耦合腔行波管高频结构的结构参量与色散、阻抗以及带宽之间的关系,对这种结构的耦合腔行波管正向设计进行了初步探讨。结合编写的一维耦合腔行波管注-波互作用代码,依据某一Ka波段的耦合腔行波管设计指标,设计出符合互作用指标要求的休斯型耦合腔高频结构。
Coupled-cavity traveling-wave tubes (CC-TWTs) are vacuum electronic amplifierswith high gain and high output power. CC-TWTs have been developed for uniquelydemanding applications in communications, radar and electronic counter measures. It isvery difficult to promote performance of CC-TWTs in power, bandwidth, gain,efficiency and nonlinearity comprehensively by traditional design method based onexperience. The technique of modeling and simulation is the key method to improve thecapability of CC-TWTs. The process of beam-wave interaction for CC-TWTs is themost important part of the mechanism and kernel theory for CC-TWTs. And thebeam-wave interaction for CC-TWTs is the foundation of CC-TWTs CAD software.Therefore, it is very helpful for optimizing the structure, improving output power,widening bandwidth and enhancing stability to analyse the beam-wave interactiontheory.
     In this doctoral dissertation, the work is mainly focused on the study of beam waveinteraction basic theory and the CAD technology of CC-TWTs. And several importantand valuable results are listed as below:
     1. Two equivalent circuit models are introduced to represent the coupled cavityhigh frequency structure. The two circuits can both give a good representation of thedispersion and total impedance. The formulas about dispersion, total impedance andcharacteristic impedance of the two circuits are also deduced. According to thecharacteristic of the circuits, two approaches to calculate the lumped elements of thecircuits are proposed with the formulas for each circuit. In order to validate theapproaches, the work to compare the approaches with different high frequencystructures which can work in different frequency bands is done. The content ofcomparasion mainly includes the dispersion and total impedance.
     2. To study the dispersion and total impedance of the coupled cavity highfrequency structure, the simulation software HFSS is used. Combining the analyticalformula of high frequency field and HFSS, the distribution of high frequency field,including axial field and radial field, is discussed in the coupled cavity high frequency structure. The calculation about total impedance and the relationship between theinteraction impedance and total impedance are also discussed. And it is of great use toresearch the beam wave interaction of CC-TWTs.
     3. Through the equivalent circuits, Curnow and MKK, the matrixes includinglumped elements are construced. The matrixes are divided into two types:single-cavitymatrix and multip-cavity cascaded matrix. The single-cavity matrix is used onlyconsidering the forward wave. While the backward wave is taken into account, themultip-cavity cascaded matrix is used. Comparing with the multip-cavity cascadedmatrix, the single-cavity matrix can calculate faster due to with few matrix elements.Worthing notice, the effect of attenuations is also taken into account in these matrixes.Generaly speaking, in a equivalent circuit, the loss resistance is used to represent theattenuation of the coupled cavity structure. And the unit of loss resistance andattenuation are different. In the multip-cavity cascaded matrix, the Newton-Raphsonmethod is used to obtain the accurate equivalent loss resistance from transform theattenuation. In general, it is difficult and unaccurate to transform the attenuation intoequivalent loss resistance using analytical fornulars. In the single-cavity matrix, thevoltages of the equivalent circuit are attenuated instead of solving the equivalent lossresistance.
     4. The one-dimensional (1-D) and three-dimensional (3-D) beam wave interactiontheores of CC-TWTs are constructed. And the formulas including phase equation,motion equation, field equation and source current equation are all deduced. TheHughes Aircraft Company’s961HA TWT which is a CC-TWT for intersatellitecommunications is taken as an example to validate the1-D and3-D beam waveinteraction theoties. The simulated results are compared with the experimental results.And the simulated results agree with the experimental results. Since the backward waveis taken into account in the theory, the theory can also be used to predict the driveinduced oscillation (DIO). Also using the parameters of961HA TWT, the DIO issimulated. And it is proved that the approach to controlling DIO and improving themaximum output power by using attenuation is validated.
     5. The Hughes high frequency structure is analyzed in detail with simplifiedCurnow model and anaystical formulars solving dispersion and total impedance. Amethod which is used to optimize the high frequency structure and improve the output power of CC-TWTs is developed. To validate the method, the961HA TWT is as anexample and the1-D code based on1-D beam wave interaction theory is used. It isproved that the method is useful for improving the output power. Discussing the changeof the dispersion, total impedance and wideband with the dimension of Hughes structure,a preliminary top-down design method which can be used to do fast design forhigh-efficiency coupled-cavity high frequency structure according to the designspecifications of CC-TWTs is developed. And the method is used to design a Ka-bandcoupled-cavity high frequency structure. And the tested results show that thenewly-developed design method works pretty well.
引文
[1]廖复疆.真空电子技术——信息化武器装备的心脏[M].北京:国防工业出版社,2008,1-26
    [2]郭开周.行波管研制技术[M].北京:电子工业出版,2008,1-183
    [3]王文祥.微波工程技术基础[M].成都:电子科技大学出版社,2006,333-441
    [4] A. S. Gilmour, Jr. Principles of Traveling wave tubes[M]. Norwood, MA: ARTECHHOUSE,INC,1994,1-390
    [5]陆钟祚.行波管[M].上海:上海科学技术出版社,1962,204-259
    [6]刘盛纲.微波电子学导论[M].北京:国防工业出版社,1985,97-315
    [7]吴鸿适.微波电子学原理[M].北京:科学出版社,1987,187-224
    [8]杨祥林,张兆镗,张祖舜.微波器件原理[M].北京:电子工业出版社,1994,151-164
    [9]唐亮.耦合腔行波管的计算方法[D].成都:电子科技大学,2007,1-39
    [10]陆德坚,王自成,刘濮鲲.毫米波行波管返波振荡的仿真研究[J].电子与信息学报,2008,30(10):2520-2524
    [11]胡玉禄,杨中海,李斌,等.宽带大功率螺旋线行波管返波振荡研究[J].物理学报,2010,59(8):5439-5443
    [12] Yu Lu Hu, Zhong Hai Yang, Jian Qing Li, et al. Backward-wave Oscillation Suppression InHigh-power Broadband Helix Traveling-wave Tubes[J]. IEEE Transactions On ElectronDevices,2011,58(5):1562-1569
    [13]胡玉禄.行波管注波互作用基础理论与CAD技术研究[D].成都:电子科技大学,2011,1-71
    [14] J. R. Pierce and N. Wax. A Note On Filter-type Traveling-wave Amplifiers[J]. ProceedingsOf The IRE,1949,37(6):622-625
    [15] R. W. Gould. Characteristics Of Traveling-wave Tubes With Periodic Circuits[J]. IRETransactions On Electron Devices,1958,5(3):186-195
    [16] P. K. Tien, L. R. Walker and V. M. Wolontis. A Large Signal Theory Of Traveling-waveAmplifiers[J]. Proceedings Of The IRE,1955,43(3):260-277
    [17] M. A. Allen and G.S.Kino. On The Theory Of Strongly Coupled Cavity Chains[J]. IRETransactions On Microwave Theory And Techniques,1960, MTT-8,362-372
    [18] G.S.Kino, Y.Hiramatsu, W.A.Harman, et al. Small-signal And Large-signal Theories For TheCoupled-cavity TWT[J]. Proceedings Conference Microwave Optoelectronics GenerationAmplification,1966,49-53
    [19] S. O. Wallander. Large Signal Analytical Study Of Bunching In Klystrons[J]. IEEETransactions On Electron Devices,1968,15(8):595-603
    [20] R.C.Morwood and F.I.Friedlander. LSCEX3: A Computer Program For Large SignalAnalysis Of Klystrons, Twystrons, And Traveling Wave Tubes With Cavity Circuits. VarianAssociates report,1979
    [21] J.R.M.Vaughan. Calculation Of Coupled-cavity TWT Performance[J]. IEEE Transactions OnElectron Devices,1975,22(10):880-890
    [22] D.J.Connolly and T.A.O'Malley. A Contribution To Computer Analysis Of Coupled-cavityTraveling Wave Tubes[J]. IEEE Transactions On Electron Devices,1977,24(1):27-31
    [23] V. Srivastava and R.G. Carter. A Fast Large Signal Model For Coupled-cavity TWTs[J].IEEE Transactions On Electron Devices,1988,35(11):2068-2076
    [24] T.A.O’Malley and D.J.Connolly. Users’ Manual For Computer Program For One-dimensionAlanalysis Of Coupled-cavity Traveling Wave Tubes. NASA TM X-3565,1977
    [25] T.A.O’Malley. User’s Manual For Computer Program For Three Dimensional Analysis OfCoupled-cavity Traveling Wave Tubes. Final Report Analex Corp., Cleveland, OH, NASAContractor Report168269,1984
    [26] J.D.Wilson. Revised NASA Axially Symmetric Ring Model For Coupled-cavityTraveling-wave Tubes. NASA, Washington, DC, NASA Tech. Paper2675,1987
    [27] W.Qiu, H.J.Lee, J.P.Verboncoeur, et al. A Time-domain Circuit Simulator ForCoupled-cavity Traveling Wave Tubes[J]. IEEE Transactions On Plasma Science,2001,29(6):911-920
    [28] V.A.Solntsev and R.P.Koltunov. Analysis Of The Equations Of Discrete Electron-WaveInteraction And Electron-Beam Bunching In Periodic And Pseudoperiodic Slow-WaveStructures[J]. Journal Of Communications Technology And Electronics,2008,53(6):700-713
    [29] N. M. Ryskin, V. N. Titov, A. V. Yakovlev. Nonstationary Nonlinear Discrete Model Of ACoupled-cavity Traveling Wave Tube Amplifier[J]. IEEE Transactions On Electron Devices,2009,56(5):928-934
    [30] Pierre Bernardi, Frederic Andre, Jean-Francois David, et al. Efficient Time-DomainSimulations Of A Helix Traveling-Wave Tube[J]. IEEE Transactions On Electron Devices,2011,58(6):1761-1767
    [31] W. R. Ayers and Y. Zambre. Numerical Simulation Of Drive Induced Oscillation In CoupledCavity Traveling Wave Tubes[J]. IEEE International Electron Device Meeting,1992,957-960
    [32] H.P. Freund and E.G. Zaidman. Time-dependent Simulation Of Helix Traveling WaveTubes[J]. Physics Of Plasmas,2000,7(12):5182-5194
    [33] H.P. Freund. Three-dimensional Nonlinear Theory Of Helix Traveling-wave Tubes[J]. IEEETransactions On Plasma Science,2000,28(3):748-759
    [34] H.P.Freund, T.H.Antonsen Jr, E.G.Zaidman, et al. Nonlinear Time-domain Analysis OfCoupled-cavity Traveling Wave Tubes[J]. IEEE Transactions On Plasma Science,2002,30(3):1024-1040
    [35] A.N.Vlasov, T.M.Antonsen, D.P.Chernin, et al. Simulation Of Microwave Devices WithExternal Cavities Using MAGY[J]. IEEE Transactions On Plasma Science,2002,30(3):1277-1291
    [36] A.N.Vlasov, S.J.Cooke, B.Levush, et al. Modling Of Coupled-cavity TWT With TESLA.International Vacuum Electronics Conference, Rome, Italy,2009,155-156
    [37] A. N. Vlasov, S. J. Cooke, B. Levush, et al.2D Modeling Of Beam-wave Interaction InCoupled Cavity TWTs With TESLA[C]. International Vacuum Electronics Conference,Monterey,CA,2010,405-406
    [38] Alexander N. Vlasov, Thomas M.Antonsen, Igor A. Chernyavskiy, et al. A ComputationallyEfficient Two-Dimensional Model Of The Beam-Wave Interaction In A Coupled-CavityTWT[J]. IEEE Transactions On Plasma Science,2012,1-15
    [39] Igor A. Chernyavskiy, A.N.Vlasov, B.Levush, et al. Validation Study For the Large-SignalCode TESLA-CC Based On Experimental Ka-band Coupled-Cavity TWT[C]. InternationalVacuum Electronics Conference, Monterey, CA,2012,535-536
    [40] J.L. Ramirez-Aldana, R. Begum, T. Grant, et al. RF Circuit Design For700W CW Ka-bandCoupled-Cavity TWT[C]. International Vacuum Electronics Conference, Monterey, CA,2012,123-124
    [41] A.N.Vlasov, Igor A. Chernyavskiy, B.Levush, et al. Modeling Of Drive Induced OscillationsIn a Coupled Cavity TWT[C]. International Vacuum Electronics Conference, Monterey, CA,2012,543-544
    [42] Tsumoru Shintake. Recent Ststus Of FCI: PIC Simulation Of Coupled-cavity Structure.LINAC96,181-183
    [43] H.J.Kim and J.J.Choi. MAGIC-3D Simulations Of A500W Ka-band Coupled-cavityTraveling Wave Tubes[J]. IEEE Transactions On Electron Devices,2009,56(1):149-155
    [44] Yang Liu, Yubin Gong, Yanyu Wei, et al. Design Of a100-W V-band Coupled-CavityTraveling-Wave Tube[C]. China-Japan Joint Microwave Conference Proceedings, Hangzhou,China,2011,1-3
    [45] Y. Liu, J. Xu, Y. Wei, et al. Design Of a V-band High-Power Sheet-Beam Coupled-CavityTraveling-Wave Tube[J]. Progress In Electromagnetics Research,2012,123:31-45
    [46] S.J. Cooke, Igor A. Chernyavskiy, G.M. Stanchev, et al. GPU-accelerated3D Large-SignalDevice Simulation Using The Particle-in-cell Code ‘Neptune’[C]. International VacuumElectronics Conference, Monterey, CA,2012,21-22
    [47] T.M. Antonsen, Jr. and B. Levush. CHRISTINE: A Multifrequency Parametric SimulationCode For Traveling Wave Tube Amplifiers. NRL Memo report NRL/FR/6840-97-9845,1997
    [48] T. M. Anstonsen and B. Levush. Traveling-Wave Tube Devices With Nonlinear DielectricElements[J]. IEEE Transactions On Plasma Science,1998,26(3):774-785
    [49] D. Chernin, T.M. Antonsen, Jr., B. Levush, et al. A Three-dimensional Multifrequency LargeSignal Model For Helix Traveling Wave Tubes[J]. IEEE Transactions On Electron Devices,2001,48(1):3-11
    [50] David Chernin, Thomas M. Antonsen, Igor A. Chernyavskiy, et al. Large-signalMultifrequency Simulation Of Coupled-cavity TWTs[J]. IEEE Transactions On ElectronDevices,2011,58(4):1229-1240
    [51] A.N.Vlasov, Igor A. Chernyavskiy, B.Levush, et al. Comparison Between One And TwoDimensional Models Of Coupled Cavity TWT Performance[C]. International VacuumElectronics Conference, Monterey, CA,2012,229-230
    [52] Weifeng Peng, Yulu Hu, Zan Gao, et al. Digitized Nonlinear Beam And Wave InteractionTheory Of Traveling Wave Tube Amplifiers[J]. Progress In Electromagnetics Research M,2013,28:73-88
    [53]宋文淼,李镇淮.耦合腔行波管的大信号理论和计算[J].电子学报,1984,12(3):25-32
    [54]张国兴,邓衡.一维耦合腔行波管大信号计算[J].电子器件,1995,18(3):147-151
    [55]熊祥正,李慎,李家胤.耦合腔行波管三维大信号程序设计[J].电子科技大学学报,1995,26(3):619-625
    [56]吴常津.便于在微机上运行的耦合腔行波管简易综合计算程序[J].真空电子技术,2000,5:43-50
    [57] Li J Q, Mo Y L, Zhang Y. The Beam Wave Interaction In a Ka Band RelativisticCoupled-Cavity TWT[J]. International Journal Of Infrared and Millimeter Waves,2002,23(9):1371-1383
    [58]李建清,江丽军,莫元龙.等离子体-腔混合模耦合腔行波管非线性注-波互作用分析[J].强激光与粒子束,2004,16(11):1429-1433
    [59]谢荣祥,王彬,谢文楷. S波段耦合腔行波管非线性注-波互作用方程组的数值解[J].现代电子技术,2009,4:131-133
    [60]杨中海.宽带大功率行波管CAD集成系统.总体方案论证报告,1995,1-3
    [61]杨中海,李斌,廖莉,等.微波管CAD技术进展[J].真空电子技术,2002,4:1-9
    [62]杨中海,李斌,朱小芳,等.螺旋线行波管三维CAD技术进展[J].真空电子技术,2004,3:7-11
    [63]李斌,杨中海,李建清,等.微波管CAD技术进展[J].电子科技大学学报,2009,38(6):897-903
    [64] B. Li, Z. H. Yang, J. Q. Li, et al. Recent Developments To TWTCAD IntegratedFramework[C]. International Vacuum Electronics Conference, Monterey, USA,2006,293-294
    [65] B. Li, Z. H. Yang, J. Q. Li, et al. Recent Advances Of Microwave Tube Simulator Suite[C].International Vacuum Electronics Conference, Monterey, USA,2008,229-230
    [66] Bin Li, Zhong Hai Yang, Jian Qing Li, et al. Theory And Design Of Microwave TubeSimulator Suite[J]. IEEE Transactions On Electron Devices,2009,56(5):919-927
    [67] R. G. Carter. Representation Of Coupled-cavity Slow-wave Structures By EquivalentCircuits[J]. IEEE Proceedings,1983,130(2):67-72
    [68] Carter R G, Liu Shun Kang. Method For Calculating The Properties Of Coupled-cavitySlow-wave Structures From Their Dimensions[J]. IEEE Proceedings,1986,133(5):330-334
    [69] V.Latha Christie, Lalit Kumar and N.Balakrishnan. Improved Equivalent Circuit Model OfPractical Coupled-cavity Structures For TWTs[J]. Microwave And Optical TechnologyLetters,2002,35(4):322-326
    [70] H. J. Cuinow. A Generalized Equivalent Circuit For Coupled-cavity Slow-wave Structure[J].IEEE Transaction Microwave Theory Technique,1965,13(9):671-675
    [71] A.V. Malykhin, A. V. Konnov, D. A. Komarov. Synthesis Of Six-pole Network SimulatingOf Coupled Cavity Chain Characteristics In Two Passbands[C]. International VacuumElectronics Conference, Seoul, Korea,2003,159-160
    [72] D. Dialetis, D. Chermin, T. M. Antonsen, et al. Comparative Analysis Of The Curnow AndMalykhin Konnoy Komarov(MKK) Circuits as Representations Of Coupled-CavitySlow-Wave Structures[J]. IEEE Transactions On Electron Devices,2005,52(5):774-782
    [73] XU L, YANG Z H, LI B, et al. High Frequency Circuit Simulator: An AdvancedThree-dimensional Finite Element Electro-magnetic Simulation Tool For MicrowaveTubes[J]. IEEE Transactions On Electron Devices,2009,56(5):1141-1151
    [74]白春江,李斌,胡玉禄,等.Curnow等效模型冷腔特性研究[C].中国电子学会真空电子学分会十七届学术年会军用微波管研讨会论文集.宜昌::2009,298-301
    [75]刘顺康.耦合腔行波管慢波结构的工作模式及其特性[J].真空电子技术,1994,5(1):17-21
    [76] C. L. Kory. Three-Dimensional Simulation Of Traveling-Wave Tube Cold-TestCharacteristics Using MAFIA [R]. NASA Technical Paper,3513,1995
    [77] Frank Kantrowit and IVO Tammaru. Three-dimensional Simulations Of Frequency-phaseMeasurement Of Arbitrary Coupled-cavity RF Circuits[J]. IEEE Transactions On ElectronDevices,1988,35(11):2018-2026
    [78]雷文强,杨中海,高源慈.耦合腔慢波电路的三维软件冷测模拟[J].电子科技大学学报,2002,31(5):470-474
    [79]雷文强,杨中海,廖平.耦合腔慢波特性及其注-波互作用的三维软件模拟[J].强激光与粒子束,2003,15(7):673-676
    [80]李实,刘韦,苏小保,等.耦合腔慢波结构冷测特性的计算方法[J].强激光与粒子束,2005,17(8):1149-1152
    [81]陆德坚,王自成,刘濮鲲.准周期边界条件法在耦合腔结构高频特性研究中的应用[J].电子与信息学报,2008,30(11):2780-2783
    [82] F. Dai and A.S. Omar. Field Analysis Model For Prediciting Dispersion Property Of CoupledCavity Circuit[J]. IEEE MTT-S Digest1993,901-904
    [83]陈森玉.谐振腔链的振荡模式和场的分布[J].高能物理与核物理,1982,6(5):546-554
    [84]宋文淼,李镇淮,宋培德,等.耦合腔结构中场的相位分布对耦合阻抗计算的影响[J].电子科学学刊,1984,6(2):147-154
    [85] H. G. Kosmahl and G. M Branch. Generalized Representation Of Electric Fields InInteraction Gaps Of Klystrons And Traveling-wave Tubes[J]. IEEE Transactions On ElectronDevices,1973,20(7):621-629
    [86]朱敏,吴鸿适.速调管双重入式柱形腔的计算[J].电子学报,1981,4:8-15
    [87] Jeffrey D. Wilson and Carol L. Kory. Simulation Of Cold-Test Parameters And RF OutputPower For A Coupled-cavity Traveling-Wave Tube[J]. IEEE Transactions On ElectronDevices,1995,42(11):2015-2020
    [88] D. J. Connolly. Determination Of The Interaction Impedance Of Coupled Cavity Slow WaveStructures[J]. IEEE Transactions On Electron Devices,1976,23(5):491-493
    [89]胡玉禄,杨中海,李建清,等.螺旋线行波管三维多频非线性理论分析和数值模拟[J].物理学报,2009,58(9):6665-6670
    [90]李建清,莫元龙.行波管中慢电磁行波与电子注非线性互作用普遍理论[J].物理学报,2006,55(8):4117-4122
    [91]肖刘.螺旋线行波管高频特性和非线性注波互作用的研究[D].北京:中国科学院研究生院,2006
    [92]胡玉禄,杨中海,李斌,等.螺旋线行波管中场的数值分析[J].电子与信息学报,2010,32(7):1721-1725
    [93]郝保良,肖刘,刘濮鲲,等.螺旋线行波管三维频域非线性注波互作用的计算[J].物理学报,2009,58(5):3118-3124
    [94]胡玉禄,杨中海,李斌,等.行波管中静态轨迹的研究[J].强激光与粒子束,2009,21(12):1875-1880
    [95]高鹏,杨中海,李斌,等.螺旋线行波管1维多频非线性理论与模拟[J].强激光与粒子束,2007,19(3):459-462
    [96]彭维峰,胡玉禄,杨中海,等.螺旋线行波管注波互作用时域理论[J].物理学报,2010,59(12):8478-8483
    [97] Peng Wei-Feng, Yang Zhong-Hai, Hu Yu-Lu,et al. Nonlinear Time-dependent Simulation OfHelix Traveling Wave Tubes[J]. Chinese Physics B,2011,20(7):0784011-0784017
    [98] Peng Wei-Feng, Hu Yu-Lu, Yang Zhong-Hai,et al. A Three-dimensional Time-dependentTheory For Helix Traveling Wave Tubes In Beam-wave Interaction[J]. Chinese Physics B,2011,20(2):0284011-0284017
    [99]李建清,莫元龙,张勇,等.行波管多信号非线性注波互作用的网络并行计算[J].强激光与粒子束,2002,14(4):583-586
    [100]李建清.行波管三维非线性理论及其网络并行计算[D].成都:电子科技大学,2003
    [101]宋文淼.行波管非线性互作用理论中的能量守恒问题[J].电子学通讯,1980,2(3):119-128
    [102] D. Chernin, T. M. Antonsen, Jr, J. McDonald, et al. Frequency Domain Simulation Of DriveInduced Oscillation In A Coupled Cavity TWT[C]. International Vacuum ElectronicsConference, Rome, Italy,2009,503-504
    [103] Alfred J. Bahr. A Coupled-Monotron Analysis Of band-edge Oscillations In High-powerTraveling-wave Tubes[J]. IEEE Transactions On Electron Devices,1965,12(10):547-556
    [104]刘顺康,张小津.抑制耦合腔行波管寄生振荡的谐振损耗技术[J].真空电子技术,1995,3:6-11
    [105]全亚民,丁耀根,王树忠.双间隙耦合腔中自激振荡问题的分析和模拟[J].强激光与粒子束,2008,20(10):1699-1703
    [106]王贺飞.利用衰减钮扣抑制耦合腔行波管的上边频振荡[J].真空电子技术,2009,2:18-27
    [107]范丽丽.衰减钮扣抑制振荡技术尺寸选择的探讨[J].真空电子技术,2009,5:36-38
    [108]杨军,吕国强,邓光晟,等.等效电路法计算耦合腔慢波结构特性[J].真空科学与技术学报,28(6):526-530
    [109]赵刚,唐康淞,李实,等.耦合腔慢波结构的特性分析[J].真空电子技术,2008,3:16-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700